RESUMEN
Ligands can induce G protein-coupled receptors (GPCRs) to adopt a myriad of conformations, many of which play critical roles in determining the activation of specific signaling cascades associated with distinct functional and behavioral consequences. For example, the 5-hydroxytryptamine 2A receptor (5-HT2AR) is the target of classic hallucinogens, atypical antipsychotics, and psychoplastogens. However, currently available methods are inadequate for directly assessing 5-HT2AR conformation both in vitro and in vivo. Here, we developed psychLight, a genetically encoded fluorescent sensor based on the 5-HT2AR structure. PsychLight detects behaviorally relevant serotonin release and correctly predicts the hallucinogenic behavioral effects of structurally similar 5-HT2AR ligands. We further used psychLight to identify a non-hallucinogenic psychedelic analog, which produced rapid-onset and long-lasting antidepressant-like effects after a single administration. The advent of psychLight will enable in vivo detection of serotonin dynamics, early identification of designer drugs of abuse, and the development of 5-HT2AR-dependent non-hallucinogenic therapeutics.
Asunto(s)
Técnicas Biosensibles , Drogas de Diseño/química , Drogas de Diseño/farmacología , Descubrimiento de Drogas/métodos , Alucinógenos/química , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A/química , Animales , Evaluación Preclínica de Medicamentos/métodos , Femenino , Fluorescencia , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fotometría , Conformación Proteica , Ingeniería de Proteínas , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the ß strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.
Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Preparaciones Farmacéuticas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Secuencia de Aminoácidos , Secretasas de la Proteína Precursora del Amiloide/ultraestructura , Azepinas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Biológicos , Modelos Moleculares , Oxadiazoles/química , Oxadiazoles/farmacología , Presenilina-1/química , Presenilina-1/metabolismo , Unión Proteica/efectos de los fármacos , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacologíaRESUMEN
Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.
Asunto(s)
Sistemas CRISPR-Cas/efectos de los fármacos , Edición Génica/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/genética , Virus/genética , Archaea/genética , Archaea/inmunología , Archaea/virología , Bacterias/genética , Bacterias/inmunología , Bacterias/virología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coevolución Biológica , Proteínas Asociadas a CRISPR/antagonistas & inhibidores , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN/antagonistas & inhibidores , ADN/química , ADN/genética , ADN/metabolismo , División del ADN/efectos de los fármacos , Endodesoxirribonucleasas/antagonistas & inhibidores , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Humanos , Modelos Moleculares , Familia de Multigenes , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Virus/metabolismo , Virus/patogenicidadRESUMEN
Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Infecciones por Escherichia coli/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Nucleótidos/metabolismo , Ribonucleótido Reductasas/química , Antibacterianos/uso terapéutico , Antineoplásicos/uso terapéutico , Biocatálisis , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Infecciones por Escherichia coli/enzimología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Nucleótidos/química , Oxidación-Reducción , Estructura Secundaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ribonucleótido Reductasas/antagonistas & inhibidores , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Relación Estructura-ActividadRESUMEN
Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.
Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Aprendizaje Automático , Tiadiazoles/farmacología , Acinetobacter baumannii/efectos de los fármacos , Animales , Antibacterianos/química , Quimioinformática/métodos , Clostridioides difficile/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Tiadiazoles/químicaRESUMEN
The seven-transmembrane-spanning protein Smoothened is the central transducer in Hedgehog signaling, a pathway fundamental in development and in cancer. Smoothened is activated by cholesterol binding to its extracellular cysteine-rich domain (CRD). How this interaction leads to changes in the transmembrane domain and Smoothened activation is unknown. Here, we report crystal structures of sterol-activated Smoothened. The CRD undergoes a dramatic reorientation, allosterically causing the transmembrane domain to adopt a conformation similar to active G-protein-coupled receptors. We show that Smoothened contains a unique inhibitory π-cation lock, which is broken on activation and is disrupted in constitutively active oncogenic mutants. Smoothened activation opens a hydrophobic tunnel, suggesting a pathway for cholesterol movement from the inner membrane leaflet to the CRD. All Smoothened antagonists bind the transmembrane domain and block tunnel opening, but cyclopamine also binds the CRD, inducing the active transmembrane conformation. Together, these results define the mechanisms of Smoothened activation and inhibition.
Asunto(s)
Proteínas Hedgehog/metabolismo , Receptor Smoothened/química , Proteínas de Xenopus/química , Regulación Alostérica , Animales , Sitios de Unión , Línea Celular , Colesterol/química , Colesterol/metabolismo , Cristalografía por Rayos X , Citometría de Flujo , Proteínas Hedgehog/genética , Humanos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Receptor Smoothened/antagonistas & inhibidores , Receptor Smoothened/metabolismo , Alcaloides de Veratrum/química , Alcaloides de Veratrum/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismoRESUMEN
The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Represoras/metabolismo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Elongación Transcripcional/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Drosophila , Femenino , Células HCT116 , Células HEK293 , Respuesta al Choque Térmico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Cyclin-dependent kinase 9 (CDK9) promotes transcriptional elongation through RNAPII pause release. We now report that CDK9 is also essential for maintaining gene silencing at heterochromatic loci. Through a live cell drug screen with genetic confirmation, we discovered that CDK9 inhibition reactivates epigenetically silenced genes in cancer, leading to restored tumor suppressor gene expression, cell differentiation, and activation of endogenous retrovirus genes. CDK9 inhibition dephosphorylates the SWI/SNF protein BRG1, which contributes to gene reactivation. By optimization through gene expression, we developed a highly selective CDK9 inhibitor (MC180295, IC50 = 5 nM) that has broad anti-cancer activity in vitro and is effective in in vivo cancer models. Additionally, CDK9 inhibition sensitizes to the immune checkpoint inhibitor α-PD-1 in vivo, making it an excellent target for epigenetic therapy of cancer.
Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The acetyltransferases CBP and p300 are multifunctional transcriptional co-activators. Here, we combined quantitative proteomics with CBP/p300-specific catalytic inhibitors, bromodomain inhibitor, and gene knockout to reveal a comprehensive map of regulated acetylation sites and their dynamic turnover rates. CBP/p300 acetylates thousands of sites, including signature histone sites and a multitude of sites on signaling effectors and enhancer-associated transcriptional regulators. Time-resolved acetylome analyses identified a subset of CBP/p300-regulated sites with very rapid (<30 min) acetylation turnover, revealing a dynamic balance between acetylation and deacetylation. Quantification of acetylation, mRNA, and protein abundance after CBP/p300 inhibition reveals a kinetically competent network of gene expression that strictly depends on CBP/p300-catalyzed rapid acetylation. Collectively, our in-depth acetylome analyses reveal systems attributes of CBP/p300 targets, and the resource dataset provides a framework for investigating CBP/p300 functions and for understanding the impact of small-molecule inhibitors targeting its catalytic and bromodomain activities.
Asunto(s)
Acetiltransferasas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación/efectos de los fármacos , Acetiltransferasas/antagonistas & inhibidores , Animales , Línea Celular , Técnicas de Inactivación de Genes , Semivida , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Histonas/metabolismo , Humanos , Marcaje Isotópico , Cinética , Espectrometría de Masas , Ratones , Péptidos/análisis , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transcriptoma/efectos de los fármacos , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/genéticaRESUMEN
Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Familia 4 del Citocromo P450/deficiencia , Familia 4 del Citocromo P450/genética , Descubrimiento de Drogas , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismoRESUMEN
While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.
Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Terapia Molecular Dirigida , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Diferenciación Celular , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Células Mieloides/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pirimidinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).
Asunto(s)
Descubrimiento de Drogas , Lipoproteína(a) , Macaca fascicularis , Animales , Femenino , Humanos , Masculino , Ratones , Administración Oral , Kringles , Lipoproteína(a)/antagonistas & inhibidores , Lipoproteína(a)/sangre , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Ratones Transgénicos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Plasminógeno/química , Plasminógeno/metabolismo , Especificidad de la Especie , Ensayos Clínicos Fase II como Asunto , Apolipoproteínas A/química , Apolipoproteínas A/metabolismoRESUMEN
The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.
Asunto(s)
Analgésicos Opioides , Evaluación Preclínica de Medicamentos , Naloxona , Receptores Opioides mu , Bibliotecas de Moléculas Pequeñas , Animales , Humanos , Masculino , Ratones , Regulación Alostérica/efectos de los fármacos , Analgésicos Opioides/antagonistas & inhibidores , Analgésicos Opioides/farmacología , Sitios de Unión/efectos de los fármacos , Microscopía por Crioelectrón , Fentanilo/antagonistas & inhibidores , Fentanilo/farmacología , Cinética , Ligandos , Modelos Moleculares , Morfina/antagonistas & inhibidores , Morfina/farmacología , Naloxona/administración & dosificación , Naloxona/química , Naloxona/metabolismo , Naloxona/farmacología , Antagonistas de Narcóticos/administración & dosificación , Antagonistas de Narcóticos/química , Antagonistas de Narcóticos/metabolismo , Antagonistas de Narcóticos/farmacología , Sobredosis de Opiáceos/tratamiento farmacológico , Conformación Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Células Sf9 , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Ratones Endogámicos C57BLRESUMEN
Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.
Asunto(s)
Moléculas de Adhesión Celular/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/química , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Baculoviridae/metabolismo , Sitios de Unión , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Humanos , Ratones , Modelos Moleculares , Células Precursoras de Linfocitos B/citología , Células Precursoras de Linfocitos B/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/antagonistas & inhibidores , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptores de la Familia Eph/química , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Spodoptera , Homología Estructural de Proteína , Especificidad por SustratoRESUMEN
EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1ß-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.
Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Endometriosis/tratamiento farmacológico , Endometriosis/metabolismo , Endometriosis/patología , ADN/metabolismo , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/antagonistas & inhibidores , Receptor EphA2/metabolismo , Receptor EphA2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Movimiento Celular/efectos de los fármacosRESUMEN
Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.
Asunto(s)
Conformación de Ácido Nucleico , ARN Viral , Bibliotecas de Moléculas Pequeñas , Virus Zika , Virus Zika/genética , Virus Zika/efectos de los fármacos , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Antivirales/farmacología , Antivirales/química , Cristalografía por Rayos X , Modelos Moleculares , Regiones Promotoras GenéticasRESUMEN
Drug discovery relies on efficient identification of small-molecule leads and their interactions with macromolecular targets. However, understanding how chemotypes impact mechanistically important conformational states often remains secondary among high-throughput discovery methods. Here, we present a conformational discovery pipeline integrating time-resolved, high-throughput small-angle X-ray scattering (TR-HT-SAXS) and classic fragment screening applied to allosteric states of the mitochondrial import oxidoreductase apoptosis-inducing factor (AIF). By monitoring oxidized and X-ray-reduced AIF states, TR-HT-SAXS leverages structure and kinetics to generate a multidimensional screening dataset that identifies fragment chemotypes allosterically stimulating AIF dimerization. Fragment-induced dimerization rates, quantified with time-resolved SAXS similarity analysis (kVR), capture structure-activity relationships (SAR) across the top-ranked 4-aminoquinoline chemotype. Crystallized AIF-aminoquinoline complexes validate TR-SAXS-guided SAR, supporting this conformational chemotype for optimization. AIF-aminoquinoline structures and mutational analysis reveal active site F482 as an underappreciated allosteric stabilizer of AIF dimerization. This conformational discovery pipeline illustrates TR-HT-SAXS as an effective technology for targeting chemical leads to important macromolecular states.
Asunto(s)
Factor Inductor de la Apoptosis , Dispersión del Ángulo Pequeño , Regulación Alostérica , Relación Estructura-Actividad , Factor Inductor de la Apoptosis/química , Factor Inductor de la Apoptosis/metabolismo , Difracción de Rayos X/métodos , Humanos , Descubrimiento de Drogas/métodos , Modelos Moleculares , Cinética , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacologíaRESUMEN
Photoaffinity probes are routinely utilized to identify proteins that interact with small molecules. However, despite this common usage, resolving the specific sites of these interactions remains a challenge. Here we developed a chemoproteomic workflow to determine precise protein binding sites of photoaffinity probes in cells. Deconvolution of features unique to probe-modified peptides, such as their tendency to produce chimeric spectra, facilitated the development of predictive models to confidently determine labeled sites. This yielded an expansive map of small-molecule binding sites on endogenous proteins and enabled the integration with multiplexed quantitation, increasing the throughput and dimensionality of experiments. Finally, using structural information, we characterized diverse binding sites across the proteome, providing direct evidence of their tractability to small molecules. Together, our findings reveal new knowledge for the analysis of photoaffinity probes and provide a robust method for high-resolution mapping of reversible small-molecule interactions en masse in native systems.
Asunto(s)
Etiquetas de Fotoafinidad , Bibliotecas de Moléculas Pequeñas , Sitios de Unión , Humanos , Etiquetas de Fotoafinidad/química , Bibliotecas de Moléculas Pequeñas/química , Unión Proteica , Proteómica/métodos , Proteoma/metabolismo , Proteínas/química , Proteínas/metabolismo , Péptidos/química , Péptidos/metabolismoRESUMEN
Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.
Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ2 , Simulación de Dinámica Molecular , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ2/química , Humanos , Activación del Canal Iónico/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Animales , Técnicas de Placa-Clamp , Microscopía por Crioelectrón , Células HEK293 , Relación Estructura-ActividadRESUMEN
Machine learning methods hold the promise to reduce the costs and the failure rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases, where the development of disease-modifying drugs has been particularly challenging. To address this problem, we describe here a machine learning approach to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson's disease and other synucleinopathies. Because the proliferation of α-synuclein aggregates takes place through autocatalytic secondary nucleation, we aim to identify compounds that bind the catalytic sites on the surface of the aggregates. To achieve this goal, we use structure-based machine learning in an iterative manner to first identify and then progressively optimize secondary nucleation inhibitors. Our results demonstrate that this approach leads to the facile identification of compounds two orders of magnitude more potent than previously reported ones.