Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7994): 385-392, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123683

RESUMEN

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Asunto(s)
Grasas de la Dieta , Enterocitos , Metabolismo de los Lípidos , Mitocondrias , Animales , Ratones , Aspartato-ARNt Ligasa/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Intestinos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología
2.
IUBMB Life ; 76(8): 505-522, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38391119

RESUMEN

The amide proteogenic amino acids, asparagine and glutamine, are two of the twenty amino acids used in translation by all known life. The aminoacyl-tRNA synthetases for asparagine and glutamine, asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase, evolved after the split in the last universal common ancestor of modern organisms. Before that split, life used two-step indirect pathways to synthesize asparagine and glutamine on their cognate tRNAs to form the aminoacyl-tRNA used in translation. These two-step pathways were retained throughout much of the bacterial and archaeal domains of life and eukaryotic organelles. The indirect routes use non-discriminating aminoacyl-tRNA synthetases (non-discriminating aspartyl-tRNA synthetase and non-discriminating glutamyl-tRNA synthetase) to misaminoacylate the tRNA. The misaminoacylated tRNA formed is then transamidated into the amide aminoacyl-tRNA used in protein synthesis by tRNA-dependent amidotransferases (GatCAB and GatDE). The enzymes and tRNAs involved assemble into complexes known as transamidosomes to help maintain translational fidelity. These pathways have evolved to meet the varied cellular needs across a diverse set of organisms, leading to significant variation. In certain bacteria, the indirect pathways may provide a means to adapt to cellular stress by reducing the fidelity of protein synthesis. The retention of these indirect pathways versus acquisition of asparaginyl-tRNA synthetase and glutaminyl tRNA synthetase in lineages likely involves a complex interplay of the competing uses of glutamine and asparagine beyond translation, energetic costs, co-evolution between enzymes and tRNA, and involvement in stress response that await further investigation.


Asunto(s)
Aminoacil-ARNt Sintetasas , Evolución Molecular , Biosíntesis de Proteínas , Aminoacil-ARN de Transferencia , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/genética , Asparagina/metabolismo , Asparagina/genética , Glutamina/metabolismo , Bacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/enzimología , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Amidas/metabolismo , Humanos
3.
BMC Pediatr ; 24(1): 96, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310242

RESUMEN

BACKGROUND: NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. CASE PRESENTATION: Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. CONCLUSION: We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.


Asunto(s)
Aspartato-ARNt Ligasa , Epilepsia Refractaria , Epilepsia , Estado Epiléptico , Femenino , Humanos , Estado Epiléptico/diagnóstico , Estado Epiléptico/genética , Epilepsia Refractaria/genética , Mutación Missense , ARN de Transferencia , Mutación , Aspartato-ARNt Ligasa/genética
4.
BMC Genomics ; 24(1): 473, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605104

RESUMEN

BACKGROUND: Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of plants. According to studies, ß-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar. RESULTS: In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for understanding how plants respond to drought stress through external application of BABA. CONCLUSIONS: In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants through the topical application of low concentrations of BABA.


Asunto(s)
Arabidopsis , Aspartato-ARNt Ligasa , Escarabajos , Animales , Resistencia a la Sequía , Transducción de Señal/genética , Arabidopsis/genética , ARN de Transferencia/genética
5.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738225

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Mutación con Ganancia de Función/genética , Mutación con Pérdida de Función/genética , Trastornos del Neurodesarrollo/genética , Aminoacil-ARN de Transferencia/genética , Alelos , Aminoacil-ARNt Sintetasas/genética , Línea Celular , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Linaje , ARN de Transferencia/genética , Células Madre/fisiología
6.
J Transl Med ; 21(1): 574, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37626419

RESUMEN

BACKGROUND: This study investigated the correlation between the expression of DARS2 and metabolic parameters of 18F-FDG PET/CT, and explored the potential mechanisms of DARS2 affecting the proliferation and glycolysis of lung adenocarcinoma (LUAD) cells. METHODS: This study used genomics and proteomics to analyze the difference in DARS2 expression between LUAD samples and control samples. An analysis of 62 patients with LUAD who underwent 18F-FDG PET/CT examinations before surgery was conducted retrospectively. The correlation between DARS2 expression and PET/CT metabolic parameters, including SUVmax, SUVmean, MTV, and TLG, was examined by Spearman correlation analysis. In addition, the molecular mechanism of interfering with DARS2 expression in inhibiting LUAD cell proliferation and glycolysis was analyzed through in vitro cell experiments. RESULTS: DARS2 expression was significantly higher in LUAD samples than in control samples (p < 0.001). DARS2 has high specificity (98.4%) and sensitivity (95.2%) in the diagnosis of LUAD. DARS2 expression was positively correlated with SUVmax, SUVmean, and TLG (p < 0.001). At the same time, the sensitivity and specificity of SUVmax in predicting DARS2 overexpression in LUAD were 88.9% and 65.9%, respectively. In vitro cell experiments have shown that interfering with DARS2 expression can inhibit the proliferation and migration of LUAD cells, promote cell apoptosis, and inhibit the glycolytic activity of tumor cells by inhibiting the expression of glycolytic related genes SLC2A1, GPI, ALDOA, and PGAM1. CONCLUSIONS: Overexpression of DARS2 is associated with metabolic parameters on 18F-FDG PET/CT, which can improve LUAD diagnosis accuracy. DARS2 may be a useful biomarker to diagnose, prognosis, and target treatment of LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Aspartato-ARNt Ligasa , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Estudios Retrospectivos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/genética , Glucólisis , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/genética
7.
J Chem Inf Model ; 63(6): 1819-1832, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36893463

RESUMEN

Aspartyl-tRNA synthetase catalyzes the attachment of aspartic acid to its cognate tRNA by the aminoacylation reaction during the initiation of the protein biosynthesis process. In the second step of the aminoacylation reaction, known as the charging step, the aspartate moiety is transferred from aspartyl-adenylate to the 3'-OH of A76 of tRNA through a proton transfer process. We have investigated different pathways for the charging step through three separate QM/MM simulations combined with the enhanced sampling method of well-sliced metadynamics and found out the most feasible pathway for the reaction at the active site of the enzyme. In the charging reaction, both the phosphate group and the ammonium group after deprotonation can potentially act as a base for proton transfer in the substrate-assisted mechanism. We have considered three possible mechanisms involving different pathways of proton transfer, and only one of them is determined to be enzymatically feasible. The free energy landscape along reaction coordinates where the phosphate group acts as the general base showed that, in the absence of water, the barrier height is 52.6 kcal/mol. The free energy barrier is reduced to 39.7 kcal/mol when the active site water molecules are also treated quantum mechanically, thus allowing a water mediated proton transfer. The charging reaction involving the ammonium group of the aspartyl adenylate is found to follow a path where first a proton from the ammonium group moves to a water in the vicinity forming a hydronium ion (H3O+) and NH2 group. The hydronium ion subsequently passes the proton to the Asp233 residue, thus minimizing the chance of back proton transfer from hydronium to the NH2 group. The neutral NH2 group subsequently takes the proton from the O3' of A76 with a free energy barrier of 10.7 kcal/mol. In the next step, the deprotonated O3' makes a nucleophilic attack to the carbonyl carbon forming a tetrahedral transition state with a free energy barrier of 24.8 kcal/mol. Thus, the present work shows that the charging step proceeds through a multiple proton transfer mechanism where the amino group formed after deprotonation acts as the base to capture a proton from O3' of A76 rather than the phosphate group. The current study also shows the important role played by Asp233 in the proton transfer process.


Asunto(s)
Aspartato-ARNt Ligasa , Dominio Catalítico , Protones , Aminoacilación , Agua/química , ARN de Transferencia/química , Fosfatos
8.
J Pathol ; 258(2): 106-120, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35696251

RESUMEN

Efficient molecular targeting therapies for most gastric cancers (GCs) are currently lacking, despite GC being one of the most frequent and often devastating malignancies worldwide. Thus, identification of novel therapeutic targets for GC is in high demand. Recent advancements of high-throughput nucleic acid synthesis methods combined with next-generation sequencing (NGS) platforms have made it feasible to conduct functional genomics screening using large-scale pooled lentiviral libraries aimed at discovering novel cancer therapeutic targets. In this study, we performed NGS-based functional genomics screening for human GC cell lines using an originally constructed 6,399 shRNA library targeting all 2,096 human metabolism genes. Our screening identified aspartyl-tRNA synthetase (DARS) as a possible candidate for a therapeutic target for GC. In-house tissue microarrays containing 346 cases of GC combined with public datasets showed that patients with high expression levels of DARS protein exhibited more advanced clinicopathologic parameters and a worse prognosis, specifically among diffuse-type GC patients. Both in vitro and in vivo experiments concretely evidenced that DARS inhibition achieved robust growth suppression of GC cells. Moreover, RNA sequencing of GC cell lines under shRNA-mediated DARS knockdown suggested that DARS inhibition exerts its effect through the inactivation of multiple p-ERK pathways. This MAPK-related growth suppression by DARS inhibition would also be applicable to other cancers; thus, it is warranted to investigate the expression and clinical significance of DARS in a wide spectrum of malignancies. Taken together, NGS-based high-throughput pooled lentiviral screening showed DARS as a novel prognostic marker and a promising therapeutic target for GC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Aspartato-ARNt Ligasa , Neoplasias Gástricas , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Línea Celular Tumoral , Detección Precoz del Cáncer , Técnicas de Silenciamiento del Gen , Genómica , Humanos , Pronóstico , ARN Interferente Pequeño , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
9.
J Clin Lab Anal ; 37(21-22): e24983, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37950505

RESUMEN

BACKGROUND: NARS2 encodes mitochondrial Asparaginyl-tRNA Synthetase 2, which catalyzes the aminoacylation of tRNA-Asn in the mitochondria. To date, 24 variants have been reported in NARS2 gene in 35 patients. The phenotypic variability of NARS2-associated disorder is broad, ranging from neurodevelopmental disorders to hearing loss. In this study, we report some novel imaging findings in an Iranian patient suffering from epileptic encephalopathy, caused by a previously reported variant, c.500A > G; p.(His167Arg), in NARS2. METHODS: The spectrum of clinical manifestations of two Iranian patients was investigated and genetic analysis was performed by Whole-exome sequencing (WES). Additionally, we also reviewed the literature and summarized the phenotypes of previously reported patients with variants in the NARS2 gene. RESULTS: Here, we present the phenotypic and genetic features of 2 unrelated Iranian infants presented with neurodevelopmental delay, seizures, hearing impairment, feeding problems, elevated serum lactate levels in addition to subdural hematoma and cerebral parenchymal hemorrhage in the brain magnetic resonance imaging (MRI) of one of the patients. Genetic analysis revealed a biallelic missense variant in NARS2: c.500A > G; p.(His167Arg). We described the subdural hematoma and cerebral parenchymal hemorrhage of the brain for the first time. CONCLUSIONS: Our study provides new clinical findings, subdural hematoma, and parenchymal hemorrhage, in NARS2-related disorders. Our findings along with previous studies provide more evidence of the clinical presentation of the disease caused by pathogenic variants in NARS2. Expanding the clinical spectrum increases the diagnostic rate of molecular testing and improves the quality of counseling for at-risk couples.


Asunto(s)
Aspartato-ARNt Ligasa , Encéfalo , Lactante , Humanos , Irán , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Hematoma Subdural/complicaciones , Hematoma Subdural/patología , Fenotipo , Hemorragia Cerebral , Aspartato-ARNt Ligasa/genética
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36675121

RESUMEN

Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.


Asunto(s)
Aspartato-ARNt Ligasa , Enfermedad de Leigh , Enfermedades Mitocondriales , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Federación de Rusia , Proteínas Mitocondriales/genética , Proteínas de Transporte de Membrana/genética , Proteínas/genética , Factores de Transcripción/genética , Aspartato-ARNt Ligasa/genética
11.
Hum Mol Genet ; 29(17): 2845-2854, 2020 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32766765

RESUMEN

Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation disorder (LBSL) arises from mutations in mitochondrial aspartyl-tRNA synthetase (DARS2) gene. The disease has a childhood or juvenile-onset and is clinically characterized by cerebellar ataxia, cognitive decline and distinct morphological abnormalities upon magnetic resonance imaging. We previously demonstrated that neurons and not adult myelin-producing cells are specifically sensitive to DARS2 loss, hence likely the primary culprit in LBSL disorder. We used conditional Purkinje cell (PCs)-specific Dars2 deletion to elucidate further the cell-type-specific contribution of this class of neurons to the cerebellar impairment observed in LBSL. We show that DARS2 depletion causes a severe mitochondrial dysfunction concomitant with a massive loss of PCs by the age of 15 weeks, thereby rapidly deteriorating motor skills. Our findings conclusively show that DARS2 is indispensable for PC survival and highlights the central role of neuroinflammation in DARS2-related PC degeneration.


Asunto(s)
Aspartato-ARNt Ligasa/deficiencia , Ataxia Cerebelosa/genética , Leucoencefalopatías/genética , Enfermedades Mitocondriales/genética , Vaina de Mielina/genética , Neuronas/metabolismo , Animales , Aspartato-ARNt Ligasa/genética , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Supervivencia Celular/genética , Ataxia Cerebelosa/diagnóstico por imagen , Ataxia Cerebelosa/metabolismo , Ataxia Cerebelosa/patología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Ácido Láctico/metabolismo , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/patología , Imagen por Resonancia Magnética , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/patología , Mutación/genética , Neuronas/patología , Células de Purkinje/metabolismo , Células de Purkinje/patología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo
12.
Mol Genet Metab ; 136(4): 260-267, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820270

RESUMEN

Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1Δ) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhibited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p.Glu277Lys); this variant combination has not been previously reported. The msd1Δ yeast transformed with plasmids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a significant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variability in LBSL.


Asunto(s)
Aspartato-ARNt Ligasa , Leucoencefalopatías , Adolescente , Adulto , Aspartato-ARNt Ligasa/genética , Ataxia/patología , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Progresión de la Enfermedad , Humanos , Ácido Láctico , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hermanos , Médula Espinal/diagnóstico por imagen , Médula Espinal/metabolismo , Médula Espinal/patología
13.
Am J Med Genet A ; 188(4): 1214-1225, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35014173

RESUMEN

Leigh syndrome (LS), the most common mitochondrial disease in early childhood, usually manifests variable neurodegenerative symptoms and typical brain magnetic resonance imaging (MRI) lesions. To date, pathogenic variants in more than 80 genes have been identified. However, there are still many cases without molecular diagnoses, and thus more disease-causing variants need to be unveiled. Here, we presented three clinically suspected LS patients manifesting neurological symptoms including developmental delay, hypotonia, and epilepsy during the first year of age, along with symmetric brain lesions on MRI. We explored disease-associated variants in patients and their nonconsanguineous parents by whole-exome sequencing and subsequent Sanger sequencing verification. Sequencing data revealed three pairs of disease-associated compound heterozygous variants: c.1A>G (p.Met1?) and 409G>C (p.Asp137His) in SDHA, c.1253G>A (p.Arg418His) and 1300C>T (p.Leu434Phe) in NARS2, and c.5C>T (p.Ala2Val) and 773T>G (p.Leu258Trp) in ECHS1. Among them, the likely pathogenic variants c.409G>C (p.Asp137His) in SDHA, c.1300C>T (p.Leu434Phe) in NARS2, and c.773T>G (p.Leu258Trp) in ECHS1 were newly identified. Segregation analysis indicated the possible disease-causing nature of the novel variants. In silico prediction and three-dimensional protein modeling further suggested the potential pathogenicity of these variants. Our discovery of novel variants expands the gene variant spectrum of LS and provides novel evidence for genetic counseling.


Asunto(s)
Aspartato-ARNt Ligasa , Enfermedad de Leigh , Aspartato-ARNt Ligasa/genética , Preescolar , China , Humanos , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mutación , Linaje , Secuenciación del Exoma
14.
Am J Med Genet A ; 188(8): 2466-2471, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703918

RESUMEN

Neonatal diabetes mellitus (NDM) with developmental delay and epilepsy is classified as developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. The majority of DEND syndrome are due to severely damaging variants of K-ATP channels, and few mitochondria-related genes have been reported. We report here two Japanese siblings who were clinically diagnosed with DEND syndrome in whom NARS2 compound heterozygous variants were detected. Patient 1 was a 3-year-old girl and presented with diabetes ketoacidosis at 3 months old. Patient 2 was a 1-year-old boy who presented with severe hyperglycemia and started insulin therapy at 3 days old. After the first episodes, they both presented with severe developmental delay, hearing loss and treatment-resistant epilepsy accompanied by progressive brain atrophy. Whole-exome sequencing revealed compound heterozygous NARS2 p.R159C and p.L217V variants, and the GATA4 p.P407Q variant in both patients. They were treated by mitochondrial supportive therapy of vitamin B1, L-carnitine, and coenzyme Q10. Patient 2 was withdrawn from insulin therapy at 6 months old. This is the first report of NDM in which variants of the NARS2 gene coding mitochondrial protein were detected. Genetic analysis including mitochondrial genes should be considered in patients with neonatal onset diabetes associated with neurogenic symptoms.


Asunto(s)
Aspartato-ARNt Ligasa , Diabetes Mellitus , Epilepsia , Aspartato-ARNt Ligasa/genética , Preescolar , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Femenino , Humanos , Hipoglucemiantes , Lactante , Recién Nacido , Enfermedades del Recién Nacido , Insulina , Masculino , Mutación , Trastornos Psicomotores , Hermanos , Síndrome
15.
Neurochem Res ; 47(7): 1972-1984, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35357600

RESUMEN

The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.


Asunto(s)
Aspartato-ARNt Ligasa , Enfermedades Desmielinizantes , Animales , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Preescolar , Humanos , Ratones , Mutación , Fenotipo
16.
J Clin Lab Anal ; 36(10): e24691, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36085578

RESUMEN

BACKGROUND: DARS2 was overexpressed in multiple tumor types, but the biological role of DARS2 in lung adenocarcinoma (LUAD) have not been elucidated. METHODS: Firstly, the DARS2 expression in LUAD was explored using The Cancer Genome Atlas (TCGA). Then, qRT-PCR and Western blot were performed to confirm DARS2 expression in LUAD. Next, Cox regression and Kaplan-Meier methods were utilized to evaluate whether DARS2 expression can affect the overall survival. The relationships between DARS2 expression and clinicopathological characteristics were investigated by TCGA database. Moreover, we utilized Gene Set Enrichment Analysis (GSEA) to detect DARS2-related signaling pathways in LUAD. Finally, the special function of DARS2 in cell proliferation, invasion and apoptosis was assessed in vitro. RESULTS: The higher expression of DARS2 was found in LUAD compared to para-carcinoma tissues and significantly related to tumor stage, T stage, and M stage. The survival analysis indicated that DARS2 overexpression was related to poor prognosis in LUAD. Multivariate analysis suggested that DARS2 expression was a prognostic indicator. GSEA revealed that DARS2 was primarily involved in cell cycle-related pathways. In addition, upregulation of DARS2 facilitated LUAD cell proliferation, migration, invasion and inhabited apoptosis, DARS2 knockdown showed an opposite result. CONCLUSION: DARS2 modulates the proliferation, invasion and apoptosis of LUAD cells, and sever as a promising therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Aspartato-ARNt Ligasa , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/patología , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Pronóstico
17.
J Trop Pediatr ; 69(1)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36661119

RESUMEN

NARS2 mutations are known to cause various clinical phenotypes such as nonsyndromic hearing loss, Leigh/Alpers syndrome, refractory epilepsy, developmental delay, intellectual disability and myopathy. We presented the first Turkish variant of NASR2 and added type 1 diabetes mellitus (DM), which was not previously described in the phenotype spectrum of this disease. A 4.5-month-old girl presented with hearing loss, hypotonia, refractory myoclonic epilepsy, severe developmental delay and large subdural hemorrhage. In the first year of the follow-up, type 1 DM developed. A homozygous missense mutation, [c.500 A>G, p.H167R] in the NARS2 gene was detected in the trio-based whole-exome sequencing (WES). In this disease, in addition to multi-organ involvement, type 1 DM may also develop, as in our case. Since it is a mitochondrial disease, the decision to treat with valproic acid should be reconsidered. The long diagnostic process can be shortened with WES.


Asunto(s)
Aspartato-ARNt Ligasa , Diabetes Mellitus Tipo 1 , Discapacidad Intelectual , Enfermedad de Leigh , Humanos , Aspartato-ARNt Ligasa/genética , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , Mutación Missense , Fenotipo , Femenino , Lactante
18.
Neurogenetics ; 22(4): 359-364, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34415467

RESUMEN

Biallelic variants in the NARS2 gene are the cause of a continuous spectrum of neurodegenerative disorders presenting with various severity-from spastic paraplegia, progressive neurodegeneration to Leigh and Alpers syndrome. Common clinical signs result from a mitochondrial dysfunction based on OXPHOS deficiency. Here, we present a patient with infantile-onset severe epilepsy leading to fatal refractory status epilepticus. Whole exome sequencing with Exomiser analysis based on HPO terms detected two novel NARS2 variants in a compound heterozygous state. To date, 18 different NARS2 disease-causing mutations have been described. Our study adds to the understanding of this mitochondrial disorder.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Enfermedades Mitocondriales/genética , Mutación/genética , Edad de Inicio , Epilepsia/diagnóstico , Epilepsia/genética , Humanos , Recién Nacido
19.
Mol Genet Metab ; 133(2): 222-229, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33972171

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial aminoacyl-tRNA synthetases-encoded by ARS2 genes-are evolutionarily conserved enzymes that catalyse the attachment of amino acids to their cognate tRNAs, ensuring the accuracy of the mitochondrial translation process. ARS2 gene mutations are associated with a wide range of clinical presentations affecting the CNS. METHODS: Two senior neuroradiologists analysed brain MRI of 25 patients (age range: 3 d-25 yrs.; 11 males; 14 females) with biallelic pathogenic variants of 11 ARS2 genes in a retrospective study conducted between 2002 and 2019. RESULTS: Though several combinations of brain MRI anomalies were highly suggestive of specific aetiologies (DARS2, EARS2, AARS2 and RARS2 mutations), our study detected no MRI pattern common to all patients. Stroke-like lesions were associated with pathogenic SARS2 and FARS2 variants. We also report early onset cerebellar atrophy and calcifications in AARS2 mutations, early white matter involvement in RARS2 mutations, and absent involvement of thalami in EARS2 mutations. Finally, our findings show that normal brain MRI results do not exclude the presence of ARS2 mutations: 5 patients with normal MRI images were carriers of pathogenic IARS2, YARS2, and FARS2 variants. CONCLUSION: Our study extends the spectrum of brain MRI anomalies associated with pathogenic ARS2 variants and suggests ARS2 mutations are largely underdiagnosed.


Asunto(s)
Alanina-ARNt Ligasa/genética , Arginino-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/genética , Encéfalo/diagnóstico por imagen , Proteínas Mitocondriales/genética , Fenilalanina-ARNt Ligasa/genética , Adolescente , Adulto , Aminoacil-ARNt Sintetasas/clasificación , Aminoacil-ARNt Sintetasas/genética , Encéfalo/patología , Niño , Preescolar , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Mutación/genética , Fenotipo , Adulto Joven
20.
Proteins ; 88(9): 1133-1142, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32067260

RESUMEN

The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.


Asunto(s)
Anticodón , Aspartato-ARNt Ligasa/metabolismo , Escherichia coli/enzimología , Helicobacter pylori/enzimología , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Asparagina/metabolismo , ARN de Transferencia de Aspártico/metabolismo , Secuencia de Aminoácidos , Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/genética , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Helicobacter pylori/genética , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Aspártico/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA