Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.903
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(14): 3504-3505, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996485

RESUMEN

Organisms experience a constantly changing environment and must adjust their development to maximize fitness. These "life histories" are fantastically diverse and have fascinated biologists for decades. Recent work published in Cell reveals the complex genetic mechanisms that drive life-history variation within and among species in the Brassicaceae plant family.


Asunto(s)
Reproducción , Brassicaceae/fisiología , Brassicaceae/genética , Ambiente
2.
Cell ; 187(13): 3319-3337.e18, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38810645

RESUMEN

The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.


Asunto(s)
Brassicaceae , Flores , Regulación de la Expresión Génica de las Plantas , Brassicaceae/genética , Brassicaceae/fisiología , Productos Agrícolas/genética , Flores/genética , Flores/fisiología , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Fenómenos Fisiológicos de las Plantas , Mapeo Cromosómico , Mutación
3.
Cell ; 186(22): 4773-4787.e12, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37806310

RESUMEN

Pollen-pistil interactions establish interspecific/intergeneric pre-zygotic hybridization barriers in plants. The rejection of undesired pollen at the stigma is crucial to avoid outcrossing but can be overcome with the support of mentor pollen. The mechanisms underlying this hybridization barrier are largely unknown. Here, in Arabidopsis, we demonstrate that receptor-like kinases FERONIA/CURVY1/ANJEA/HERCULES RECEPTOR KINASE 1 and cell wall proteins LRX3/4/5 interact on papilla cell surfaces with autocrine stigmatic RALF1/22/23/33 peptide ligands (sRALFs) to establish a lock that blocks the penetration of undesired pollen tubes. Compatible pollen-derived RALF10/11/12/13/25/26/30 peptides (pRALFs) act as a key, outcompeting sRALFs and enabling pollen tube penetration. By treating Arabidopsis stigmas with synthetic pRALFs, we unlock the barrier, facilitating pollen tube penetration from distantly related Brassicaceae species and resulting in interspecific/intergeneric hybrid embryo formation. Therefore, we uncover a "lock-and-key" system governing the hybridization breadth of interspecific/intergeneric crosses in Brassicaceae. Manipulating this system holds promise for facilitating broad hybridization in crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hormonas Peptídicas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Hormonas Peptídicas/metabolismo , Péptidos/metabolismo , Polen/metabolismo , Tubo Polínico/metabolismo , Aislamiento Reproductivo
4.
Nature ; 614(7947): 303-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697825

RESUMEN

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Asunto(s)
Brassicaceae , Flores , Hibridación Genética , Proteínas de Plantas , Polinización , Brassicaceae/genética , Brassicaceae/metabolismo , Depresión Endogámica , Óxido Nítrico/metabolismo , Fosfotransferasas/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Flores/metabolismo , Autofecundación
5.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Asunto(s)
Brassicaceae , Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/genética , Germinación/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Brassicaceae/genética , Brassicaceae/fisiología , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Ácido Abscísico/metabolismo
6.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691724

RESUMEN

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Asunto(s)
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicación de Gen , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotosíntesis/genética , Evolución Molecular
7.
Plant J ; 118(4): 1218-1231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38323895

RESUMEN

Borneol, camphor, and bornyl acetate are highly promising monoterpenoids widely used in medicine, flavor, food, and chemical applications. Bornyl diphosphate (BPP) serves as a common precursor for the biosynthesis of these monoterpenoids. Although bornyl diphosphate synthase (BPPS) that catalyzes the cyclization of geranyl diphosphate (GPP) to BPP has been identified in multiple plants, the enzyme responsible for the hydrolysis of BPP to produce borneol has not been reported. Here, we conducted in vitro and in vivo functional characterization to identify the Nudix hydrolase WvNUDX24 from W. villosa, which specifically catalyzes the hydrolysis of BPP to generate bornyl phosphate (BP), and then BP forms borneol under the action of phosphatase. Subcellular localization experiments indicated that the hydrolysis of BPP likely occurs in the cytoplasm. Furthermore, site-directed mutagenesis experiments revealed that four critical residues (R84, S96, P98, and G99) for the hydrolysis activity of WvNUDX24. Additionally, the functional identification of phosphatidic acid phosphatase (PAP) demonstrated that WvPAP5 and WvPAP10 were able to hydrolyze geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) to generate geranylgeranyl phosphate (GGP) and farnesyl phosphate (FP), respectively, but could not hydrolyze BPP, GPP, and neryl diphosphate (NPP) to produce corresponding monophosphate products. These findings highlight the essential role of WvNUDX24 in the first step of BPP hydrolysis to produce borneol and provide genetic elements for the production of BPP-related terpenoids through plant metabolic engineering and synthetic biology.


Asunto(s)
Canfanos , Hidrolasas Nudix , Proteínas de Plantas , Pirofosfatasas , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Canfanos/metabolismo , Brassicaceae/genética , Brassicaceae/enzimología , Brassicaceae/metabolismo , Fosfatos de Poliisoprenilo/metabolismo
8.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39073781

RESUMEN

The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.


Asunto(s)
Genoma de Planta , Duplicación de Gen , Evolución Molecular , Elementos Transponibles de ADN , Estrés Fisiológico , Brassicaceae/genética , Regulación de la Expresión Génica de las Plantas
9.
Plant Physiol ; 194(4): 2136-2148, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37987565

RESUMEN

In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Metilación de ADN/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Interferente Pequeño/genética , ARN Bicatenario , Fenotipo , Semillas/genética , Semillas/metabolismo , Reproducción , ARN de Planta/genética , ARN de Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant Cell ; 34(9): 3233-3260, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35666179

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are a large yet enigmatic class of eukaryotic transcripts that can have critical biological functions. The wealth of RNA-sequencing (RNA-seq) data available for plants provides the opportunity to implement a harmonized identification and annotation effort for lincRNAs that enables cross-species functional and genomic comparisons as well as prioritization of functional candidates. In this study, we processed >24 Tera base pairs of RNA-seq data from >16,000 experiments to identify ∼130,000 lincRNAs in four Brassicaceae: Arabidopsis thaliana, Camelina sativa, Brassica rapa, and Eutrema salsugineum. We used nanopore RNA-seq, transcriptome-wide structural information, peptide data, and epigenomic data to characterize these lincRNAs and identify conserved motifs. We then used comparative genomic and transcriptomic approaches to highlight lincRNAs in our data set with sequence or transcriptional conservation. Finally, we used guilt-by-association analyses to assign putative functions to lincRNAs within our data set. We tested this approach on a subset of lincRNAs associated with germination and seed development, observing germination defects for Arabidopsis lines harboring T-DNA insertions at these loci. LincRNAs with Brassicaceae-conserved putative miRNA binding motifs, small open reading frames, or abiotic-stress modulated expression are a few of the annotations that will guide functional analyses into this cryptic portion of the transcriptome.


Asunto(s)
Arabidopsis , Brassicaceae , ARN Largo no Codificante , Genómica , Análisis de Secuencia de ARN , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217601

RESUMEN

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistencia a los Herbicidas/genética , Insecticidas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia , Brassicaceae/metabolismo , Dicamba , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , ARN de Planta/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos
12.
Plant J ; 116(2): 446-466, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37428465

RESUMEN

Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.


Asunto(s)
Brassicaceae , Genoma de Planta , Genoma de Planta/genética , Brassicaceae/genética , Poliploidía , Plantas/genética , Biodiversidad
13.
Plant J ; 116(3): 921-941, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37609706

RESUMEN

Schrenkiella parvula, a leading extremophyte model in Brassicaceae, can grow and complete its lifecycle under multiple environmental stresses, including high salinity. Yet, the key physiological and structural traits underlying its stress-adapted lifestyle are unknown along with trade-offs when surviving salt stress at the expense of growth and reproduction. We aimed to identify the influential adaptive trait responses that lead to stress-resilient and uncompromised growth across developmental stages when treated with salt at levels known to inhibit growth in Arabidopsis and most crops. Its resilient growth was promoted by traits that synergistically allowed primary root growth in seedlings, the expansion of xylem vessels across the root-shoot continuum, and a high capacity to maintain tissue water levels by developing thicker succulent leaves while enabling photosynthesis during salt stress. A successful transition from vegetative to reproductive phase was initiated by salt-induced early flowering, resulting in viable seeds. Self-fertilization in salt-induced early flowering was dependent upon filament elongation in flowers otherwise aborted in the absence of salt during comparable plant ages. The maintenance of leaf water status promoting growth, and early flowering to ensure reproductive success in a changing environment, were among the most influential traits that contributed to the extremophytic lifestyle of S. parvula.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/fisiología , Arabidopsis/fisiología , Flores , Estrés Salino , Estrés Fisiológico , Agua
14.
BMC Genomics ; 25(1): 29, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172664

RESUMEN

BACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.


Asunto(s)
Brassicaceae , Fitomejoramiento , Humanos , Perfilación de la Expresión Génica , Brassicaceae/genética , Brassicaceae/metabolismo , Semillas/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/análisis , Regulación de la Expresión Génica de las Plantas
15.
BMC Genomics ; 25(1): 599, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877397

RESUMEN

BACKGROUND: Tubulins play crucial roles in numerous fundamental processes of plant development. In flowering plants, tubulins are grouped into α-, ß- and γ-subfamilies, while α- and ß-tubulins possess a large isotype diversity and gene number variations among different species. This circumstance leads to insufficient recognition of orthologous isotypes and significantly complicates extrapolation of obtained experimental results, and brings difficulties for the identification of particular tubulin isotype function. The aim of this research is to identify and characterize tubulins of an emerging biofuel crop Camelina sativa. RESULTS: We report comprehensive identification and characterization of tubulin gene family in C. sativa, including analyses of exon-intron organization, duplicated genes comparison, proper isotype designation, phylogenetic analysis, and expression patterns in different tissues. 17 α-, 34 ß- and 6 γ-tubulin genes were identified and assigned to a particular isotype. Recognition of orthologous tubulin isotypes was cross-referred, involving data of phylogeny, synteny analyses and genes allocation on reconstructed genomic blocks of Ancestral Crucifer Karyotype. An investigation of expression patterns of tubulin homeologs revealed the predominant role of N6 (A) and N7 (B) subgenomes in tubulin expression at various developmental stages, contrarily to general the dominance of transcripts of H7 (C) subgenome. CONCLUSIONS: For the first time a complete set of tubulin gene family members was identified and characterized for allohexaploid C. sativa species. The study demonstrates the comprehensive approach of precise inferring gene orthology. The applied technique allowed not only identifying C. sativa tubulin orthologs in model Arabidopsis species and tracking tubulin gene evolution, but also uncovered that A. thaliana is missing orthologs for several particular isotypes of α- and ß-tubulins.


Asunto(s)
Evolución Molecular , Genoma de Planta , Familia de Multigenes , Filogenia , Tubulina (Proteína) , Tubulina (Proteína)/genética , Brassicaceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenía , Regulación de la Expresión Génica de las Plantas , Duplicación de Gen , Intrones/genética , Exones/genética
16.
Plant Mol Biol ; 114(1): 5, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227117

RESUMEN

Floral transition is accelerated by exposure to long-term cold like winter in plants, which is called as vernalization. Acceleration of floral transition by vernalization is observed in a diversity of biennial and perennial plants including Brassicaceae family plants. Scientific efforts to understand molecular mechanism underlying vernalization-mediated floral transition have been intensively focused in model plant Arabidopsis thaliana. To get a better understanding on floral transition by vernalization in radish (Raphanus sativus L.), we investigated transcriptomic changes taking place during vernalization in radish. Thousands of genes were differentially regulated along time course of vernalization compared to non-vernalization (NV) sample. Twelve major clusters of DEGs were identified based on distinctive expression profiles during vernalization. Radish FLC homologs were shown to exert an inhibition of floral transition when transformed into Arabidopsis plants. In addition, DNA region containing RY motifs located within a Raphanus sativus FLC homolog, RsFLC1 was found to be required for repression of RsFLC1 by vernalization. Transgenic plants harboring disrupted RY motifs were impaired in the enrichment of H3K27me3 on RsFLC1 chromatin, thus resulting in the delayed flowering in Arabidopsis. Taken together, we report transcriptomic profiles of radish during vernalization and demonstrate the requirement of RY motif for vernalization-mediated repression of RsFLC homologs in radish (Raphanus sativus L.).


Asunto(s)
Arabidopsis , Brassicaceae , Raphanus , Raphanus/genética , Arabidopsis/genética , Vernalización , Cromatina
17.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37172323

RESUMEN

Changes in transcription factor binding sites (TFBSs) can alter the spatiotemporal expression pattern and transcript abundance of genes. Loss and gain of TFBSs were shown to cause shifts in expression patterns in numerous cases. However, we know little about the evolution of extended regulatory sequences incorporating many TFBSs. We compare, across the crucifers (Brassicaceae, cabbage family), the sequences between the translated regions of Arabidopsis Bsister (ABS)-like MADS-box genes (including paralogous GOA-like genes) and the next gene upstream, as an example of family-wide evolution of putative upstream regulatory regions (PURRs). ABS-like genes are essential for integument development of ovules and endothelium formation in seeds of Arabidopsis thaliana. A combination of motif-based gene ontology enrichment and reporter gene analysis using A. thaliana as common trans-regulatory environment allows analysis of selected Brassicaceae Bsister gene PURRs. Comparison of TFBS of transcriptionally active ABS-like genes with those of transcriptionally largely inactive GOA-like genes shows that the number of in silico predicted TFBS) is similar between paralogs, emphasizing the importance of experimental verification for in silico characterization of TFBS activity and analysis of their evolution. Further, our data show highly conserved expression of Brassicaceae ABS-like genes almost exclusively in the chalazal region of ovules. The Arabidopsis-specific insertion of a transposable element (TE) into the ABS PURRs is required for stabilizing this spatially restricted expression, while other Brassicaceae achieve chalaza-specific expression without TE insertion. We hypothesize that the chalaza-specific expression of ABS is regulated by cis-regulatory elements provided by the TE.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Brassicaceae , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Elementos Transponibles de ADN , Proteínas de Arabidopsis/genética , Semillas/genética , Brassica/genética , Regulación de la Expresión Génica de las Plantas
18.
Nat Prod Rep ; 41(5): 834-859, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323463

RESUMEN

Covering: up to 2023Specialized metabolite (SM) modifications and/or decorations, corresponding to the addition or removal of functional groups (e.g. hydroxyl, methyl, glycosyl or acyl group) to SM structures, contribute to the huge diversity of structures, activities and functions of seed and plant SMs. This review summarizes available knowledge (up to 2023) on SM modifications in Brassicaceae and their contribution to SM plasticity. We give a comprehensive overview on enzymes involved in the addition or removal of these functional groups. Brassicaceae, including model (Arabidopsis thaliana) and crop (Brassica napus, Camelina sativa) plant species, present a large diversity of plant and seed SMs, which makes them valuable models to study SM modifications. In this review, particular attention is given to the environmental plasticity of SM and relative modification and/or decoration enzymes. Furthermore, a spotlight is given to SMs and related modification enzymes in seeds of Brassicaceae species. Seeds constitute a large reservoir of beneficial SMs and are one of the most important dietary sources, providing more than half of the world's intake of dietary proteins, oil and starch. The seed tissue- and stage-specific expressions of A. thaliana genes involved in SM modification are presented and discussed in the context of available literature. Given the major role in plant phytochemistry, biology and ecology, SM modifications constitute a subject of study contributing to the research and development in agroecology, pharmaceutical, cosmetics and food industrial sectors.


Asunto(s)
Brassicaceae , Semillas , Semillas/metabolismo , Semillas/química , Brassicaceae/metabolismo , Brassicaceae/química , Estructura Molecular , Proteínas de Plantas/metabolismo
19.
Plant Cell Physiol ; 65(1): 20-34, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37758243

RESUMEN

Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.


Asunto(s)
Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Salinidad , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Plant Cell Physiol ; 65(7): 1160-1172, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38590036

RESUMEN

Endoplasmic reticulum (ER)-derived organelles, ER bodies, participate in the defense against herbivores in Brassicaceae plants. ER bodies accumulate ß-glucosidases, which hydrolyze specialized thioglucosides known as glucosinolates to generate bioactive substances. In Arabidopsis thaliana, the leaf ER (LER) bodies are formed in large pavement cells, which are found in the petioles, margins and blades of rosette leaves. However, the regulatory mechanisms involved in establishing large pavement cells are unknown. Here, we show that the ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) transcription factor regulates the formation of LER bodies in large pavement cells of rosette leaves. Overexpression of ATML1 enhanced the expression of LER body-related genes and the number of LER body-containing large pavement cells, whereas its knock-out resulted in opposite effects. ATML1 enhances endoreduplication and cell size through LOSS OF GIANT CELLS FROM ORGANS (LGO). Although the overexpression and knock-out of LGO affected the appearance of large pavement cells in Arabidopsis, the effect on LER body-related gene expression and LER body formation was weak. LER body-containing large pavement cells were also found in Eutrema salsugineum, another Brassicaceae species. Our results demonstrate that ATML1 establishes large pavement cells to induce LER body formation in Brassicaceae plants and thereby possibly contribute to the defense against herbivores.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Diferenciación Celular , Brassicaceae/genética , Brassicaceae/citología , Brassicaceae/metabolismo , Brassicaceae/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Endorreduplicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA