Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38691588

RESUMEN

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Mycobacterium tuberculosis , Receptores de Antígenos de Linfocitos T , Linfocitos T , Mycobacterium tuberculosis/inmunología , Humanos , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Linfocitos T/inmunología , Antígenos HLA-E , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Tuberculosis/inmunología
2.
J Immunol ; 212(4): 715-722, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149913

RESUMEN

Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-ß could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-ß-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-ß significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-ß pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.


Asunto(s)
Antígenos HLA-E , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Humanos , Antígeno B7-H1/metabolismo , Leucocitos Mononucleares , Epigénesis Genética , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Células Epiteliales
3.
Mol Ther ; 32(3): 678-688, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38219014

RESUMEN

Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.


Asunto(s)
Infecciones por VIH , Antígenos HLA-E , Humanos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Epítopos , Infecciones por VIH/terapia , Péptidos/metabolismo
4.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38943249

RESUMEN

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Asunto(s)
Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Animales , Ratones , Línea Celular Tumoral , Antígenos HLA-E , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/genética , Anticuerpos Monoclonales/farmacología , Sistemas CRISPR-Cas , Eliminación de Gen , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Citotoxicidad Inmunológica
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 273-278, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38512038

RESUMEN

Natural killer (NK) cells directly lysis the virus-infected cells through rapidly releasing cytotoxic mediators and cytokines. The balance between inhibitory and activated receptors on the surface of NK cells, as well as the corresponding ligands expressed on target cells are involved in the regulation of the cytotoxic function of NK cells. NKG2A is one of the highly anticipated inhibitory receptors expressed on NK cells, which can inhibit the cytotoxicity of NK cells to autologous normal tissue cells through interacting with the ligand HLA-E. The studies have shown that HLA-E is overexpressed on virus-infected cells and forms a complex with peptides derived from viral proteins. The interaction of HLA-E and NKG2A can regulate the functions of NK cells, participateing the pathogenesis process of virus infectious diseases. This review outlines the characteristics of the molecular interaction between NKG2A and HLA-E, as well as the mechanisms of NKG2A-HLA-E axis in regulating NK cell responses.


Asunto(s)
Enfermedades Transmisibles , Antígenos HLA-E , Humanos , Células Asesinas Naturales , Citocinas
6.
Front Immunol ; 15: 1386160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779658

RESUMEN

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Asunto(s)
Mapeo Epitopo , Epítopos de Linfocito T , Antígenos HLA-E , Proteómica , Proteómica/métodos , Antígenos HLA-E/análisis , Epítopos de Linfocito T/análisis , Mapeo Epitopo/métodos , Mapeo Epitopo/normas , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/inmunología , Línea Celular , Humanos , Cromatografía Líquida con Espectrometría de Masas , Péptidos/aislamiento & purificación , Células Presentadoras de Antígenos/inmunología , Células Artificiales/inmunología
7.
Front Immunol ; 15: 1329032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571959

RESUMEN

The commonly used antibodies 3D12 and 4D12 recognise the human leukocyte antigen E (HLA-E) protein. These antibodies bind distinct epitopes on HLA-E and differ in their ability to bind alleles of the major histocompatibility complex E (MHC-E) proteins of rhesus and cynomolgus macaques. We confirmed that neither antibody cross-reacts with classical HLA alleles, and used hybrids of different MHC-E alleles to map the regions that are critical for their binding. 3D12 recognises a region on the alpha 3 domain, with its specificity for HLA-E resulting from the amino acids present at three key positions (219, 223 and 224) that are unique to HLA-E, while 4D12 binds to the start of the alpha 2 domain, adjacent to the C terminus of the presented peptide. 3D12 staining is increased by incubation of cells at 27°C, and by addition of the canonical signal sequence peptide presented by HLA-E peptide (VL9, VMAPRTLVL). This suggests that 3D12 may bind peptide-free forms of HLA-E, which would be expected to accumulate at the cell surface when cells are incubated at lower temperatures, as well as HLA-E with peptide. Therefore, additional studies are required to determine exactly what forms of HLA-E can be recognised by 3D12. In contrast, while staining with 4D12 was also increased when cells were incubated at 27°C, it was decreased when the VL9 peptide was added. We conclude that 4D12 preferentially binds to peptide-free HLA-E, and, although not suitable for measuring the total cell surface levels of MHC-E, may putatively identify peptide-receptive forms.


Asunto(s)
Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Humanos , Epítopos , Antígenos HLA , Péptidos , Antígenos de Histocompatibilidad Clase II , Anticuerpos Monoclonales
8.
HLA ; 103(4): e15440, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605657

RESUMEN

Single nucleotide polymorphisms (SNPs) of HLA-E are related to the occurrence of many diseases, but their functions remain unclear. In this study, the function of SNPs at HLA-E rs76971248 and rs1264457 on the myeloid leukemia cells was analyzed by a progressive procedure, included genotyping, mRNA transcription, regulatory element, protein expression, and anti-tumor effect. The frequencies of rs76971248 G and rs1264457 G were found higher in myeloid leukemia patients than those in healthy blood donors (p < 0.05). For myeloid leukemia, rs76971248 T was protective, while rs1264457 G was susceptible. We also found that rs76971248 affected HLA-E mRNA transcription and membrane HLA-E (mHLA-E) expression in K562 cells through differently binding to transcription factor HOXA5 (p < 0.0001), while rs1264457 affected mHLA-E expression by changing mRNA transcription and an encoding amino acid (p < 0.01). In contrast, the expression of soluble HLA-E (sHLA-E) was not influenced by both rs1264457 and rs76971248. The higher HLA-E expression was detected among myeloid leukemia patients, and the K562 cells with higher HLA-E molecules played a significant inhibitory effect on the killing activity of NK-92MI cells (p < 0.05). In conclusion, the higher HLA-E expression of myeloid leukemia cells is promoted by rs76971248 G and rs1264457 G, which helps escape from NK-92MI cells' killing.


Asunto(s)
Leucemia Mieloide , Polimorfismo de Nucleótido Simple , Humanos , Antígenos HLA-E , Alelos , Antígenos de Histocompatibilidad Clase I/genética , Leucemia Mieloide/genética , ARN Mensajero/genética
9.
Mol Immunol ; 172: 56-67, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901180

RESUMEN

The Class I MHC molecule (MHC-I) HLA-E presents peptides that are derived from the signal sequences, either those of other MHC-I products, or of viral type I membrane glycoproteins. Monoclonal antibodies with proven specificity for HLA-E, and with no cross-reactions with other MHC-I products, have yet to be described. To obtain anti-HLA-E-specific antibodies suitable for a range of applications, we generated monoclonal antibodies against a unique feature of HLA-E: its cytoplasmic tail. We created an immunogen by performing an enzymatically catalyzed transpeptidation reaction to obtain a fusion of the cytoplasmic tail of HLA-E with a nanobody that recognizes murine Class II MHC (MHC-II) products. We obtained a mouse monoclonal antibody that recognizes a 13-residue stretch in the HLA-E cytoplasmic tail. We cloned the genes that encode this antibody in expression vectors to place an LPETG sortase recognition motif at the C-terminus of the heavy and light chains. This arrangement allows the site-specific installation of fluorophores or biotin at these C-termini. The resulting immunoglobulin preparations, labeled with 4 equivalents of a fluorescent or biotinylated payload of choice, can then be used for direct immunofluorescence or detection of the tag by fluorescence or by streptavidin-based methods. We also show that the 13-residue sequence can serve as an epitope tag, independent of the site of its placement within a protein's sequence. The antibody can be used diagnostically to stain for HLA-E on patient tumor samples, it can be used as an antibody-epitope tag for extracellular proteins, and it enables research into the unique role of the cytoplasmic tail of HLA-E.


Asunto(s)
Anticuerpos Monoclonales , Epítopos , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Humanos , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Animales , Ratones , Secuencia de Aminoácidos , Citoplasma/inmunología , Citoplasma/metabolismo
10.
Invest Ophthalmol Vis Sci ; 65(3): 37, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38551584

RESUMEN

Purpose: Early metastasis, in which immune escape plays a crucial role, is the leading cause of death in patients with uveal melanoma (UM); however, the molecular mechanism underlying UM immune escape remains unclear, which greatly limits the clinical application of immunotherapy for metastatic UM. Methods: Transcriptome profiles were revealed by RNA-seq analysis. TALL-104 and NK-92MI-mediated cell killing assays were used to examine the immune resistance of UM cells. The glycolysis rate was measured by extracellular acidification analysis. Protein stability was evaluated by CHX-chase assay. Immunofluorescence histochemistry was performed to detect protein levels in clinical UM specimens. Results: Continuous exposure to IL-6 induced the expression of both PD-L1 and HLA-E in UM cells, which promoted UM immune escape. Transcriptome analysis revealed that the expression of most metabolic enzymes in the glycolysis pathway, especially the rate-limiting enzymes, PFKP and PKM, was upregulated, whereas enzymes involved in the acetyl-CoA synthesis pathway were downregulated after exposure to IL-6. Blocking the glycolytic pathway and lactate production by knocking down PKM and LDHA decreased PD-L1 and HLA-E protein, but not mRNA, levels in UM cells treated with IL-6. Notably, lactate secreted by IL-6-treated UM cells was crucial in influencing PD-L1 and HLA-E stability via the GPR81-cAMP-PKA signaling pathway. Conclusions: Our data reveal a novel mechanism by which UM cells acquire an immune-escape phenotype by metabolic reprogramming and reinforce the importance of the link between inflammation and immune escape.


Asunto(s)
Antígeno B7-H1 , Melanoma , Neoplasias de la Úvea , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Interleucina-6 , Ácido Láctico , Antígenos HLA-E , Neoplasias de la Úvea/metabolismo
11.
Cancer Immunol Res ; 12(4): 462-477, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38345397

RESUMEN

Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Antígeno de Maduración de Linfocitos B/metabolismo , Antígenos HLA-E , Linfocitos T , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Antígenos de Histocompatibilidad Clase I/metabolismo , Aloinjertos/patología
12.
Front Biosci (Landmark Ed) ; 29(2): 55, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420797

RESUMEN

Breast cancer (BC) is the second most common malignancy in the world. Numerous studies have demonstrated the association between human leukocyte antigen (HLA) and cancer. The occurrence and development of BC are closely linked to genetic factors. Human leukocyte antigens G and E (HLA-G and HLA-E) are non-classical major histocompatibility complex (MHC) class I molecules. These molecules play an important role in immune surveillance by inhibiting the cytotoxic and natural killer T cells responsible for immune escape. The expression of HLA-G and HLA-E has been associated with several diseases, including tumors. The HLA system plays a key role in the escape of tumor cells from immune surveillance. This review aims to determine the correlation between BC susceptibility and HLA markers specific HLA alleles such as HLA-B07, HLA-DRB111, HLA-DRB113, and HLA-DRB115 are associated with an increased risk of developing BC. Furthermore, HLA-G mutations have been attributed to an elevated likelihood of metastasis in BC patients. Understanding the complex associations between the HLA system and BC development is critical for developing novel cancer prevention, detection, and treatment strategies. This review emphasizes the importance of analyzing HLA polymorphisms in the management of BC patients, as well as the urgent need for further research in this area.


Asunto(s)
Neoplasias de la Mama , Antígenos HLA-G , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos HLA-E , Antígenos HLA-G/genética , Polimorfismo Genético , Susceptibilidad a Enfermedades
13.
Best Pract Res Clin Haematol ; 37(2): 101560, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39098806

RESUMEN

Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.


Asunto(s)
Antígenos HLA-E , Trasplante de Células Madre Hematopoyéticas , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Humanos , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/genética , Aloinjertos , Linfocitos T/inmunología , Polimorfismo Genético , Trasplante Homólogo
14.
Sci Adv ; 10(19): eadm7515, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728394

RESUMEN

The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.


Asunto(s)
Antígenos de Neoplasias , Linfocitos T CD8-positivos , Antígenos HLA-E , Animales , Humanos , Masculino , Fosfatasa Ácida , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citomegalovirus/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Macaca mulatta , Mesotelina
15.
Pathol Res Pract ; 260: 155383, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924853

RESUMEN

OBJECTIVES: The purpose was to detected features of the expression levels of NKG2A and its ligand HLA-E, a new member of the immune checkpoints, in advanced laryngeal carcinoma and their clinicopathologic significance. MATERIAL AND METHODS: We analyzed the expression levels of HLA-E and NKG2A in multiple types of tumors utilizing the Tumor Immune Estimation Resource (TIMER) database and immunohistochemistry and qRT-PCR analysis of paraffin embedded tissue samples to reveal the correlations of the clinicopathological factors with the expression of these two proteins in advanced laryngeal carcinoma as well as their prognostic significance. RESULTS: KLRC1 (the coding gene of NKG2A) and HLA-E are substantially overexpressed in various human cancers than normal tissues. HNSCC is also included. KLRC1 is differentially expressed in different HPV subgroups of patients, with higher expression in the HPV-positive group. Consistent with this, immunohistochemical results also revealed the high expression of these two proteins in tumor tissue. In addition, immunohistochemical staining also displayed a preference for the distribution of NKG2A-positive cells in tumor tissue. Clinicopathological analyses also displayed that the density of NKG2A-positive cells of the HPV-positive group infiltrating laryngeal carcinoma tissue was larger than that in the HPV-negative group. Prognostic analyses indicated that the expression of this immune checkpoint does not affect the overall survival length of patients, but the highly expressed HLA-E is significantly correlated with local recurrence in the patients. CONCLUSIONS: The findings suggest that the expression levels of HLA-E and NKG2A is upregulated in advanced laryngeal carcinoma. The NKG2A-positive cells infiltrating the tumor are mainly distributed in the cancer nest, while infiltrating cell number may be regulated by HPV. The highly expressed HLA-E may promote local recurrence in patients with advanced laryngeal carcinoma.


Asunto(s)
Biomarcadores de Tumor , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Neoplasias Laríngeas , Subfamília C de Receptores Similares a Lectina de Células NK , Humanos , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/inmunología , Neoplasias Laríngeas/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Masculino , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/análisis , Antígenos de Histocompatibilidad Clase I/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Anciano , Pronóstico , Adulto , Relevancia Clínica
16.
Leukemia ; 38(8): 1777-1786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38902472

RESUMEN

Multiple myeloma (MM) cells effectively escape anti-tumoral immunity to survive in the tumor microenvironment (TME). Herein, we identify non-classical major histocompatibility complex (MHC) class I molecule HLA-E as a major contributing factor in immune escape. Clinically, HLA-E expression correlates with aggressive disease features such as t(4;14) and CD56 expression and is induced by IFN-gamma (IFN-γ) in the TME. We discovered that HLA-E is regulated by cAMP responsive element binding protein 1 (CREB1) transcription factor by direct promoter binding; genomic and pharmacological inhibition of CREB1 reduced HLA-E levels even in the presence of IFN-γ or IFN-γ activating agents, such as immunomodulatory drugs and panobinostat. HLA-E binds to natural killer group 2A (NKG2A), delivering an inhibitor signal to natural killer (NK) cells. Treatment with a CREB1 inhibitor was able to restore NK cell-mediated cytotoxicity against MM cell lines and patient samples. In conclusion, our results strongly demonstrate that CREB1 inhibition promotes anti-tumoral immunity in MM by limiting HLA-E expression and enhancing the activity of NK cells.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Mieloma Múltiple , Humanos , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Escape del Tumor , Microambiente Tumoral/inmunología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Interferón gamma/metabolismo
17.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158698

RESUMEN

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Asunto(s)
Antígenos HLA-E , Señales de Clasificación de Proteína , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília D de Receptores Similares a Lectina de las Células NK/genética , Subfamília D de Receptores Similares a Lectina de las Células NK/química , Péptidos/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
18.
Emerg Microbes Infect ; 13(1): 2361019, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38804979

RESUMEN

HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-γ production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.


Asunto(s)
COVID-19 , Antígenos HLA-E , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , Subfamília C de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Células Asesinas Naturales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/genética , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Inmunidad Adaptativa , Masculino , Femenino , Persona de Mediana Edad , Pulmón/inmunología , Pulmón/virología
19.
Front Immunol ; 14: 1289212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38106407

RESUMEN

Introduction: Tuberculosis (TB) remains the first cause of death from infection caused by a bacterial pathogen. Chemotherapy does not eradicate Mycobacterium tuberculosis (Mtb) from human lungs, and the pathogen causes a latent tuberculosis infection that cannot be prevented by the currently available Bacille Calmette Guerin (BCG) vaccine, which is ineffective in the prevention of pulmonary TB in adults. HLA-E-restricted CD8+ T lymphocytes are essential players in protective immune responses against Mtb. Hence, expanding this population in vivo or ex vivo may be crucial for vaccination or immunotherapy against TB. Methods: The enzymatically inactive Bordetella pertussis adenylate cyclase (CyaA) toxoid is an effective tool for delivering peptide epitopes into the cytosol of antigen-presenting cells (APC) for presentation and stimulation of specific CD8+ T-cell responses. In this study, we have investigated the capacity of the CyaA toxoid to deliver Mtb epitopes known to bind HLA-E for the expansion of human CD8+ T cells in vitro. Results: Our results show that the CyaA-toxoid containing five HLA-E-restricted Mtb epitopes causes significant expansion of HLA-E-restricted antigen-specific CD8+ T cells, which produce IFN-γ and exert significant cytotoxic activity towards peptide-pulsed macrophages. Discussion: HLA-E represents a promising platform for the development of new vaccines; our study indicates that the CyaA construct represents a suitable delivery system of the HLA-E-binding Mtb epitopes for ex vivo and in vitro expansion of HLA-E-restricted CD8+ T cells inducing a predominant Tc1 cytokine profile with a significant increase of IFN-γ production, for prophylactic and immunotherapeutic applications against Mtb.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Adenilil Ciclasas , Bordetella pertussis , Linfocitos T CD8-positivos , Epítopos , Antígenos de Histocompatibilidad Clase I , Antígenos HLA-E , Péptidos , Toxoides , Tuberculosis/prevención & control
20.
Front Immunol ; 14: 1308539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187391

RESUMEN

Introduction: The transcription factor HELIOS is primarily known for its expression in CD4 regulatory T cells, both in humans and mice. In mice, HELIOS is found in exhausted CD8 T cells. However, information on human HELIOS+ CD8 T cells is limited and conflicting. Methods: In this study, we characterized by flow cytometry and transcriptomic analyses human HELIOS+ CD8 T cells. Results: These T cells primarily consist of memory cells and constitute approximately 21% of blood CD8 T cells. In comparison with memory HELIOS- T-BEThigh CD8 T cells that displayed robust effector functions, the memory HELIOS+ T-BEThigh CD8 T cells produce lower amounts of IFN-γ and TNF-α and have a lower cytotoxic potential. We wondered if these cells participate in the immune response against viral antigens, but did not find HELIOS+ cells among CD8 T cells recognizing CMV peptides presented by HLA-A2 and HLA-B7. However, we found HELIOS+ CD8 T cells that recognize a CMV peptide presented by MHC class Ib molecule HLA-E. Additionally, a portion of HELIOS+ CD8 T cells is characterized by the expression of CD161, often used as a surface marker for identifying TC17 cells. These CD8 T cells express TH17/TC17-related genes encoding RORgt, RORa, PLZF, and CCL20. Discussion: Our findings emphasize that HELIOS is expressed across various CD8 T cell populations, highlighting its significance beyond its role as a transcription factor for Treg or exhausted murine CD8 T cells. The significance of the connection between HELIOS and HLA-E restriction is yet to be understood.


Asunto(s)
Infecciones por Citomegalovirus , Antígenos HLA-E , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Factor de Necrosis Tumoral alfa , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA