RESUMEN
Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.
Asunto(s)
Aspergillus/crecimiento & desarrollo , Gliotoxina/farmacología , Metiltransferasas/genética , Factores de Transcripción/genética , Aspergillus/efectos de los fármacos , Aspergillus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus nidulans/efectos de los fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Aspergillus oryzae/efectos de los fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crecimiento & desarrollo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Gliotoxina/biosíntesis , RNA-SeqRESUMEN
Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.
Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/farmacología , Dinamarca/epidemiología , Antifúngicos/farmacología , Humanos , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Mutación , Fungicidas Industriales/farmacología , GenotipoRESUMEN
Fluorescent proteins (FPs) are indispensable tools used for molecular imaging, single-cell dynamics, imaging in infection models, and more. However, next-generation FPs have yet to be characterized in Aspergillus. Here, we characterize 18 FPs in the pathogenic filamentous fungus Aspergillus fumigatus spanning the visible light spectrum. We report on in vivo FP brightness in hyphal and spore morphotypes and show how a fluoropyrimidine-based selection system can be used to iteratively introduce four distinct FPs enabling the simultaneous visualization of the cell membrane, mitochondria, peroxisomes, and vacuoles. Using this strain, we describe and compare the dynamic responses of organelles to stresses induced by voriconazole, amphotericin B, and the novel antifungal drugs olorofim and manogepix. The expansion to the fluorescent genetic toolbox will overcome boundaries in research applications that involve fluorescence imaging in filamentous fungi.
Asunto(s)
Anfotericina B , Antifúngicos , Aspergillus fumigatus , Imagen Óptica , Voriconazol , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Antifúngicos/farmacología , Voriconazol/farmacología , Anfotericina B/farmacología , Imagen Óptica/métodos , Hifa/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Microscopía Fluorescente/métodos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismoRESUMEN
Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.
Asunto(s)
Antifúngicos , Aspergillus fumigatus , Farmacorresistencia Fúngica , Salud Única , Antifúngicos/farmacología , Humanos , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Candida auris/efectos de los fármacos , Candida auris/genética , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Azoles/farmacología , Agricultura , Candidiasis/microbiología , Candidiasis/tratamiento farmacológicoRESUMEN
Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing agar plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculum preparation are time-consuming. We evaluated whether skipping the filtration and inoculum adjustment steps negatively influenced the performance of the E.Def 10.2 procedure. A. fumigatus sensu stricto isolates (n = 98), previously classified as azole susceptible or azole resistant (E.Def 9.4 method), were studied. Azole-resistant isolates had either the wild-type cyp51A gene sequence (n = 1) or the following cyp51A gene substitutions: TR34-L98H (n = 41), G54R (n = 5), TR46-Y121F-T289A (n = 1), or G448S (n = 1). In-house azole-containing agar plates were prepared according to the EUCAST E.Def 10.2 procedure. Conidial suspensions obtained by adding distilled water (Tween 20 0.1%) were either filtered and the inocula adjusted to 0.5 McFarland or left unfiltered and unadjusted. Agreements between the agar screening methods using inocula prepared by each procedure were high for itraconazole (99%), voriconazole (100%), and posaconazole (94.9%). Sensitivity and specificity (considering the susceptibility category as per the microdilution E.Def 9.4 method as the gold standard) of E.Def 10.2 were 100% to rule in or rule out resistance when unfiltered and unadjusted suspensions were used; the resistance phenotype of isolates harboring the TR34-L98H, G54R, or TR46-Y121F-T289A substitutions was correctly detected. Unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto. IMPORTANCE: Azole resistance screening in Aspergillus fumigatus sensu stricto can be routinely carried out by using azole-containing plates (E.Def 10.2 procedure); however, conidial suspension filtering and inoculum adjustment before inoculation of plates are time-consuming. We, here, showed that unfiltered and unadjusted conidial suspensions do not negatively influence the performance of the E.Def 10.2 method when screening for azole resistance in A. fumigatus sensu stricto.
Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Esporas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Azoles/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Humanos , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Medios de Cultivo/química , Proteínas Fúngicas/genética , Agar , Sistema Enzimático del Citocromo P-450/genéticaRESUMEN
BACKGROUND: Invasive aspergillosis is a severe fungal infection that affects multiple organ systems including the CNS and the lungs. Isavuconazole, a novel triazole antifungal agent, has demonstrated promising activity against Aspergillus spp. However, data on the penetration of isavuconazole into the CNS and ELF and intracellular accumulation remain limited. MATERIALS AND METHODS: We conducted a prospective single-centre pharmacokinetic (PK) study in 12 healthy volunteers. Subjects received seven doses of 200 mg isavuconazole to achieve an assumed steady-state. After the first and final infusion, plasma sampling was conducted over 8 and 12 h, respectively. All subjects underwent one lumbar puncture and bronchoalveolar lavage, at either 2, 6 or 12 h post-infusion of the final dose. PBMCs were collected in six subjects from blood to determine intracellular isavuconazole concentrations at 6, 8 or 12 h. The AUC/MIC was calculated for an MIC value of 1 mg/L, which marks the EUCAST susceptibility breakpoint for Aspergillus fumigatus and Aspergillus flavus. RESULTS: C max and AUC0-24h of isavuconazole in plasma under assumed steady-state conditions were 6.57â±â1.68 mg/L (meanâ±âSD) and 106â±â32.1 h·mg/L, respectively. The average concentrations measured in CSF, ELF and in PBMCs were 0.07â±â0.03, 0.94â±â0.46 and 27.1â±â17.8 mg/L, respectively. The AUC/MIC in plasma, CSF, ELF and in PBMCs under steady-state conditions were 106â±â32.1, 1.68â±â0.72, 22.6â±â11.0 and 650â±â426 mg·h/L, respectively. CONCLUSION: Isavuconazole demonstrated moderate penetration into ELF, low penetrability into CSF and high accumulation in PBMCs. Current dosing regimens resulted in sufficient plasma exposure in all subjects to treat isolates with MICsâ≤â1 mg/L.
Asunto(s)
Antifúngicos , Voluntarios Sanos , Nitrilos , Piridinas , Triazoles , Humanos , Triazoles/farmacocinética , Triazoles/administración & dosificación , Piridinas/farmacocinética , Piridinas/administración & dosificación , Antifúngicos/farmacocinética , Antifúngicos/administración & dosificación , Masculino , Adulto , Nitrilos/farmacocinética , Nitrilos/administración & dosificación , Estudios Prospectivos , Femenino , Infusiones Intravenosas , Adulto Joven , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Aspergillus fumigatus/efectos de los fármacos , Aspergillus flavus/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/química , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/efectos de los fármacosRESUMEN
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Asunto(s)
Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Azoles/farmacología , Humanos , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estados Unidos , Microbiología del Suelo , Pruebas de Sensibilidad Microbiana , Fungicidas Industriales/farmacología , Arachis/microbiologíaRESUMEN
Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (â¼4 mg/L) and voriconazole (â¼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.
Asunto(s)
Microbiología del Aire , Antifúngicos , Aspergillus fumigatus , Farmacorresistencia Fúngica , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Triazoles/farmacología , Antifúngicos/farmacología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Monitoreo del Ambiente/métodosRESUMEN
PURPOSE: Aspergillus fumigatus (A. fumigatus) keratitis is a type of infectious corneal disease that significantly impairs vision. The objective of this study is to evaluate the therapeutic potential of chelerythrine (CHE) on A. fumigatus keratitis. METHODS: The antifungal activity of CHE was assessed through various tests including the minimum inhibitory concentration test, scanning electron microscopy, transmission electron microscopy, propidium iodide uptake test and plate count. Neutrophil infiltration and activity were assessed using immunofluorescence staining and the myeloperoxidase test. RT-PCR, western blotting assay, and ELISA were performed to measure the expression levels of proinflammatory cytokines (IL-1ß and IL-6), NF-E2-related factor (Nrf2), heme oxygenase-1 (HO-1), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as well as to determine the ratio of phosphorylated-p38 (p-p38) mitogen-activated protein kinase (MAPK) to p38 MAPK. RESULTS: In vitro, CHE inhibited the growth of A. fumigatus conidia, reduced fungal hyphae survival, and prevented fungal biofilm formation. In vivo, CHE reduced the severity of A. fumigatus keratitis and exhibited an excellent anti-inflammatory effect by blocking neutrophil infiltration. Furthermore, CHE decreased the expression levels of proinflammatory cytokines and LOX-1 at both mRNA and protein levels, while also decreasing the p-p38 MAPK/p38 MAPK ratio. Additionally, CHE increased the expression levels of Nrf2 and HO-1. CONCLUSION: CHE provides protection against A. fumigatus keratitis through multiple mechanisms, including reducing fungal survival, inducing anti-inflammatory effects, enhancing Nrf2 and HO-1 expression, and suppressing the signaling pathway of LOX-1/p38 MAPK.
Asunto(s)
Aspergilosis , Aspergillus fumigatus , Benzofenantridinas , Queratitis , Factor 2 Relacionado con NF-E2 , Receptores Depuradores de Clase E , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Receptores Depuradores de Clase E/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Animales , Benzofenantridinas/farmacología , Benzofenantridinas/uso terapéutico , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Hemo-Oxigenasa 1/metabolismo , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Femenino , Citocinas/metabolismoRESUMEN
PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.
Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Queratitis , Lectinas Tipo C , Fármacos Neuroprotectores , Resveratrol , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Lectinas Tipo C/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Resveratrol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismoRESUMEN
Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.
Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Sulfuros/metabolismo , Células A549 , Adulto , Animales , Aspergilosis/epidemiología , Aspergilosis/genética , Aspergilosis/microbiología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Cistationina gamma-Liasa/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Incidencia , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Polimorfismo de Nucleótido Simple/genética , Células THP-1 , Receptores de Trasplantes , Virulencia/efectos de los fármacos , Adulto JovenRESUMEN
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Proteínas Fúngicas , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , MutaciónRESUMEN
Fungal keratitis is a severe corneal infection characterized by suppurative and ulcerative lesions. Aspergillus fumigatus is a common cause of fungal keratitis. Antifungal drugs, such as natamycin, are currently the first-line treatment for fungal keratitis, but their ineffectiveness leads to blindness and perforation. Additionally, the development of fungal resistance makes treating fungal keratitis significantly more challenging. The present study used platelet-derived biomaterial (PDB) to manage A. fumigatus keratitis in the animal model. Freezing and thawing processes were used to prepare PDB, and then A. fumigatus keratitis was induced in the mice. Topical administration of PDB, natamycin, and plasma was performed; quantitative real-time PCR (qPCR) and histopathologic examination (HE) were used to assess the inhibitory effect of the mentioned compounds against fungal keratitis. The qPCR results showed that PDB significantly decreased the count of A. fumigatus compared to the control group (P-value ≤ 5). Natamycin also remarkably reduced the count of fungi in comparison to the untreated animal, but its inhibitory effect was not better than PDB (P-value > 5). The findings of HE also demonstrated that treatment with PDB and natamycin decreased the fungal loads in the corneal tissue. However, plasma did not show a significant inhibitory effect against A. fumigatus. PDB is intrinsically safe and free of any infections or allergic responses; additionally, this compound has a potential role in decreasing the burden of A. fumigatus and treating fungal keratitis. Therefore, scientists should consider PDB an applicable approach to managing fungal keratitis and an alternative to conventional antifungal agents.
Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Queratitis , Aspergillus fumigatus/efectos de los fármacos , Animales , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Modelos Animales de Enfermedad , Materiales Biocompatibles , Plaquetas/efectos de los fármacos , Natamicina/farmacología , Natamicina/administración & dosificación , Natamicina/uso terapéutico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Córnea/microbiología , Córnea/patología , Córnea/efectos de los fármacosRESUMEN
Multi resistant fungi are on the rise, and our arsenal compounds are limited to few choices in the market such as polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. Although each of these drugs featured a unique mechanism, antifungal resistant strains did emerge and continued to arise against them worldwide. Moreover, the genetic variation between fungi and their host humans is small, which leads to significant challenges in new antifungal drug discovery. Endophytes are still an underexplored source of bioactive secondary metabolites. Many studies were conducted to isolate and screen endophytic pure compounds with efficacy against resistant yeasts and fungi; especially, Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus, which encouraged writing this review to critically analyze the chemical nature, potency, and fungal source of the isolated endophytic compounds as well as their novelty features and SAR when possible. Herein, we report a comprehensive list of around 320 assayed antifungal compounds against Candida albicans, C. auris, Cryptococcus neoformans and Aspergillus fumigatus in the period 1980-2024, the majority of which were isolated from fungi of orders Eurotiales and Hypocreales associated with terrestrial plants, probably due to the ease of laboratory cultivation of these strains. 46% of the reviewed compounds were active against C. albicans, 23% against C. neoformans, 29% against A. fumigatus and only 2% against C. auris. Coculturing was proved to be an effective technique to induce cryptic metabolites absent in other axenic cultures or host extract cultures, with Irperide as the most promising compounds MIC value 1 µg/mL. C. auris was susceptible to only persephacin and rubiginosin C. The latter showed potent inhibition against this recalcitrant strain in a non-fungicide way, which unveils the potential of fungal biofilm inhibition. Further development of culturing techniques and activation of silent metabolic pathways would be favorable to inspire the search for novel bioactive antifungals.
Asunto(s)
Antifúngicos , Endófitos , Antifúngicos/farmacología , Endófitos/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Candida albicans/efectos de los fármacosRESUMEN
Azole resistance in Aspergillus fumigatus (ARAf) is becoming a worldwide health threat due to increasing occurrence in the environment. However, environmental surveillance programs are not commonly in place and are lacking in Belgium. Since no data on the occurrence of ARAf and the presence of hotspots for the selection of azole resistance is available in Belgium, a first study on the prevalence of ARAf in the environment was conducted. A total of 232 air and compost or soil samples were taken from two composting facilities, and from horticultural and agricultural crops. The azole susceptibility pattern was determined using the EUCAST method (E. Def. 9.4), and the cyp51A gene and its promotor region were sequenced in A. fumigatus isolates with phenotypic azole resistance. Six pan-azole-resistant A. fumigatus isolates were identified, originating from compost and horticultural crops. Four isolates carried the TR34/L98H mutation, and one isolate carried the TR46/Y121F/T289A mutation. However, we did not observe any ARAf isolates from agricultural crops. In conclusion, this study reported the first TR34/L98H and TR46/Y121F/T289A mutation isolated from a composting facility and horticulture in Belgium. The implementation of standardization in environmental surveillance of A. fumigatus on a European level would be beneficial in order to identify hotspots.
The ubiquitous fungus Aspergillus fumigatus can cause serious invasive diseases in humans. Due to the extensive use of environmental azoles, an increase of clinical infections with azole-resistant A. fumigatus is seen. This pilot study aimed to estimate the prevalence of azole-resistant A. fumigatus in environmental reservoirs in Belgium.
Asunto(s)
Antifúngicos , Aspergillus fumigatus , Azoles , Compostaje , Farmacorresistencia Fúngica , Proteínas Fúngicas , Bélgica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Azoles/farmacología , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Microbiología del Suelo , Mutación , Sistema Enzimático del Citocromo P-450/genéticaRESUMEN
Azole resistance has emerged as a new therapeutic challenge in patients with aspergillosis. Various resistance mutations are attributed to the widespread use of triazole-based fungicides in agriculture. This study explored the prevalence of azole-resistant Aspergillus fumigatus (ARAF) and other aspergilli in the Argentine environment. A collection of A. fumigatus and other aspergilli strains isolated from soil of growing crops, compost, corn, different animal feedstuffs, and soybean and chickpea seeds were screened for azole resistance. No ARAF was detected in any of the environmental samples studied. However, five A. flavus, one A. ostianus, one A. niger and one A. tamarii recovered from soybean and chickpea seeds showed reduced susceptibility to medical azole antifungals (MAA). The susceptibility profiles of five A. flavus isolates, showing reduced susceptibility to demethylase inhibitors (DMIs), were compared with those of 10 isolates that exhibited susceptibility to MAA. Aspergillus flavus isolates that showed reduced MAA susceptibility exhibited different susceptibility profiles to DMIs. Prothioconazole and tebuconazole were the only DMIs significantly less active against isolates with reduced susceptibility to MAA. Although no ARAF isolates were found in the samples analysed, other aspergilli with reduced susceptibility profile to MAA being also important human pathogens causing allergic, chronic and invasive aspergillosis, are present in the environment in Argentina. Although a definitive link between triazole-based fungicide use and isolation of azole-resistant human pathogenic aspergilli from agricultural fields in Argentina remains elusive, this study unequivocally highlights the magnitude of the environmental spread of azole resistance among other Aspergillus species.
This study intended to inform about the prevalence of Aspergillus species showing triazole resistance in the Argentinian environment. Since azole fungicides are used for crop protection, it was expected that azole resistance in this species with cross-resistance to medical azoles could occur.
Asunto(s)
Antifúngicos , Azoles , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Argentina/epidemiología , Azoles/farmacología , Antifúngicos/farmacología , Prevalencia , Microbiología Ambiental , Microbiología del Suelo , Aspergillus/efectos de los fármacos , Aspergillus/aislamiento & purificación , Aspergillus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Humanos , Aspergilosis/microbiología , Aspergilosis/epidemiologíaRESUMEN
Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of invasive infections caused by Aspergillus fumigatus to inform the first FPPL. The pre-specified criteria of mortality, inpatient care, complications and sequelae, antifungal susceptibility, risk factors, preventability, annual incidence, global distribution, and emergence were used to search for relevant articles between 1 January 2016 and 10 June 2021. Overall, 49 studies were eligible for inclusion. Azole antifungal susceptibility varied according to geographical regions. Voriconazole susceptibility rates of 22.2% were reported from the Netherlands, whereas in Brazil, Korea, India, China, and the UK, voriconazole susceptibility rates were 76%, 94.7%, 96.9%, 98.6%, and 99.7%, respectively. Cross-resistance was common with 85%, 92.8%, and 100% of voriconazole-resistant A. fumigatus isolates also resistant to itraconazole, posaconazole, and isavuconazole, respectively. The incidence of invasive aspergillosis (IA) in patients with acute leukemia was estimated at 5.84/100 patients. Six-week mortality rates in IA cases ranged from 31% to 36%. Azole resistance and hematological malignancy were poor prognostic factors. Twelve-week mortality rates were significantly higher in voriconazole-resistant than in voriconazole-susceptible IA cases (12/22 [54.5%] vs. 27/88 [30.7%]; P = .035), and hematology patients with IA had significantly higher mortality rates compared with solid-malignancy cases who had IA (65/217 [30%] vs. 14/78 [18%]; P = .04). Carefully designed surveillance studies linking laboratory and clinical data are required to better inform future FPPL.
Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Farmacorresistencia Fúngica , Organización Mundial de la Salud , Humanos , Aspergillus fumigatus/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/epidemiología , Aspergilosis/microbiología , Aspergilosis/mortalidad , Voriconazol/farmacología , Voriconazol/uso terapéutico , Incidencia , Pruebas de Sensibilidad Microbiana , Infecciones Fúngicas Invasoras/epidemiología , Infecciones Fúngicas Invasoras/microbiología , Infecciones Fúngicas Invasoras/mortalidad , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Factores de RiesgoRESUMEN
OBJECTIVES: We aimed to report the emergence of azole-resistant invasive aspergillosis in hematologic patients admitted to a tertiary hospital in Spain during the last 4 months. METHODS: Prospective, descriptive study was performed to describe and follow all consecutive proven and probable invasive aspergillosis resistant to azoles from hematological cohort during the last 4 months. All patients had fungal cultures and antifungal susceptibility or real-time PCR detection for Aspergillus species and real-time PCR detection for azole-resistant mutation. RESULTS: Four cases of invasive aspergillosis were diagnosed in 4 months. Three of them had azole-resistant aspergillosis. Microbiological diagnosis was achieved in three cases by means of fungal culture isolation and subsequent antifungal susceptibility whereas one case was diagnosed by PCR-based aspergillus and azole resistance detection. All the azole-resistant aspergillosis presented TR34/L98H mutation. Patients with azole-resistant aspergillosis had different hematologic diseases: multiple myeloma, lymphoblastic acute leukemia, and angioimmunoblastic T lymphoma. Regarding risk factors, one had prolonged neutropenia, two had corticosteroids, and two had viral co-infection. Two of the patients developed aspergillosis under treatment with azoles. CONCLUSION: We have observed a heightened risk of azole-resistant aspergillosis caused by A. fumigatus harboring the TR34/L98H mutation in patients with hematologic malignancies. The emergence of azole-resistant aspergillosis raises concerns for the community, highlighting the urgent need for increased surveillance and the importance of susceptibility testing and new drugs development.
Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Azoles , Farmacorresistencia Fúngica , Mutación , Humanos , España/epidemiología , Farmacorresistencia Fúngica/genética , Azoles/farmacología , Azoles/uso terapéutico , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/aislamiento & purificación , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Masculino , Femenino , Persona de Mediana Edad , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Anciano , Estudios Prospectivos , Adulto , Pruebas de Sensibilidad Microbiana , Neoplasias Hematológicas/complicacionesRESUMEN
Aspergillus fumigatus is a saprophytic fungus and opportunistic pathogen often causing fatal infections in immunocompromised patients. Recently AfKDNAse, an exoglycosidase hydrolyzing 3-deoxy-D-galacto-D-glycero-nonulosonic acid (KDN), a rare sugar from the sialic acid family, was identified and characterized. The principal function of AfKDNAse is still unclear, but a study suggests a critical role in fungal cell wall morphology and virulence. Potent AfKDNAse inhibitors are required to better probe the enzyme's biological role and as potential antivirulence factors. In this work, we developed a set of AfKDNAse inhibitors based on enzymatically stable thio-KDN motifs. C2, C9-linked heterodi-KDN were designed to fit into unusually close KDN sugar binding pockets in the protein. A polymeric compound with an average of 54 KDN motifs was also designed by click chemistry. Inhibitory assays performed on recombinant AfKDNAse showed a moderate and strong enzymatic inhibition for the two classes of compounds, respectively. The poly-KDN showed more than a nine hundred fold improved inhibitory activity (IC50 = 1.52 ± 0.37 µM, 17-fold in a KDN molar basis) compared to a monovalent KDN reference, and is to our knowledge, the best synthetic inhibitor described for a KDNase. Multivalency appears to be a relevant strategy for the design of potent KDNase inhibitors. Importantly, poly-KDN was shown to strongly decrease filamentation when co-cultured with A. fumigatus at micromolar concentrations, opening interesting perspectives in the development of antivirulence factors.
Asunto(s)
Aspergillus fumigatus , Glicósido Hidrolasas , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/efectos de los fármacos , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Modelos Moleculares , Estructura MolecularRESUMEN
The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.