Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.794
Filtrar
Más filtros

Intervalo de año de publicación
1.
Physiol Rev ; 104(4): 1533-1610, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722242

RESUMEN

Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.


Asunto(s)
Mitocondrias , Ubiquinona , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Humanos , Animales , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Oxidación-Reducción , Antioxidantes/metabolismo , Debilidad Muscular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ataxia/metabolismo
2.
Cell ; 165(6): 1454-1466, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27212239

RESUMEN

Maintaining homeostasis of Ca(2+) stores in the endoplasmic reticulum (ER) is crucial for proper Ca(2+) signaling and key cellular functions. The Ca(2+)-release-activated Ca(2+) (CRAC) channel is responsible for Ca(2+) influx and refilling after store depletion, but how cells cope with excess Ca(2+) when ER stores are overloaded is unclear. We show that TMCO1 is an ER transmembrane protein that actively prevents Ca(2+) stores from overfilling, acting as what we term a "Ca(2+) load-activated Ca(2+) channel" or "CLAC" channel. TMCO1 undergoes reversible homotetramerization in response to ER Ca(2+) overloading and disassembly upon Ca(2+) depletion and forms a Ca(2+)-selective ion channel on giant liposomes. TMCO1 knockout mice reproduce the main clinical features of human cerebrofaciothoracic (CFT) dysplasia spectrum, a developmental disorder linked to TMCO1 dysfunction, and exhibit severe mishandling of ER Ca(2+) in cells. Our findings indicate that TMCO1 provides a protective mechanism to prevent overfilling of ER stores with Ca(2+) ions.


Asunto(s)
Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Ataxia/genética , Células COS , Calcio/metabolismo , Canales de Calcio/genética , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Discapacidad Intelectual/genética , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados , Osteogénesis/genética , Alineación de Secuencia
3.
Nature ; 626(8000): 874-880, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297121

RESUMEN

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Mutación , Enfermedades Neurodegenerativas , Estrés Fisiológico , Ubiquitina-Proteína Ligasas , Apoptosis/efectos de los fármacos , Ataxia/genética , Supervivencia Celular/efectos de los fármacos , Demencia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
4.
EMBO J ; 43(2): 168-195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212382

RESUMEN

Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.


Asunto(s)
Tejido Adiposo Pardo , Ataxia , Factores de Crecimiento de Fibroblastos , Enfermedades Mitocondriales , Debilidad Muscular , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacología , Enfermedades Mitocondriales/metabolismo , Termogénesis/genética , Ratones Endogámicos C57BL
5.
Trends Biochem Sci ; 48(5): 463-476, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702698

RESUMEN

Coenzyme Q (CoQ) is a remarkably hydrophobic, redox-active lipid that empowers diverse cellular processes. Although most known for shuttling electrons between mitochondrial electron transport chain (ETC) complexes, the roles for CoQ are far more wide-reaching and ever-expanding. CoQ serves as a conduit for electrons from myriad pathways to enter the ETC, acts as a cofactor for biosynthetic and catabolic reactions, detoxifies damaging lipid species, and engages in cellular signaling and oxygen sensing. Many open questions remain regarding the biosynthesis, transport, and metabolism of CoQ, which hinders our ability to treat human CoQ deficiency. Here, we recount progress in filling these knowledge gaps, highlight unanswered questions, and underscore the need for novel tools to enable discoveries and improve the treatment of CoQ-related diseases.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Humanos , Ubiquinona/metabolismo , Enfermedades Mitocondriales/metabolismo , Oxidación-Reducción , Ataxia/metabolismo , Lípidos
6.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38035881

RESUMEN

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Degeneraciones Espinocerebelosas , Humanos , Expansión de Repetición de Trinucleótido/genética , Ataxias Espinocerebelosas/genética , Ataxia/genética , Ataxia Cerebelosa/genética , Fenotipo , Degeneraciones Espinocerebelosas/genética , Proteínas de Homeodominio/genética
7.
Cell ; 148(1-2): 296-308, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265417

RESUMEN

Although uridine-rich small nuclear RNAs (U-snRNAs) are essential for pre-mRNA splicing, little is known regarding their function in the regulation of alternative splicing or of the biological consequences of their dysfunction in mammals. Here, we demonstrate that mutation of Rnu2-8, one of the mouse multicopy U2 snRNA genes, causes ataxia and neurodegeneration. Coincident with the observed pathology, the level of mutant U2 RNAs was highest in the cerebellum and increased after granule neuron maturation. Furthermore, neuron loss was strongly dependent on the dosage of mutant and wild-type snRNA genes. Comprehensive transcriptome analysis identified a group of alternative splicing events, including the splicing of small introns, which were disrupted in the mutant cerebellum. Our results suggest that the expression of mammalian U2 snRNA genes, previously presumed to be ubiquitous, is spatially and temporally regulated, and dysfunction of a single U2 snRNA causes neuron degeneration through distortion of pre-mRNA splicing.


Asunto(s)
Empalme Alternativo , ARN Nuclear Pequeño/genética , Animales , Ataxia/genética , Secuencia de Bases , Cerebelo/citología , Cerebelo/metabolismo , Perfilación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Mutagénesis , Mutación , Enfermedades Neurodegenerativas/genética , Alineación de Secuencia
8.
Semin Immunol ; 70: 101835, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37651849

RESUMEN

Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.


Asunto(s)
Envejecimiento , Timo , Humanos , Animales , Ratones , Timo/fisiología , Sistema Inmunológico , Quimiocinas , Ataxia , Tejido Linfoide
9.
Am J Hum Genet ; 110(1): 105-119, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493768

RESUMEN

Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.


Asunto(s)
Ataxia Cerebelosa , Factores de Crecimiento de Fibroblastos , Ataxia de Friedreich , Expansión de Repetición de Trinucleótido , Adulto , Humanos , Ataxia/genética , Australia , Ataxia Cerebelosa/genética , Ataxia de Friedreich/genética , Expansión de Repetición de Trinucleótido/genética
10.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37301203

RESUMEN

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxia Cerebelosa/genética , Fenotipo , Ataxia/genética , Pruebas Genéticas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Ubiquitina-Proteína Ligasas/genética
11.
Nucleic Acids Res ; 52(10): 5928-5949, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38412259

RESUMEN

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Biosíntesis de Proteínas , Proteínas Ribosómicas , Expansión de Repetición de Trinucleótido , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Ataxia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Secuencia Rica en GC , Células HEK293 , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Temblor , Expansión de Repetición de Trinucleótido/genética , Proteínas Ribosómicas/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487086

RESUMEN

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Asunto(s)
Miocimia , Animales , Ratones , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potasio Kv.1.2
13.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252957

RESUMEN

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/patología , Temblor/genética , Expansión de Repetición de Trinucleótido , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ataxia/genética , Ataxia/patología , Encéfalo/metabolismo , Astrocitos/metabolismo
14.
J Biol Chem ; 300(5): 107269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588811

RESUMEN

Coenzyme Q10 (CoQ10) is an important cofactor and antioxidant for numerous cellular processes, and its deficiency has been linked to human disorders including mitochondrial disease, heart failure, Parkinson's disease, and hypertension. Unfortunately, treatment with exogenous CoQ10 is often ineffective, likely due to its extreme hydrophobicity and high molecular weight. Here, we show that less hydrophobic CoQ species with shorter isoprenoid tails can serve as viable substitutes for CoQ10 in human cells. We demonstrate that CoQ4 can perform multiple functions of CoQ10 in CoQ-deficient cells at markedly lower treatment concentrations, motivating further investigation of CoQ4 as a supplement for CoQ10 deficiencies. In addition, we describe the synthesis and evaluation of an initial set of compounds designed to target CoQ4 selectively to mitochondria using triphenylphosphonium. Our results indicate that select versions of these compounds can successfully be delivered to mitochondria in a cell model and be cleaved to produce CoQ4, laying the groundwork for further development.


Asunto(s)
Ataxia , Mitocondrias , Enfermedades Mitocondriales , Debilidad Muscular , Ubiquinona , Humanos , Mitocondrias/enzimología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Debilidad Muscular/enzimología , Debilidad Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Células Hep G2
15.
Hum Mol Genet ; 32(1): 46-54, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913761

RESUMEN

Glutaminase deficiency has recently been associated with ataxia and developmental delay due to repeat expansions in the 5'UTR of the glutaminase (GLS) gene. Patients with the described GLS repeat expansion may indeed remain undiagnosed due to the rarity of this variant, the challenge of its detection and the recency of its discovery. In this study, we combined advanced bioinformatics screening of ~3000 genomes and ~1500 exomes with optical genome mapping and long-read sequencing for confirmation studies. We identified two GLS families, previously intensely and unsuccessfully analyzed. One family carries an unusual and complex structural change involving a homozygous repeat expansion nested within a quadruplication event in the 5'UTR of GLS. Glutaminase deficiency and its metabolic consequences were validated by in-depth biochemical analysis. The identified GLS patients showed progressive early-onset ataxia, cognitive deficits, pyramidal tract damage and optic atrophy, thus demonstrating susceptibility of several specific neuron populations to glutaminase deficiency. This large-scale screening study demonstrates the ability of bioinformatics analysis-validated by latest state-of-the-art technologies (optical genome mapping and long-read sequencing)-to effectively flag complex repeat expansions using short-read datasets and thus facilitate diagnosis of ultra-rare disorders.


Asunto(s)
Glutaminasa , Humanos , Regiones no Traducidas 5' , Ataxia/diagnóstico , Ataxia/genética , Glutaminasa/genética
16.
Hum Mol Genet ; 32(10): 1647-1659, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36621975

RESUMEN

The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.


Asunto(s)
Ataxia Cerebelosa , Discapacidad Intelectual , Ratas , Ratones , Animales , Células de Purkinje , Ataxia Cerebelosa/genética , Ataxia/genética , Mutación , Discapacidad Intelectual/genética
17.
Hum Mol Genet ; 32(16): 2600-2610, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37260376

RESUMEN

Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.


Asunto(s)
Ataxia de Friedreich , Enfermedades Neurodegenerativas , Policitemia , Humanos , Ratones , Animales , Ataxia de Friedreich/genética , Modelos Animales de Enfermedad , Hipoxia , Oxígeno , Ataxia
18.
Hum Mol Genet ; 32(7): 1152-1161, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36336956

RESUMEN

The principal component of the protein homeostasis network is the ubiquitin-proteasome system. Ubiquitination is mediated by an enzymatic cascade involving, i.e. E3 ubiquitin ligases, many of which belong to the cullin-RING ligases family. Genetic defects in the ubiquitin-proteasome system components, including cullin-RING ligases, are known causes of neurodevelopmental disorders. Using exome sequencing to diagnose a pediatric patient with developmental delay, pyramidal signs and limb ataxia, we identified a de novo missense variant c.376G>C; p.(Asp126His) in the FEM1C gene encoding a cullin-RING ligase substrate receptor. This variant alters a conserved amino acid located within a highly constrained coding region and is predicted as pathogenic by most in silico tools. In addition, a de novo FEM1C mutation of the same residue p.(Asp126Val) was associated with an undiagnosed developmental disorder, and the relevant variant (FEM1CAsp126Ala) was found to be functionally compromised in vitro. Our computational analysis showed that FEM1CAsp126His hampers protein substrate binding. To further assess its pathogenicity, we used the nematode Caenorhabditis elegans. We found that the FEM-1Asp133His animals (expressing variant homologous to the FEM1C p.(Asp126Val)) had normal muscle architecture yet impaired mobility. Mutant worms were sensitive to the acetylcholinesterase inhibitor aldicarb but not levamisole (acetylcholine receptor agonist), showing that their disabled locomotion is caused by synaptic abnormalities and not muscle dysfunction. In conclusion, we provide the first evidence from an animal model suggesting that a mutation in the evolutionarily conserved FEM1C Asp126 position causes a neurodevelopmental disorder in humans.


Asunto(s)
Trastornos del Neurodesarrollo , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Niño , Proteínas Cullin/metabolismo , Acetilcolinesterasa , Habla , Ubiquitina-Proteína Ligasas/genética , Trastornos del Neurodesarrollo/genética , Ubiquitina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ataxia/genética , Complejos de Ubiquitina-Proteína Ligasa
19.
Am J Hum Genet ; 109(10): 1932-1943, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206744

RESUMEN

Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.


Asunto(s)
Discapacidad Intelectual , Animales , Ataxia/genética , ADN Complementario , Discapacidades del Desarrollo/genética , Movimientos Oculares , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana , Fosfatidilinositoles , Convulsiones , Proteínas Supresoras de Tumor/genética
20.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962377

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/genética , Estudios Transversales , Ataxia , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA