Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88.110
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38401541

RESUMEN

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Asunto(s)
Atención , Toma de Decisiones , Aprendizaje , Lóbulo Parietal , Recompensa , Animales , Haplorrinos
2.
Cell ; 177(5): 1091-1093, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100265

RESUMEN

Are neurons solely responsible for determining behavioral output, or can other brain cells modulate behavior? In this issue of Cell, Nagai et al. demonstrate that striatal astrocytes, through GABAB receptor signaling, regulate behaviors including hyperactivity and attention by inducing new synapse formation between neurons.


Asunto(s)
Astrocitos , Señales (Psicología) , Atención , Neuronas , Receptores de GABA-B
3.
Cell ; 173(3): 544-545, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677506

RESUMEN

A new study by Zenker et al. uses time-lapse imaging to discover how dynamic actin movements contribute to epithelialization of living mouse embryos. Together with work from other labs, this study presents exciting new ways to think about the emergence of cell fates during mammalian development.


Asunto(s)
Actinas , Embrión de Mamíferos , Animales , Atención , Blastocisto , Desarrollo Embrionario , Ratones
4.
Cell ; 164(1-2): 208-218, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771492

RESUMEN

While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing.


Asunto(s)
Atención , Neuronas/citología , Corteza Prefrontal/citología , Animales , Conducta Animal , Cognición , Ritmo Gamma , Ratones , Optogenética , Parvalbúminas/metabolismo , Corteza Prefrontal/fisiología
5.
Annu Rev Neurosci ; 45: 403-423, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803585

RESUMEN

The extent to which we are affected by perceptual input of which we are unaware is widely debated. By measuring neural responses to sensory stimulation, neuroscientific data could complement behavioral results with valuable evidence. Here we review neuroscientific findings of processing of high-level information, as well as interactions with attention and memory. Although the results are mixed, we find initial support for processing object categories and words, possibly to the semantic level, as well as emotional expressions. Robust neural evidence for face individuation and integration of sentences or scenes is lacking. Attention affects the processing of stimuli that are not consciously perceived, and such stimuli may exogenously but not endogenously capture attention when relevant, and be maintained in memory over time. Sources of inconsistency in the literature include variability in control for awareness as well as individual differences, calling for future studies that adopt stricter measures of awareness and probe multiple processes within subjects.


Asunto(s)
Atención , Atención/fisiología , Humanos , Tiempo de Reacción/fisiología
6.
Cell ; 162(5): 1155-68, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317475

RESUMEN

Basal forebrain cholinergic neurons constitute a major neuromodulatory system implicated in normal cognition and neurodegenerative dementias. Cholinergic projections densely innervate neocortex, releasing acetylcholine to regulate arousal, attention, and learning. However, their precise behavioral function is poorly understood because identified cholinergic neurons have never been recorded during behavior. To determine which aspects of cognition their activity might support, we recorded cholinergic neurons using optogenetic identification in mice performing an auditory detection task requiring sustained attention. We found that a non-cholinergic basal forebrain population-but not cholinergic neurons-were correlated with trial-to-trial measures of attention. Surprisingly, cholinergic neurons responded to reward and punishment with unusual speed and precision (18 ± 3 ms). Cholinergic responses were scaled by the unexpectedness of reinforcement and were highly similar across neurons and two nuclei innervating distinct cortical areas. These results reveal that the cholinergic system broadcasts a rapid and precisely timed reinforcement signal, supporting fast cortical activation and plasticity.


Asunto(s)
Neuronas Colinérgicas/fisiología , Retroalimentación , Animales , Nivel de Alerta , Atención , Conducta Animal , Neuronas Colinérgicas/citología , Cognición , Aprendizaje , Ratones , Plasticidad Neuronal , Prosencéfalo/fisiología , Recompensa
7.
Annu Rev Neurosci ; 44: 449-473, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33882258

RESUMEN

Adaptive behavior in a complex, dynamic, and multisensory world poses some of the most fundamental computational challenges for the brain, notably inference, decision-making, learning, binding, and attention. We first discuss how the brain integrates sensory signals from the same source to support perceptual inference and decision-making by weighting them according to their momentary sensory uncertainties. We then show how observers solve the binding or causal inference problem-deciding whether signals come from common causes and should hence be integrated or else be treated independently. Next, we describe the multifarious interplay between multisensory processing and attention. We argue that attentional mechanisms are crucial to compute approximate solutions to the binding problem in naturalistic environments when complex time-varying signals arise from myriad causes. Finally, we review how the brain dynamically adapts multisensory processing to a changing world across multiple timescales.


Asunto(s)
Atención , Percepción Auditiva , Encéfalo , Aprendizaje , Percepción Visual
8.
Annu Rev Neurosci ; 44: 253-273, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730510

RESUMEN

The central theme of this review is the dynamic interaction between information selection and learning. We pose a fundamental question about this interaction: How do we learn what features of our experiences are worth learning about? In humans, this process depends on attention and memory, two cognitive functions that together constrain representations of the world to features that are relevant for goal attainment. Recent evidence suggests that the representations shaped by attention and memory are themselves inferred from experience with each task. We review this evidence and place it in the context of work that has explicitly characterized representation learning as statistical inference. We discuss how inference can be scaled to real-world decisions by approximating beliefs based on a small number of experiences. Finally, we highlight some implications of this inference process for human decision-making in social environments.


Asunto(s)
Cognición , Aprendizaje , Atención , Humanos
9.
Cell ; 158(4): 808-821, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126786

RESUMEN

Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK:


Asunto(s)
Cognición , Núcleos Talámicos/fisiología , Animales , Atención , Conducta Animal , Sistema Límbico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Percepción Visual
10.
Nature ; 616(7956): 312-318, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36949193

RESUMEN

Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.


Asunto(s)
Encéfalo , Lateralidad Funcional , Lagartos , Sueño , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Lagartos/anatomía & histología , Lagartos/fisiología , Mesencéfalo/fisiología , Sueño/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Lateralidad Funcional/fisiología , Factores de Tiempo , Ácido gamma-Aminobutírico/metabolismo , Fijación Ocular , Atención , Aves/fisiología
11.
Annu Rev Neurosci ; 43: 417-439, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259462

RESUMEN

Escape is one of the most studied animal behaviors, and there is a rich normative theory that links threat properties to evasive actions and their timing. The behavioral principles of escape are evolutionarily conserved and rely on elementary computational steps such as classifying sensory stimuli and executing appropriate movements. These are common building blocks of general adaptive behaviors. Here we consider the computational challenges required for escape behaviors to be implemented, discuss possible algorithmic solutions, and review some of the underlying neural circuits and mechanisms. We outline shared neural principles that can be implemented by evolutionarily ancient neural systems to generate escape behavior, to which cortical encephalization has been added to allow for increased sophistication and flexibility in responding to threat.


Asunto(s)
Atención/fisiología , Conducta Animal/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Animales , Humanos , Sinapsis/fisiología , Vertebrados
12.
Physiol Rev ; 100(2): 805-868, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31804897

RESUMEN

Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.


Asunto(s)
Ondas Encefálicas , Encéfalo/fisiopatología , Cognición , Enfermedades del Sistema Nervioso/fisiopatología , Periodicidad , Fases del Sueño , Trastornos del Sueño-Vigilia/fisiopatología , Animales , Atención , Encéfalo/metabolismo , Humanos , Inteligencia , Memoria , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/psicología , Plasticidad Neuronal , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/metabolismo , Trastornos del Sueño-Vigilia/psicología , Factores de Tiempo
13.
Nat Rev Neurosci ; 23(6): 376-388, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35410358

RESUMEN

Although we are continuously bombarded with visual input, only a fraction of incoming visual events is perceived, remembered or acted on. The neural underpinnings of various forms of visual priority coding, including perceptual expertise, goal-directed attention, visual salience, image memorability and preferential looking, have been studied. Here, we synthesize information from these different examples to review recent developments in our understanding of visual priority coding and its neural correlates, with a focus on the role of behaviour to evaluate candidate correlates. We propose that the brain combines different types of priority into a unified priority signal while also retaining the ability to differentiate between them, and that this happens by leveraging partially overlapping low-dimensional neural subspaces for each type of priority that are shared with the downstream neural populations involved in decision-making. Finally, we describe the gulfs in understanding that have resulted from different research approaches, and we point towards future directions that will lead to fundamental insights about neural coding and how prioritization influences visually guided behaviours.


Asunto(s)
Atención , Mapeo Encefálico , Encéfalo , Mapeo Encefálico/métodos , Humanos , Recuerdo Mental , Percepción Visual
14.
Nat Rev Neurosci ; 23(8): 459-475, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577959

RESUMEN

Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition. Here we review the concept of such 'state-dependent' changes in brain activity in response to neural stimulation, and consider examples from research on altered states of consciousness (for example, sleep and anaesthesia) and from task-based manipulations of selective attention and working memory. We relate relevant findings from non-invasive methods used in humans to those obtained from direct electrical and optogenetic stimulation of neuronal ensembles in animal models. Given the widespread use of brain stimulation as a research tool in the laboratory and as a means of augmenting or restoring brain function, consideration of the influence of changing physiological and cognitive states is crucial for increasing the reliability of these interventions.


Asunto(s)
Encéfalo , Cognición , Animales , Atención/fisiología , Encéfalo/fisiología , Cognición/fisiología , Estado de Conciencia , Humanos , Reproducibilidad de los Resultados
15.
PLoS Biol ; 22(1): e3002485, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271460

RESUMEN

Planning a rapid eye movement (saccade) changes how we perceive our visual world. Even before we move the eyes visual discrimination sensitivity improves at the impending target of eye movements, a phenomenon termed "presaccadic attention." Yet, it is unknown if such presaccadic selection merely affects perceptual sensitivity, or also affects downstream decisional processes, such as choice bias. We report a surprising lack of presaccadic perceptual benefits in a common, everyday setting-detection of changes in the visual field. Despite the lack of sensitivity benefits, choice bias for reporting changes increased reliably for the saccade target. With independent follow-up experiments, we show that presaccadic change detection is rendered more challenging because percepts at the saccade target location are biased toward, and more precise for, only the most recent of two successive stimuli. With a Bayesian model, we show how such perceptual and choice biases are crucial to explain the effects of saccade plans on change detection performance. In sum, visual change detection sensitivity does not improve presaccadically, a result that is readily explained by teasing apart distinct components of presaccadic selection. The findings may have critical implications for real-world scenarios, like driving, that require rapid gaze shifts in dynamically changing environments.


Asunto(s)
Campos Visuales , Percepción Visual , Teorema de Bayes , Atención , Movimientos Oculares , Movimientos Sacádicos , Estimulación Luminosa
16.
PLoS Biol ; 22(2): e3002498, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358954

RESUMEN

Speech recognition crucially relies on slow temporal modulations (<16 Hz) in speech. Recent studies, however, have demonstrated that the long-delay echoes, which are common during online conferencing, can eliminate crucial temporal modulations in speech but do not affect speech intelligibility. Here, we investigated the underlying neural mechanisms. MEG experiments demonstrated that cortical activity can effectively track the temporal modulations eliminated by an echo, which cannot be fully explained by basic neural adaptation mechanisms. Furthermore, cortical responses to echoic speech can be better explained by a model that segregates speech from its echo than by a model that encodes echoic speech as a whole. The speech segregation effect was observed even when attention was diverted but would disappear when segregation cues, i.e., speech fine structure, were removed. These results strongly suggested that, through mechanisms such as stream segregation, the auditory system can build an echo-insensitive representation of speech envelope, which can support reliable speech recognition.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Percepción del Habla/fisiología , Inteligibilidad del Habla/fisiología , Encéfalo , Corteza Auditiva/fisiología , Atención , Estimulación Acústica
17.
PLoS Biol ; 22(6): e3002670, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38917200

RESUMEN

Low and high beta frequency rhythms were observed in the motor cortex, but their respective sources and behavioral correlates remain unknown. We studied local field potentials (LFPs) during pre-cued reaching behavior in macaques. They contained a low beta band (<20 Hz) dominant in primary motor cortex and a high beta band (>20 Hz) dominant in dorsal premotor cortex (PMd). Low beta correlated positively with reaction time (RT) from visual cue onset and negatively with uninstructed hand postural micro-movements throughout the trial. High beta reflected temporal task prediction, with selective modulations before and during cues, which were enhanced in moments of increased focal attention when the gaze was on the work area. This double-dissociation in sources and behavioral correlates of motor cortical low and high beta, with respect to both task-instructed and spontaneous behavior, reconciles the largely disparate roles proposed for the beta rhythm, by suggesting band-specific roles in both movement control and spatiotemporal attention.


Asunto(s)
Atención , Ritmo beta , Macaca mulatta , Corteza Motora , Movimiento , Tiempo de Reacción , Animales , Corteza Motora/fisiología , Atención/fisiología , Ritmo beta/fisiología , Movimiento/fisiología , Tiempo de Reacción/fisiología , Macaca mulatta/fisiología , Masculino , Señales (Psicología) , Desempeño Psicomotor/fisiología
18.
PLoS Biol ; 22(7): e3002721, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39008524

RESUMEN

The abundance of distractors in the world poses a major challenge to our brain's limited processing capacity, but little is known about how selective attention modulates stimulus representations in the brain to reduce interference and support durable target memory. Here, we collected functional magnetic resonance imaging (fMRI) data in a selective attention task in which target and distractor pictures of different visual categories were simultaneously presented. Participants were asked to selectively process the target according to the effective cue, either before the encoding period (i.e., perceptual attention) or the maintenance period (i.e., reflective attention). On the next day, participants were asked to perform a memory recognition task in the scanner in which the targets, distractors, and novel items were presented in a pseudorandom order. Behavioral results showed that perceptual attention was better at enhancing target memory and reducing distractor memory than reflective attention, although the overall memory capacity (memory for both target and distractor) was comparable. Using multiple-voxel pattern analysis of the neural data, we found more robust target representation and weaker distractor representation in working memory for perceptual attention than for reflective attention. Interestingly, perceptual attention partially shifted the regions involved in maintaining the target representation from the visual cortex to the parietal cortex. Furthermore, the targets and distractors simultaneously presented in the perceptual attention condition showed reduced pattern similarity in the parietal cortex during retrieval compared to items not presented together. This neural pattern repulsion positively correlated with individuals' recognition of both targets and distractors. These results emphasize the critical role of selective attention in transforming memory representations to reduce interference and improve long-term memory performance.


Asunto(s)
Atención , Imagen por Resonancia Magnética , Memoria a Largo Plazo , Memoria a Corto Plazo , Lóbulo Parietal , Humanos , Atención/fisiología , Lóbulo Parietal/fisiología , Masculino , Memoria a Corto Plazo/fisiología , Femenino , Memoria a Largo Plazo/fisiología , Adulto , Adulto Joven , Objetivos , Mapeo Encefálico , Estimulación Luminosa/métodos , Percepción Visual/fisiología
19.
PLoS Biol ; 22(2): e3002494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38319934

RESUMEN

Effective interactions with the environment rely on the integration of multisensory signals: Our brains must efficiently combine signals that share a common source, and segregate those that do not. Healthy ageing can change or impair this process. This functional magnetic resonance imaging study assessed the neural mechanisms underlying age differences in the integration of auditory and visual spatial cues. Participants were presented with synchronous audiovisual signals at various degrees of spatial disparity and indicated their perceived sound location. Behaviourally, older adults were able to maintain localisation accuracy. At the neural level, they integrated auditory and visual cues into spatial representations along dorsal auditory and visual processing pathways similarly to their younger counterparts but showed greater activations in a widespread system of frontal, temporal, and parietal areas. According to multivariate Bayesian decoding, these areas encoded critical stimulus information beyond that which was encoded in the brain areas commonly activated by both groups. Surprisingly, however, the boost in information provided by these areas with age-related activation increases was comparable across the 2 age groups. This dissociation-between comparable information encoded in brain activation patterns across the 2 age groups, but age-related increases in regional blood-oxygen-level-dependent responses-contradicts the widespread notion that older adults recruit new regions as a compensatory mechanism to encode task-relevant information. Instead, our findings suggest that activation increases in older adults reflect nonspecific or modulatory mechanisms related to less efficient or slower processing, or greater demands on attentional resources.


Asunto(s)
Mapeo Encefálico , Percepción Visual , Humanos , Anciano , Teorema de Bayes , Percepción Visual/fisiología , Encéfalo/fisiología , Atención/fisiología , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Estimulación Luminosa/métodos , Imagen por Resonancia Magnética
20.
PLoS Biol ; 22(10): e3002797, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39378200

RESUMEN

Our behavior and mental states are constantly shaped by our environment and experiences. However, little is known about the response of brain functional connectivity to environmental, physiological, and behavioral changes on different timescales, from days to months. This gives rise to an urgent need for longitudinal studies that collect high-frequency data. To this end, for a single subject, we collected 133 days of behavioral data with smartphones and wearables and performed 30 functional magnetic resonance imaging (fMRI) scans measuring attention, memory, resting state, and the effects of naturalistic stimuli. We find traces of past behavior and physiology in brain connectivity that extend up as far as 15 days. While sleep and physical activity relate to brain connectivity during cognitively demanding tasks, heart rate variability and respiration rate are more relevant for resting-state connectivity and movie-watching. This unique data set is openly accessible, offering an exceptional opportunity for further discoveries. Our results demonstrate that we should not study brain connectivity in isolation, but rather acknowledge its interdependence with the dynamics of the environment, changes in lifestyle, and short-term fluctuations such as transient illnesses or restless sleep. These results reflect a prolonged and sustained relationship between external factors and neural processes. Overall, precision mapping designs such as the one employed here can help to better understand intraindividual variability, which may explain some of the observed heterogeneity in fMRI findings. The integration of brain connectivity, physiology data and environmental cues will propel future environmental neuroscience research and support precision healthcare.


Asunto(s)
Encéfalo , Estilo de Vida , Imagen por Resonancia Magnética , Neuroimagen , Humanos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Longitudinales , Neuroimagen/métodos , Masculino , Adulto , Sueño/fisiología , Mapeo Encefálico/métodos , Femenino , Atención/fisiología , Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA