Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 785, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138417

RESUMEN

To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.


Asunto(s)
Alimentación Animal , Bidens , Microbioma Gastrointestinal , Tilapia , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Tilapia/crecimiento & desarrollo , Tilapia/microbiología , Tilapia/genética , Tilapia/metabolismo , Bidens/metabolismo , Bidens/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Hígado/metabolismo
2.
Molecules ; 26(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808049

RESUMEN

Cyclic imides belong to a well-known class of organic compounds with various biological activities, promoting a great interest in compounds with this functional group. Due to the structural complexity of some molecules and their spectra, it is necessary to use several spectrometric methods associated with auxiliary tools, such as the theoretical calculation for the structural elucidation of complex structures. In this work, the synthesis of epoxy derivatives of 5-methylhexahydroisoindole-1,3-diones was carried out in five steps. Diels-Alder reaction of isoprene and maleic anhydride followed by reaction with m-anisidine afforded the amide (2). Esterification of amide (2) with methanol in the presence of sulfuric acid provided the ester (3) that cyclized in situ to give imides 4 and 4-ent. Epoxidation of 4 and 4-ent with meta-chloroperbenzoic acid (MCPBA) afforded 5a and 5b. The diastereomers were separated by silica gel flash column chromatography, and their structures were determined by analyses of the spectrometric methods. Their structures were confirmed by matching the calculated 1H and 13C NMR chemical shifts of (5a and 5b) with the experimental data of the diastereomers using MAE, CP3, and DP4 statistical analyses. Biological assays were carried out to evaluate the potential herbicide activity of the imides. Compounds 5a and 5b inhibited root growth of the weed Bidens pilosa by more than 70% at all the concentrations evaluated.


Asunto(s)
Compuestos Epoxi , Herbicidas , Imidas , Semillas/crecimiento & desarrollo , Bidens/crecimiento & desarrollo , Cucumis sativus/crecimiento & desarrollo , Compuestos Epoxi/síntesis química , Compuestos Epoxi/química , Herbicidas/síntesis química , Herbicidas/química , Imidas/síntesis química , Imidas/química , Lactuca/crecimiento & desarrollo , Estructura Molecular , Sorghum/crecimiento & desarrollo
3.
Chem Biodivers ; 17(3): e1900694, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022474

RESUMEN

Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α-amyrin, 1-dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p-coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1-dehydrodiosgenone, tricin, and p-coumaric acid are also reported, and p-coumaric acid and 1-dehydrodiosgenone were active against B. pilosa.


Asunto(s)
Bidens/efectos de los fármacos , Euphorbia/efectos de los fármacos , Ipomoea/efectos de los fármacos , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Poaceae/química , Bidens/crecimiento & desarrollo , Euphorbia/crecimiento & desarrollo , Ipomoea/crecimiento & desarrollo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
4.
Mycorrhiza ; 29(4): 363-373, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31016370

RESUMEN

The impact of lead (Pb) pollution on native communities of arbuscular mycorrhizal fungi (AMF) was assessed in soil samples from the surroundings of an abandoned Pb smelting factory. To consider the influence of host identity, bulk soil surrounding plant roots soil samples of predominant plant species (Sorghum halepense, Bidens pilosa, and Tagetes minuta) growing in Pb-polluted soils and in an uncontaminated site were selected. Molecular diversity was assessed by sequencing the 18S rDNA region with primers specific to AMF (AMV4.5NF/AMDGR) using Illumina MiSeq. A total of 115 virtual taxa (VT) of AMF were identified in this survey. Plant species did not affect AMF diversity patterns. However, soil Pb content was negatively correlated with VT richness per sample. Paraglomeraceae and Glomeraceae were the predominant families while Acaulosporaceae, Ambisporaceae, Archaeosporaceae, Claroideoglomeraceae, Diversisporaceae, and Gigasporaceae were less abundant. Acaulosporaceae and Glomeraceae were negatively affected by soil Pb, but Paraglomeraceae relative abundance increased under increasing soil Pb content. Overall, 26 indicator taxa were identified; four of them were previously reported in Pb-polluted soils (VT060; VT222; VT004; VT380); and five corresponded to cultured spores of Scutellospora castaneae (VT041), Diversispora spp. and Tricispora nevadensis (VT060), Diversispora epigaea (VT061), Glomus proliferum (VT099), and Gl. indicum (VT222). Even though AMF were present in Pb-polluted soils, community structure was strongly altered via the differential responses of taxonomic groups of AMF to Pb pollution. These taxon-specific differences in tolerance to soil Pb content should be considered for future phytoremediation strategies based on the selection and utilization of native Glomeromycota.


Asunto(s)
Hongos/efectos de los fármacos , Plomo/farmacología , Micorrizas/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/farmacología , Bidens/crecimiento & desarrollo , Bidens/microbiología , Biodiversidad , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/aislamiento & purificación , Suelo/química , Sorghum/crecimiento & desarrollo , Sorghum/microbiología , Tagetes/crecimiento & desarrollo , Tagetes/microbiología
5.
Chem Biodivers ; 16(8): e1900278, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31207097

RESUMEN

Using synthetic chemicals in industry and agriculture has led to several environmental problems. Thus, plant products derived from volatile oils (VOs) could be a potential green source for bioherbicides. Little is known about the VOs of Lactuca serriola. Hence, the present study aimed to characterize the VOs chemical composition from the aerial parts of L. serriola, assessment of antioxidant activity, and evaluate allelopathic potential against the noxious weed Bidens pilosa. The VOs were extracted by hydrodistillation and analyzed by GC/MS. The VOs from the Egyptian ecospecies of L. serriola were found to comprise 34 compounds mainly oxygenated sesquiterpenes and diterpenes. The major compounds were isoshyobunone (64.22 %), isocembrol (17.35 %), and alloaromadendrene oxide-1 (7.32 %). So, L. serriola can be considered as a good source for isoshyobunone, considering that it has a much higher concentration than any other plants. Also, this plant has a high content of the oxygenated diterpene compound, isocembrol, which is rarely found in the VOs of most plants. The VOs expressed strong antioxidant activity. Also, for the first time, our results showed a strong allelopathic activity of VOs from L. serriola on germination and seedling growth of the noxious weed, B. pilosa. We suppose that the activity of the VOs from L. serriola could be attributed to these previously mentioned major compounds, as they represent about 89 % of the total identified oil constituents. Nevertheless, to evaluate these compounds as new allelochemicals, further study is needed to test the allelopathic activity of authenticated standard of these compounds either singular or in combination on several weeds as well as evaluate the safety, and improve the efficacy and stability at the field scale.


Asunto(s)
Antioxidantes/química , Asteraceae/química , Diterpenos/química , Aceites Volátiles/química , Sesquiterpenos/química , Asteraceae/metabolismo , Bidens/crecimiento & desarrollo , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Germinación/efectos de los fármacos , Aceites Volátiles/farmacología , Componentes Aéreos de las Plantas/química , Componentes Aéreos de las Plantas/metabolismo , Extractos Vegetales/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología
6.
Bull Environ Contam Toxicol ; 102(3): 353-357, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30659299

RESUMEN

The fungicide tebuconazole (TBZ) has been used to prevent terrestrial fungi in agroecosystems, but it can also induce negative effects to non-targeted aquatic organisms, such as plants. The aim of the present work was to evaluate the potential cyto- and genotoxicity of TBZ in the aquatic macrophyte Bidens laevis, exposed to a range of concentrations of 0.1-100 µg/L. Mitosis in root tips were analyzed showing decreased mitotic index and an increase of chromosomal aberrations at 10 and 100 µg/L. The regression of TBZ concentration vs. aneugenic aberrations was significant, indicating the mechanism of genotoxicity. The specific growth rate (Gr) for total length decreased in plants exposed to 0.1, 10 and 100 µg/L. Gr for root decreased in plants exposed at 0.1 and 10 µg/L, reaching a maximum percent inhibition root growth rate (Ir) of 68.8%. These results show that TBZ resulted cyto- and genotoxic to B. laevis at environmentally relevant levels.


Asunto(s)
Bidens/efectos de los fármacos , Fungicidas Industriales/toxicidad , Triazoles/toxicidad , Bidens/genética , Bidens/crecimiento & desarrollo , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Meristema , Fotosíntesis/efectos de los fármacos , Análisis de Regresión , Humedales
7.
Ann Bot ; 121(3): 561-569, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29309538

RESUMEN

Background and Aims: Soil nutrient heterogeneity has been proposed to influence competitive outcomes among different plant species. Thus, it is crucial to understand the effects of environmental heterogeneity on competition between exotic invasive and native species. However, the effects of soil nutrient heterogeneity on the competition between invasive and native plants have rarely been linked to root foraging behaviour. Methods: In this study, a competition experiment was performed with two invasive-native species pairs (BP-VC, Bidens pilosa vs. Vernonia cinerea; MM-PS, Mikania micrantha vs. Paederia scandens) grown under homogeneous and heterogeneous conditions in a common greenhouse environment. Root activity was assessed by determining the amount of strontium (Sr) taken up by the shoot of each species. Key Results: The invasive species exhibited a greater foraging scale, whereas the native species exhibited a higher foraging precision. A trade-off between foraging scale and precision was observed within each pair of invasive-native species. Compared with soil homogeneity, soil heterogeneity significantly increased the biomass of the two invasive species, B. pilosa and M. micrantha, under competitive conditions. Within each pair, the invasive species exhibited greater relative competitive ability with respect to shoot mass, and considerably more Sr taken up by the invasive species compared with the native species. The Sr acquisition results indicate that nutrient-poor conditions may facilitate the competitive ability of the native species V. cinerea, whereas M. micrantha may possess a stronger competitive ability regardless of soil nutrient conditions. Conclusion: Soil nutrient heterogeneity has the potential to promote the invasion of these two exotic species due to their larger foraging scale, stronger competitive ability and greater root activity relative to their counterpart native species. The present work highlights the importance of soil heterogeneity in plant invasion, particularly with regards to root foraging traits and competition between invasive and native plants.


Asunto(s)
Bidens/crecimiento & desarrollo , Especies Introducidas , Mikania/crecimiento & desarrollo , Rubiaceae/crecimiento & desarrollo , Vernonia/crecimiento & desarrollo , Ecosistema , Nutrientes/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Suelo
8.
Mycorrhiza ; 28(8): 703-715, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30220052

RESUMEN

Invasive species often cause enormous economic and ecological damage, and this is especially true for invasive plants in the Asteraceae family. Arbuscular mycorrhizal fungi (AMF) play an important role in the successful invasion by exotic plant species because of their ability to promote growth and influence interspecific competition. However, few studies have evaluated the effects of invasive Asteraceae species on AMF diversity and how feedback mechanisms during competition with native species subsequently affect the accumulation of nutrient resources. Two exotic Asteraceae, Ambrosia artemisiifolia and Bidens pilosa, were monitored during competition with a native grass species, Setaria viridis, which is being replaced by these exotic species in natural areas around the study site. From these species continuously maintained in a field plot for 5 years, we collected the rhizosphere soil and cloned and identified soil AMF. Furthermore, AM fungal spores were isolated from rhizosphere soil of the two invasive species and used as inoculum in greenhouse experiments, to compare growth and nutrient accumulation during competition. The results indicate that although the AMF diversity in the rhizosphere soil of A. artemisiifolia and B. pilosa differed, the three most abundant species (Septoglomus viscosum, Septoglomus constrictum, Glomus perpusillum) were identical. The addition of AMF inoculum changed the competition between the plants, increasing the competitive ability of the invasives and decreasing that of the native. The results show a similar AMF community composition between A. artemisiifolia and B. pilosa, increased AMF root colonization of the invasive species during competition, AMF-enhanced N accumulation, and AMF-facilitated competitive growth of the invasive species.


Asunto(s)
Ambrosia/crecimiento & desarrollo , Bidens/crecimiento & desarrollo , Glomeromycota/fisiología , Micorrizas/fisiología , Setaria (Planta)/crecimiento & desarrollo , Microbiología del Suelo , Ambrosia/microbiología , Bidens/microbiología , China , Especies Introducidas
9.
Int J Phytoremediation ; 18(3): 235-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26292209

RESUMEN

The purpose of this study was to compare the behavior of the root system of one of the most frequently cited species in phytoremediation Indian mustard [Brassica juncea (L.) Czern.] and a representative perennial herb (Bidens pilosa L.) native of Argentina, for different concentrations of lead in soils through chemical and visualization techniques of the rhizosphere. Lead polluted soils from the vicinity of a lead recycling plant in the locality of Bouwer, were used in juxtaposed rhizobox systems planted with seedlings of B. juncea and B. pilosa with homogeneous and heterogeneous soil treatments. Root development, pH changes in the rhizosphere, dry weight biomass, lead content of root and aerial parts and potential extraction of lead by rhizosphere exudates were determined. In both species lead was mainly accumulated in roots. However, although B. juncea accumulated more lead than B. pilosa at elevated concentrations in soils, the latter achieved greater root and aerial development. No changes in the pH of the rhizosphere associated to lead were observed, despite different extractive potentials of lead in the exudates of the species analyzed. Our results indicated that Indian mustard did not behave as a hyperaccumulator in the conditions of the present study.


Asunto(s)
Bidens/metabolismo , Plomo/metabolismo , Planta de la Mostaza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/metabolismo , Bidens/química , Bidens/crecimiento & desarrollo , Biodegradación Ambiental , Biomasa , Planta de la Mostaza/química , Planta de la Mostaza/crecimiento & desarrollo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química
10.
Izv Akad Nauk Ser Biol ; (4): 382-92, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26415279

RESUMEN

Species of the genus Bidens that have invaded natural communities in Europe were observed. Fourteen species have been introduced in European botanical gardens since the 18th century, but only two of them have become invasive in Russia-Bidensfrondosa and B. connata. B.frondosa demonstrates microevolutional ability in the second distribution range. Nevertheless, it has a low ability of hybridization. B. frondosa has higher competitiveness compared with that of B. connata.


Asunto(s)
Bidens/crecimiento & desarrollo , Evolución Biológica , Especies Introducidas , Filogeografía , Bidens/clasificación , Bidens/genética , ADN de Plantas/genética , Federación de Rusia
11.
J Chem Ecol ; 40(1): 90-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24390624

RESUMEN

Alstonia scholaris is a tropical evergreen tree native to South and Southeast Asia. Alstonia forests frequently lack understory species. However, potential mechanisms-particularly the allelochemicals involved-remain unclear. In the present study, we identified allelochemicals of A. scholaris, and clarified the role of allelopathic substances from A. scholaris in interactions with neighboring plants. We showed that the leaves, litter, and soil from A. scholaris inhibited growth of Bidens pilosa-a weed found growing abundantly near A. scholaris forests. The allelochemicals were identified as pentacyclic triterpenoids, including betulinic acid, oleanolic acid, and ursolic acid by using (1)H and (13)C-NMR spectroscopy. The half-maximal inhibitory concentration (IC50) for radicle growth of B. pilosa and Lactuca sativa ranged from 78.8 µM to 735.2 µM, and ursolic acid inhibited seed germination of B. pilosa. The triterpenoid concentrations in the leaves, litter, and soil were quantified with liquid chromatography-electrospray ionization/tandem mass spectrometry. Ursolic acid was present in forest soil at a concentration of 3,095 µg/g, i.e., exceeding the IC50. In the field, ursolic acid accumulated abundantly in the soil in A. scholaris forests, and suppressed weed growth during summer and winter. Our results indicate that A. scholaris pentacyclic triterpenoids influence the growth of neighboring weeds by inhibiting seed germination, radicle growth, and functioning of photosystem II.


Asunto(s)
Alelopatía , Alstonia/metabolismo , Feromonas/química , Feromonas/farmacología , Triterpenos/química , Triterpenos/farmacología , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Bidens/metabolismo , Germinación/efectos de los fármacos , Feromonas/análisis , Feromonas/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Malezas/metabolismo , Suelo/química , Triterpenos/análisis , Triterpenos/metabolismo , Ácido Ursólico
12.
PLoS One ; 19(9): e0309568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39236016

RESUMEN

Invasive alien species drive extensive ecological changes and cause unexpected risks worldwide. Perceptive germination requirements and the growth function of invasive species are crucial for understanding their invasion and subsequent dissemination in various environmental conditions. Therefore, the germination response of invasive Conyza bonariensis, Parthenium hysterophorus, and Bidens pilosa of Asteraceae family were examined under alternating temperature regimes and some environmental factors. The prevailing germination ability occurs highest at moderate-temperature regimes at 20/30°C attained by 94.83% (C. bonariensis) and at 20/25 SS by 96.28% (P. hysterophorus) and high-temperature regimes at 25/30°C reached 92.94% (B. pilosa) respectively. The half germination percentage (G50) was -0.406 MPa and 2878.35 ppm (B. pilosa), -0.579 MPa and 2490.9 ppm (C. bonariensis), and-0.32 MPa and 2490.8 ppm (P. hysterophorus) affected by osmotic pressure and salt stress (NaCl) respectively. The highest growth plasticity characteristics were identified in total dry mass attained at 0.968 (C. bonariensis), 0.985 (B. pilosa) and 0.957 (P. hysterophorus) respectively. The relative growth, net assimilation and plasticity index appeared higher in both B. pilosa, and C. bonariensis than P. hysterophorus in the invaded area. In conclusion, germination and growth traits are precisely functional factors that correlate to invasion success under stressed conditions, and zones, and also lead to successful control plans for invasive species and ecological protection.


Asunto(s)
Bidens , Conyza , Germinación , Especies Introducidas , Bidens/crecimiento & desarrollo , Bidens/efectos de los fármacos , Germinación/efectos de los fármacos , Conyza/crecimiento & desarrollo , Conyza/efectos de los fármacos , Temperatura , Asteraceae/crecimiento & desarrollo , Asteraceae/fisiología , Parthenium hysterophorus
13.
Mycorrhiza ; 21(4): 279-88, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20668891

RESUMEN

To identify the importance of arbuscular mycorrhizal fungi (AMF) colonizing wetland seedlings following flooding, we assessed the effects of AMF on seedling establishment of two pioneer species, Bidens frondosa and Eclipta prostrata grown under three levels of water availability and ask: (1) Do inoculated seedlings differ in growth and development from non-inoculated plants? (2) Are the effects of inoculation and degree of colonization dependent on water availability? (3) Do plant responses to inoculation differ between two closely related species? Inoculation had no detectable effects on shoot height, or plant biomass but did affect biomass partitioning and root morphology in a species-specific manner. Shoot/root ratios were significantly lower in non-inoculated E. prostrata plants compared with inoculated plants (0.381 ± 0.066 vs. 0.683 ± 0.132). Root length and surface area were greater in non-inoculated E. prostrata (259.55 ± 33.78 cm vs. 194.64 ± 27.45 cm and 54.91 ± 7.628 cm(2) vs. 46.26 ± 6.8 cm(2), respectively). Inoculation had no detectable effect on B. frondosa root length, volume, or surface area. AMF associations formed at all levels of water availability. Hyphal, arbuscular, and vesicular colonization levels were greater in dry compared with intermediate and flooded treatments. Measures of mycorrhizal responsiveness were significantly depressed in E. prostrata compared with B. frondosa for total fresh weight (-0.3 ± 0.18 g vs. 0.06 ± 0.06 g), root length (-0.78 ± 0.28 cm vs.-0.11 ± 0.07 cm), root volume (-0.49 ± 0.22 cm(3) vs. 0.06 ± 0.07 cm(3)), and surface area (-0.59 ± 0.23 cm(2) vs.-0.03 ± 0.08 cm(2)). Given the disparity in species response to AMF inoculation, events that alter AMF prevalence in wetlands could significantly alter plant community structure by directly affecting seedling growth and development.


Asunto(s)
Bidens/crecimiento & desarrollo , Bidens/microbiología , Eclipta/crecimiento & desarrollo , Eclipta/microbiología , Hongos/fisiología , Micorrizas/fisiología , Agua/metabolismo , Eclipta/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/microbiología , Humedales
14.
PLoS One ; 15(5): e0233228, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407422

RESUMEN

Bidens subalternans DC. is a weed found in several tropical countries such as Brazil. Large number of produced seeds and easy dispersion favor the colonization of agricultural fields by this species. To know the factors that affect the germination of B. subalternans can help to understand its ecology, permitting to develop control strategies. Laboratory experiments were carried out to evaluate how the temperature, photoperiod, burial depth, water deficit, and salt stress affect the seed germination of B. subalternans. The means of the treatments of each experiment were shown in scatter plots with the bars indicating the least significant difference (LSD, p≤0.05). The results showed a germination percentage above 77% for a wide alternating temperature (15/20 C to 30/35 C night/day). The highest germination and uniformity occurred at 25/30°C night/day. Only 11% of the seeds germinated at a temperature of 35/40°C night/day. The deeper burial of seeds reduced their germination. Only 17% of the seeds germinated in darkness conditions. However, in constant light and 12 hours of light/dark conditions the germination percentage was over 96%, confirming the light dependence of the B. subalternans during germination. In constant light and 12 hours of light/dark, the germination was over 96%. B. subalternans seeds showed sensitivity to water and salt stress, and their germination was inhibited under a water potential of -0.4 MPa and 100.09 mM, respectively. The sensitivity of B. subalternans seeds to high temperatures, water stress, and salt stress explains the high frequency of this weed in south-central Brazil. The light and sowing depth showed that burial of seeds by mechanical control is a strategy to reduce the high infestation of B. subalternans.


Asunto(s)
Bidens/crecimiento & desarrollo , Ambiente , Germinación , Semillas/crecimiento & desarrollo , Fotoperiodo , Sales (Química) , Estrés Fisiológico , Agua
15.
Mycorrhiza ; 19(8): 517-523, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19444488

RESUMEN

The effect of arbuscular mycorrhizal fungi (AMF) on plant growth was examined in two wild plant species belonging to contrasting functional types: an annual forb (Bidens pilosa, Asteraceae) and a deciduous shrub (Acacia caven, Fabaceae) at three contrasting plant densities (one, two, and three individuals per pot). AMF had a slightly negative effect on B. pilosa when the species grew in isolation while they positively affected A. caven. Positive effects of AMF on shoot mass of A. caven decreased at higher plant densities, while shoot mass of individuals of B. pilosa showed less marked differences between plant densities. When considering total biomass per pot, AMF positively affected A. caven growth while negatively affecting B. pilosa, at all three plant densities. Root/shoot ratio per pot was negatively affected by AMF but not plant density in both species. These findings highlight the importance of including plants belonging to different life forms and/or traits in research regarding the interaction between AMF and intraspecific plant competition.


Asunto(s)
Acacia/crecimiento & desarrollo , Bidens/crecimiento & desarrollo , Micorrizas/fisiología , Acacia/microbiología , Bidens/microbiología , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo
16.
Sci Rep ; 9(1): 16004, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690889

RESUMEN

It is now widely recognized that Bidens pilosa has become a problematic broadleaf weed in many ecosystems across the world and, particularly in the light of recent climate change conditions, closer management strategies are required to curtail its impact on agricultural cropping. In this investigation, experiments were conducted to evaluate the effect of environmental factors on the germination and emergence of B. pilosa, and also on the response of this weed to commonly available post-emergence herbicides in Australia. The environmental factors of particular interest to this current work were the effect of light and temperature, salinity, burial depth and moisture on B. pilosa since these are key management issues in Australian agriculture. In addition, the effects of a number of commonly used herbicides were examined, because of concerns regarding emerging herbicide resistance. In the tested light/dark regimes, germination was found to be higher at fluctuating day/night temperatures of 25/15 °C and 30/20 °C (92-93%) than at 35/25 °C (79%), whilst across the different temperature ranges, germination was higher in the light/dark regime (79-93%) than in complete darkness (22-38%). The standard five-minute temperature pretreatment required for 50% inhibition of maximum germination was found to be 160 °C, and it was further shown that no seeds germinated at temperatures higher than 240 °C. With regard to salinity, some B. pilosa seeds germinated (3%) in 200 mM sodium chloride (NaCl) but all failed to germinate at 250 mM NaCl. Germination declined from 89% to 2% as the external osmotic potential decreased from 0 to -0.6 MPa, and germination ceased at -0.8 MPa. Seeding emergence of B. pilosa was maximum (71%) for seeds placed on the soil surface and it was found that no seedlings emerged from a depth of 8 cm or greater. A depth of 3.75 cm was required to inhibit the seeds to 50% of the maximum emergence. In this study, application of glufosinate, glyphosate and paraquat provided commercially acceptable control levels (generally accepted as >90%) when applied at the four-leaf stage of B. pilosa. However, none of the herbicide treatments involved in this study provided this level of control when applied at the six-leaf stage. In summary, B. pilosa germination has been clearly shown to be stimulated by light and thus its emergence was greatest from the soil surface. This suggests that infestation from this weed will remain as a problem in no-till conservation agriculture systems, the use of which is increasing now throughout the world. It is intended that information generated from this study be used to develop more effective integrated management programs for B. pilosa and similar weeds in commercial agricultural environments which are tending toward conservation approaches.


Asunto(s)
Bidens/crecimiento & desarrollo , Germinación , Malezas/crecimiento & desarrollo , Australia , Bidens/efectos de los fármacos , Bidens/metabolismo , Ecosistema , Germinación/efectos de los fármacos , Herbicidas/farmacología , Malezas/efectos de los fármacos , Malezas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Temperatura , Control de Malezas
17.
Plant Biol (Stuttg) ; 21(2): 326-335, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30341820

RESUMEN

The exogenous application of plant hormones and their analogues has been exploited to improve crop performance in the field. Protodioscin is a saponin whose steroidal moiety has some similarities to plant steroidal hormones, brassinosteroids. To test the possibility that protodioscin acts as an agonist or antagonist of brassinosteroids or other plant growth regulators, we compared responses of the weed species Bidens pilosa L. to treatment with protodioscin, brassinosteroids, auxins (IAA) and abscisic acid (ABA). Seeds were germinated and grown in agar containing protodioscin, dioscin, brassinolides, IAA and ABA. Root apex respiratory activity was measured with an oxygen electrode. Malondialdehyde (MDA) and antioxidant enzymes activities were assessed. Protodioscin at 48-240 µm inhibited growth of B. pilosa seedlings. The steroidal hormone 24-epibrassinolide (0.1-5 µm) also inhibited growth of primary roots, but brassicasterol was inactive. IAA at higher concentrations (0.5-10.0 µm) strongly inhibited primary root length and fresh weight of stems. ABA inhibited all parameters of seedling growth and also seed germination. Respiratory activity of primary roots (KCN-sensitive and KCN-insensitive) was activated by protodioscin. IAA and ABA reduced KCN-insensitive respiration. The content of MDA in primary roots increased only after protodioscin treatment. All assayed compounds increased APx and POD activity, with 24-epibrassinolide being most active. The activity of CAT was stimulated by protodioscin and 24-epibrassinolide. The results revealed that protodioscin was toxic to B. pilosa through a mechanism not related to plant growth regulator signalling. Protodioscin caused a disturbance in mitochondrial respiratory activity, which could be related to overproduction of ROS and consequent cell membrane damage.


Asunto(s)
Ácido Abscísico/farmacología , Bidens/efectos de los fármacos , Brasinoesteroides/farmacología , Diosgenina/análogos & derivados , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Saponinas/farmacología , Esteroides Heterocíclicos/farmacología , Antioxidantes/metabolismo , Bidens/crecimiento & desarrollo , Bidens/metabolismo , Diosgenina/farmacología , Relación Dosis-Respuesta a Droga , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Germinación/efectos de los fármacos , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
18.
Sci Rep ; 8(1): 16073, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30375415

RESUMEN

Phenological and reproductive shifts of plants due to climate change may have important influences on population dynamics. Climate change may also affect invasive species by changing their phenology and reproduction, but few studies have explored this possibility. Here, we investigated the impact of climate change on the phenology, reproduction and invasion potential of two alien Solidago canadensis and Bidens frondosa and one native weed, Pterocypsela laciniata, all of which are in the Asteraceae family. The three species responded to simulated climate change by increasing reproductive investments and root/leaf ratio, prolonging flowering duration, and while the two alien species also displayed a mass-flowering pattern. Moreover, our experimental results indicated that the alien invasive species may have greater phenological plasticity in response to simulated warming than that of the native species (P. laciniata). As such, climate change may enhance the invasion and accelerate the invasive process of these alien plant species.


Asunto(s)
Bidens/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Reproducción/fisiología , Solidago/crecimiento & desarrollo , Cambio Climático , Flores/genética , Especies Introducidas , Hojas de la Planta/crecimiento & desarrollo , Dinámica Poblacional , Estaciones del Año , Temperatura
19.
J Environ Biol ; 28(1): 63-6, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17717987

RESUMEN

A study was undertaken to explore the phytotoxicity of volatile essential oil from Eucalyptus citriodora Hook. against some weeds viz. Bidens pilosa, Amaranthus viridis, Rumex nepalensis, and Leucaena leucocephala in order to assess its herbicidal activity. Dose-response studies conducted under laboratory conditions revealed that eucalypt oils (in concentration ranging from 0.0012 to 0.06%) greatly suppress the germination and seedling height of test weeds. At 0.06% eucalypt oil concentration, none of the seed of test weeds germinated. Among the weed species tested, A. viridis was found to be the most sensitive and its germination was completed inhibited even at 0.03%. Not only the germination and seedling growth, even the chlorophyll content and respiratory activity in leaves of emerged seedlings were severely affected. In A. viridis chlorophyll content and respiratory activity were reduced by over 51% and 71%, respectively, even at a very low concentration of 0.06%. These results indicated an adverse effect of eucalypt oils on the photosynthetic and energy metabolism of the test weeds. A strong negative correlation was observed between the observed effect and the concentration of eucalypt oil. Based on the study, it can be concluded that oil from E. citriodora possess strong inhibitory potential against weeds that could be exploited for weed management.


Asunto(s)
Eucalyptus/química , Germinación/efectos de los fármacos , Herbicidas/toxicidad , Aceites Volátiles/toxicidad , Aceites de Plantas/toxicidad , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/metabolismo , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Bidens/metabolismo , Respiración de la Célula/efectos de los fármacos , Clorofila/metabolismo , Fabaceae/efectos de los fármacos , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Rumex/efectos de los fármacos , Rumex/crecimiento & desarrollo , Rumex/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
20.
J Environ Sci (China) ; 19(12): 1496-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18277655

RESUMEN

Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils. Bidens maximowicziana is a new Pb hyperaccumulator, which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb. The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues. The Pb distribution order in the B. maximowicziana was: leaf > stem > root. The effect of amendments on phytoremediation was also studied. The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application. Compared with CK (control check), EDTA application promoted translocation of Pb to overground parts of the plant. The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg. This research demonstrated that B. maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil, especially, combination with EDTA.


Asunto(s)
Bidens/metabolismo , Quelantes/farmacología , Ácido Edético/farmacología , Plomo/metabolismo , Contaminantes del Suelo/metabolismo , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Biodegradación Ambiental/efectos de los fármacos , Ácido Cítrico/farmacología , Fosfatos/farmacología , Componentes Aéreos de las Plantas/efectos de los fármacos , Componentes Aéreos de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA