RESUMEN
Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/patología , Autopsia , Encéfalo/anatomía & histología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Colina/metabolismo , Cognición/fisiología , Redes Reguladoras de Genes , Interneuronas/clasificación , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Poliaminas/metabolismo , Proteína Reelina , Transducción de Señal , Tálamo/citología , Tálamo/metabolismo , Tálamo/patología , TranscriptomaRESUMEN
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
Asunto(s)
Astrocitos , Sistema Nervioso Central , Ácido Glutámico , Transducción de Señal , Adulto , Humanos , Astrocitos/clasificación , Astrocitos/citología , Astrocitos/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica , Calcio/metabolismo , Exocitosis , Análisis de Expresión Génica de una Sola Célula , Proteína 1 de Transporte Vesicular de Glutamato/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/genética , Eliminación de Gen , Corteza Cerebral/citología , Corteza Cerebral/metabolismoRESUMEN
Astrocytes are morphologically complex, ubiquitous cells that are viewed as a homogeneous population tiling the entire central nervous system (CNS). However, this view has been challenged in the last few years with the availability of RNA sequencing, immunohistochemistry, electron microscopy, morphological reconstruction, and imaging data. These studies suggest that astrocytes represent a diverse population of cells and that they display brain area- and disease-specific properties and functions. In this review, we summarize these observations, emphasize areas where clear conclusions can be made, and discuss potential unifying themes. We also identify knowledge gaps that need to be addressed in order to exploit astrocyte diversity as a biological phenomenon of physiological relevance in the CNS. We thus provide a summary and a perspective on astrocyte diversity in the vertebrate CNS.
Asunto(s)
Astrocitos/clasificación , Animales , Astrocitos/fisiología , Astrocitos/ultraestructura , Biomarcadores , Señalización del Calcio , Compartimento Celular , Linaje de la Célula , Forma de la Célula , Tamaño de la Célula , Electrofisiología , Predicción , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/fisiología , Neurogénesis , Vertebrados/anatomía & histología , Vertebrados/fisiologíaRESUMEN
Astrocytes regulate brain-wide functions and also show region-specific differences, but little is known about how general and region-specific functions are aligned at the single-cell level. To explore this, we isolated adult mouse diencephalic astrocytes by ACSA-2-mediated magnetic-activated cell sorting (MACS). Single-cell RNA-seq revealed 7 gene expression clusters of astrocytes, with 4 forming a supercluster. Within the supercluster, cells differed by gene expression related to ion homeostasis or metabolism, with the former sharing gene expression with other regions and the latter being restricted to specific regions. All clusters showed expression of proliferation-related genes, and proliferation of diencephalic astrocytes was confirmed by immunostaining. Clonal analysis demonstrated low level of astrogenesis in the adult diencephalon, but not in cerebral cortex grey matter. This led to the identification of Smad4 as a key regulator of diencephalic astrocyte in vivo proliferation and in vitro neurosphere formation. Thus, astrocytes show diverse gene expression states related to distinct functions with some subsets being more widespread while others are more regionally restricted. However, all share low-level proliferation revealing the novel concept of adult astrogenesis in the diencephalon.
Asunto(s)
Astrocitos/metabolismo , Linaje de la Célula/genética , Diencéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neurogénesis/genética , Proteína Smad4/genética , Animales , Astrocitos/clasificación , Astrocitos/citología , Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Diencéfalo/citología , Diencéfalo/crecimiento & desarrollo , Ontología de Genes , Redes Reguladoras de Genes , Sustancia Gris/citología , Sustancia Gris/crecimiento & desarrollo , Sustancia Gris/metabolismo , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Anotación de Secuencia Molecular , Familia de Multigenes , Transducción de Señal , Proteína Smad4/metabolismoRESUMEN
Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.
Asunto(s)
Astrocitos/clasificación , Evolución Biológica , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/clasificación , Adolescente , Adulto , Anciano , Animales , Astrocitos/citología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Inhibición Neural , Neuronas/citología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Especificidad de la Especie , Transcriptoma/genética , Adulto JovenRESUMEN
Reactive astrocytes are strongly induced by central nervous system (CNS) injury and disease, but their role is poorly understood. Here we show that a subtype of reactive astrocytes, which we termed A1, is induced by classically activated neuroinflammatory microglia. We show that activated microglia induce A1 astrocytes by secreting Il-1α, TNF and C1q, and that these cytokines together are necessary and sufficient to induce A1 astrocytes. A1 astrocytes lose the ability to promote neuronal survival, outgrowth, synaptogenesis and phagocytosis, and induce the death of neurons and oligodendrocytes. Death of axotomized CNS neurons in vivo is prevented when the formation of A1 astrocytes is blocked. Finally, we show that A1 astrocytes are abundant in various human neurodegenerative diseases including Alzheimer's, Huntington's and Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. Taken together these findings help to explain why CNS neurons die after axotomy, strongly suggest that A1 astrocytes contribute to the death of neurons and oligodendrocytes in neurodegenerative disorders, and provide opportunities for the development of new treatments for these diseases.
Asunto(s)
Astrocitos/clasificación , Astrocitos/patología , Muerte Celular , Sistema Nervioso Central/patología , Microglía/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Axotomía , Técnicas de Cultivo de Célula , Supervivencia Celular , Complemento C1q/metabolismo , Progresión de la Enfermedad , Humanos , Inflamación/patología , Interleucina-1alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Enfermedades Neurodegenerativas/patología , Oligodendroglía/patología , Fagocitosis , Fenotipo , Ratas , Ratas Sprague-Dawley , Sinapsis/patología , Toxinas Biológicas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.
Asunto(s)
Astrocitos/clasificación , Astrocitos/fisiología , Animales , Astrocitos/citología , Astrocitos/patología , Señalización del Calcio/fisiología , Extensiones de la Superficie Celular/fisiología , Uniones Comunicantes/fisiología , Humanos , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatologíaRESUMEN
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Asunto(s)
Astrocitos/metabolismo , Sustancia Gris/citología , Sustancia Blanca/citología , Animales , Astrocitos/clasificación , Barrera Hematoencefálica/fisiología , Metabolismo Energético/fisiología , Uniones Comunicantes/fisiología , Ácido Glutámico/metabolismo , Sustancia Gris/fisiología , Humanos , Accidente Cerebrovascular Isquémico/fisiopatología , Sustancia Blanca/fisiologíaRESUMEN
Astrocytes regulate local cerebral blood flow, maintain ion and neurotransmitter homeostasis, provide metabolic support, regulate synaptic activity, and respond to brain injury, insults, and infection. Because of their abundance, extensive connectivity, and multiple roles in the brain, astrocytes are intimately involved in normal functioning of the CNS and their dysregulation can lead to neuronal dysfunction. In normal aging, decreased biological functioning and reduced cognitive abilities are commonly experienced in individuals free of overt neurological disease. Moreover, in several age-related CNS diseases, chronic inflammation and altered metabolism have been reported. Since people with HIV (PWH) are reported to experience rapid aging with chronic inflammation, altered brain metabolism is likely to be exacerbated. In fact, many studies report altered metabolism in astrocytes in diseases such as Alzheimer's, Parkinson's, and HIV. This review will address the roles of astrocyte activation and altered metabolism in normal aging, in age-related CNS disease, and in HIV-associated neurocognitive disorders.
Asunto(s)
Complejo SIDA Demencia/metabolismo , Envejecimiento/metabolismo , Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/metabolismo , Complejo SIDA Demencia/patología , Edad de Inicio , Anciano , Envejecimiento/patología , Envejecimiento Prematuro/etiología , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Animales , Astrocitos/clasificación , Astrocitos/patología , Enfermedades del Sistema Nervioso Central/patología , Citocinas/metabolismo , Metabolismo Energético , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/metabolismo , Gliosis/patología , Glucosa/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/fisiología , Humanos , Inflamación , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Especies Reactivas de Oxígeno/metabolismoAsunto(s)
Astrocitos/citología , Astrocitos/fisiología , Encéfalo/citología , Encéfalo/fisiología , Animales , Astrocitos/clasificación , Astrocitos/patología , Encéfalo/patología , Separación Celular , Pollos , Transferencia Resonante de Energía de Fluorescencia , Salud , Humanos , Ratones , Vías Nerviosas , Enfermedades Neurodegenerativas/patología , Neuroimagen , Neuronas/citología , Neuronas/patología , Neuronas/fisiología , Neurotransmisores/metabolismoRESUMEN
The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1-translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors (emx2, lhx2, and hopx), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity.SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions.
Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Ratones/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/metabolismo , Animales , Astrocitos/clasificación , Astrocitos/citología , Encéfalo/citología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
Platelet-derived growth factor receptor ß (PDGFRß) is upregulated after brain injury and its depletion results in the blood-brain barrier (BBB) damage. We investigated the time-window and localization of PDGFRß expression in mice with intrahippocampal kainic acid-induced status epilepticus (SE) and in rats with lateral fluid-percussion-induced traumatic brain injury (TBI). Tissue immunohistochemistry was evaluated at several time-points after SE and TBI. The distribution of PDGFRß was analyzed, and its cell type-specific expression was verified with double/triple-labeling of astrocytes (GFAP), NG2 cells, and endothelial cells (RECA-1). In normal mouse hippocampus, we found evenly distributed PDGFRß+ parenchymal cells. In double-labeling, all NG2+ and 40%-60% GFAP+ cells were PDGFRß+. After SE, PDGFRß+ cells clustered in the ipsilateral hilus (178% of that in controls at fourth day, 225% at seventh day, P < 0.05) and in CA3 (201% at seventh day, P < 0.05), but the total number of PDGFRß+ cells was not altered. As in controls, PDGFRß-immunoreactivity was detected in parenchymal NG2+ and GFAP+ cells. We also observed PDGFRß+ structural pericytes, detached reactive pericytes, and endothelial cells. After TBI, PDGFRß+ cells clustered in the perilesional cortex and thalamus, particularly during the first post-injury week. PDGFRß immunopositivity was observed in NG2+ and GFAP+ cells, structural pericytes, detached reactive pericytes, and endothelial cells. In some animals, PDGFRß vascular staining was observed around the cortical glial scar for up to 3 months. Our data revealed an acute accumulation of PDGFRß+ BBB-related cells in degenerating brain areas, which can be long lasting, suggesting an active role for PDGFRß-signaling in blood vessel and post-injury tissue recovery. GLIA 2017;65:322-341.
Asunto(s)
Astrocitos/clasificación , Astrocitos/metabolismo , Lesiones Encefálicas/patología , Células Endoteliales/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Antígenos/metabolismo , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pericitos/metabolismo , Pericitos/patología , Proteoglicanos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Factores de TiempoRESUMEN
To investigate the relationship between Eg5 and histopathological grade of astrocytoma, Eg5 expression was evaluated by immunohistochemical examination on 88 specimens including 25 cases of glioblastoma (WHO grade IV), 22 cases of anaplastic astrocytoma (WHO grade III), 20 cases of diffuse astrocytoma (WHO grade II), and 21 cases of pilocytic astrocytoma (WHO grade I). The histopathological characteristics and Eg5 expression level of each tumor were assessed and statistically analyzed. Astrocytic tumors exhibited significant correlation of expression of Eg5 with higher WHO histopathological grades (p < 0.001). Eg5 is expressed in 51-98% (mean 76.88%) of neoplastic cells in glioblastoma, 34-57% (mean 43.59%) of neoplastic cells in anaplastic astrocytoma, 6-36% (mean 18.60%) of neoplastic cells in diffuse astrocytoma, and 2-28% (mean 13.48%) of neoplastic cells in pilocytic astrocytoma. In conclusion, overexpression of Eg5 associates with high-grade astrocytic neoplasm, and it may represent an independent diagnostic and prognostic factor in grading astrocytic tumors and predicting prognosis of astrocytic tumor patients.
Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Cinesinas/metabolismo , Astrocitos/clasificación , Astrocitos/patología , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Femenino , Estudios de Seguimiento , Humanos , Antígeno Ki-67 , MasculinoRESUMEN
Objectives and experimental design Cerebella of young adults, elderly adults, and patients with Alzheimer's disease (AD) (with and without cerebellar amyloid deposits) were studied by Golgi staining and glial fibrillary acid protein (GFAP) immunocytochemical methods. Observations Three subtypes of Golgi epithelial cells and nine subtypes of stellate neuroglia (both normal and hypertrophic) were defined by their morphology, their GFAP-reactivity, their specific location in the cortical layers, and their responses in senility and AD. The GFAP immunoreaction was subtype specific. In aged and AD cerebella, different morphological and GFAP-immunoreactive subtype-specific changes were observed: in the white matter, the subtypes were always GFAP-immunopositive, but in the grey matter some astroglial subtypes showed a variable or no increase in GFAP staining. The astrocytes at the limits of the granule cell layer showed more and longer processes. Variations were seen in one or more folia, involving one or more subtypes and affecting different numbers of cells of each subtype. No clear differences were seen in glial reactivity between beta-amyloid positive and ß-amyloid (Aß) negative AD cerebella. No important relationships were found between Aß deposits. In aged and AD cerebella, different subtypes expressed new proteins (APP, calretinin). Conclusions The existence of different glial subtypes in different locations suggests they have different functions. General and local variations in these subtypes suggest that both general and local induction factors must also exist. The responses of glial cells to as-yet undefined stimuli might lead to general or local neuronal changes important in senility and the pathogenic course of AD.
Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/clasificación , Astrocitos/metabolismo , Cerebelo/patología , Placa Amiloide/metabolismo , Anciano , Anciano de 80 o más Años , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Astrocitos/ultraestructura , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Masculino , Tinción con Nitrato de Plata , Sustancia Blanca/patología , Sustancia Blanca/ultraestructuraRESUMEN
Glycogen is present in the mammalian nervous system, but at concentrations of up to one hundred times lower than those found in liver and skeletal muscle. This relatively low concentration has resulted in neglect of assigning a role(s) for brain glycogen, but in the last 15 years enormous progress has been made in revealing the multifaceted roles that glycogen plays in the mammalian nervous system. Initial studies highlighted a role for glycogen in supporting neural elements (neurons and axons) during aglycemia, where glycogen supplied supplementary energy substrate in the form of lactate to fuel neural oxidative metabolism. The appropriate enzymes and membrane bound transporters have been localized to cellular locations consistent with astrocyte to neuron energy substrate shuttling. A role for glycogen in supporting the induction of long term potential (LTP) in the hippocampus has recently been described, where glycogen is metabolized to lactate and shuttled to neurons via the extracellular space by monocarboxylate transporters, where it plays an integral role in the induction process of LTP. This is the first time that glycogen has been assigned a role in a distinct, complex physiological brain function, where the lack of glycogen, in the presence of normoglycemia, results in disturbance of the function. The signalling pathway that alerts astrocytes to increased neuronal activity has been recently described, highlighting a pivotal role for increased extracellular potassium ([K(+)]o) that routinely accompanies increased neural activity. An astrocyte membrane bound bicarbonate transporter is activated by the [K(+)]o, the resulting increase in intracellular bicarbonate alkalizing the cell's interior and activating soluble adenyl cyclase (sAC). The sAC promotes glycogenolysis via increases in cyclic AMP, ultimately producing lactate, which is shuttled out of the astrocyte and presumably taken up by neurons from the extracellular space.
Asunto(s)
Sistema Nervioso Central/metabolismo , Metabolismo Energético , Glucógeno/metabolismo , Sistema Nervioso Periférico/metabolismo , Animales , Astrocitos/clasificación , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Glucosa/metabolismo , Hipocampo/metabolismo , Humanos , Lactatos/metabolismo , Potenciación a Largo Plazo/fisiología , Ratones , Modelos Neurológicos , Neuronas/metabolismo , Nervio Óptico/metabolismo , Especificidad de Órganos , Potasio/metabolismo , Ratas , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transmisión Sináptica/fisiologíaRESUMEN
Astrocytes are the most numerous cell type in the brain, where they are known to play multiple important functions. While there is increasing evidence of their morphological, molecular, and functional heterogeneity, it is not clear whether their positional and morphological identities are specified during brain development. We address this problem with a novel strategy to analyze cell lineages through the combinatorial expression of fluorescent proteins. Following in utero electroporation, stochastic expression of these proteins produces inheritable marks that enable the long-term in vivo tracing of glial progenitor lineages. Analyses of clonal dispersion in the adult cortex revealed unanticipated and highly specific clonal distribution patterns. In addition to the existence of clonal arrangements in specific domains, we found that different classes of astrocytes emerge from different clones. This reinforces the view that lineage origin impinges on cell heterogeneity, unveiling a new level of astrocyte diversity likely associated with specific regional functions.
Asunto(s)
Astrocitos/clasificación , Astrocitos/fisiología , Corteza Cerebral , Clonación Molecular , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Electroporación , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Células Madre/fisiología , Factores de TiempoRESUMEN
Single-cell gene expression levels show substantial variations among cells in seemingly homogenous populations. Astrocytes perform many control and regulatory functions in the central nervous system. In contrast to neurons, we have limited knowledge about functional diversity of astrocytes and its molecular basis. To study astrocyte heterogeneity and stem/progenitor cell properties of astrocytes, we used single-cell gene expression profiling in primary mouse astrocytes and dissociated mouse neurosphere cells. The transcript number variability for astrocytes showed lognormal features and revealed that cells in primary cultures to a large extent co-express markers of astrocytes and neural stem/progenitor cells. We show how subpopulations of cells can be identified at single-cell level using unsupervised algorithms and that gene correlations can be used to identify differences in activity of important transcriptional pathways. We identified two subpopulations of astrocytes with distinct gene expression profiles. One had an expression profile very similar to that of neurosphere cells, whereas the other showed characteristics of activated astrocytes in vivo.
Asunto(s)
Astrocitos/clasificación , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual , Animales , Astrocitos/metabolismo , Células Cultivadas , Expresión Génica , Ratones , ARN Mensajero/análisis , Células Madre/metabolismo , Regulación hacia ArribaRESUMEN
Tissue clearing renders entire organs transparent to accelerate whole-tissue imaging; for example, with light-sheet fluorescence microscopy. Yet, challenges remain in analyzing the large resulting 3D datasets that consist of terabytes of images and information on millions of labeled cells. Previous work has established pipelines for automated analysis of tissue-cleared mouse brains, but the focus there was on single-color channels and/or detection of nuclear localized signals in relatively low-resolution images. Here, we present an automated workflow (COMBINe, Cell detectiOn in Mouse BraIN) to map sparsely labeled neurons and astrocytes in genetically distinct mouse forebrains using mosaic analysis with double markers (MADM). COMBINe blends modules from multiple pipelines with RetinaNet at its core. We quantitatively analyzed the regional and subregional effects of MADM-based deletion of the epidermal growth factor receptor (EGFR) on neuronal and astrocyte populations in the mouse forebrain.
Asunto(s)
Astrocitos , Neuronas , Animales , Ratones , Astrocitos/clasificación , Microscopía Fluorescente , Neuronas/clasificación , ProsencéfaloRESUMEN
Microglia are increasingly recognized to be crucially involved in the maintenance of tissue homeostasis of the brain and spinal cord. Not surprisingly is therefore the growing scientific interest in the microglia phenotypes associated with various physiological and pathological processes of the central nervous system. Until recently the investigation of these phenotypes was hindered by the lack of an isolation protocol that (without an extended culturing period) would offer a microglia population of high purity and yield. Thus, our objective was to establish a rapid and efficient method for the isolation of human microglia from postmortem brain samples. We tested multiple elements of already existing protocols (e.g., density separation, immunomagnetic bead separation) and combined them to minimize preparation time and maximize yield and purity. The procedure presented in this article enables acute isolation of human microglia from autopsy (and biopsy) samples with a purity and yield that is suitable for downstream applications, such as protein and gene expression analysis and functional assays. Moreover, the present protocol is appropriate for the isolation of microglia from autopsy samples irrespective of the neurological state of the brain or specific brain regions and (with minor modification) could be even used for the isolation of microglia from human glioma tissue.
Asunto(s)
Astrocitos/fisiología , Encéfalo/citología , Citometría de Flujo/métodos , Separación Inmunomagnética/métodos , Adolescente , Adulto , Anciano , Anexina A5/metabolismo , Astrocitos/clasificación , Autopsia/métodos , Recuento de Células , Movimiento Celular , Centrifugación por Gradiente de Densidad/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fagocitosis/fisiología , Povidona , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio , Adulto JovenRESUMEN
Neuroinflammation has the capacity to alter normal central nervous system (CNS) homeostasis and function. The objective of the present study was to examine the effects of an inflammatory milieu on the electrophysiological properties of striatal astrocyte subpopulations with a mouse bacterial brain abscess model. Whole cell patch-clamp recordings were performed in striatal glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP)(+) astrocytes neighboring abscesses at postinfection days 3 or 7 in adult mice. Cell input conductance (G(i)) measurements spanning a membrane potential (V(m)) surrounding resting membrane potential (RMP) revealed two prevalent astrocyte subsets. A1 and A2 astrocytes were identified by negative and positive G(i) increments vs. V(m), respectively. A1 and A2 astrocytes displayed significantly different RMP, G(i), and cell membrane capacitance that were influenced by both time after bacterial exposure and astrocyte proximity to the inflammatory site. Specifically, the percentage of A1 astrocytes was decreased immediately surrounding the inflammatory lesion, whereas A2 cells were increased. These changes were particularly evident at postinfection day 7, revealing increased cell numbers with an outward current component. Furthermore, RMP was inversely modified in A1 and A2 astrocytes during neuroinflammation, and resting G(i) was increased from 21 to 30 nS in the latter. In contrast, gap junction communication was significantly decreased in all astrocyte populations associated with inflamed tissues. Collectively, these findings demonstrate the heterogeneity of striatal astrocyte populations, which experience distinct electrophysiological modifications in response to CNS inflammation.