Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.590
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679330

RESUMEN

Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Factores de Ribosilacion-ADP , Brefeldino A , Retículo Endoplásmico , Transporte de Proteínas , Humanos , Factores de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Retículo Endoplásmico/metabolismo , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Brefeldino A/farmacología , Transporte de Proteínas/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Células HeLa
2.
EMBO J ; 40(20): e107766, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34516001

RESUMEN

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldino A/farmacología , Ceramidas/metabolismo , Toxina del Cólera/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Toxina Shiga/farmacología
3.
PLoS Pathog ; 19(9): e1011673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721955

RESUMEN

The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Proteínas de Unión al GTP Monoméricas , Poliovirus , Humanos , Enterovirus/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Células HeLa , Poliovirus/genética , Proteínas Virales/metabolismo , Antígenos Virales/metabolismo , Brefeldino A/farmacología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
4.
Biochemistry ; 63(1): 27-41, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38078826

RESUMEN

Protein-protein interactions regulate many cellular processes, making them ideal drug candidates. Design of such drugs, however, is hindered by a lack of understanding of the factors that contribute to the interaction specificity. Specific protein-protein complexes possess both structural and electrostatic complementarity, and while structural complementarity of protein complexes has been extensively investigated, fundamental understanding of the complicated networks of electrostatic interactions at these interfaces is lacking, thus hindering the rational design of orthosterically binding small molecules. To better understand the electrostatic interactions at protein interfaces and how a small molecule could contribute to and fit within that environment, we used a model protein-drug-protein system, Arf1-BFA-ARNO4M, to investigate how small molecule brefeldin A (BFA) perturbs the Arf1-ARNO4M interface. By using nitrile probe labeled Arf1 sites and measuring vibrational Stark effects as well as temperature dependent infrared shifts, we measured changes in the electric field and hydrogen bonding at this interface upon BFA binding. At all five probe locations of Arf1, we found that the vibrational shifts resulting from BFA binding corroborate trends found in Poisson-Boltzmann calculations of surface potentials of Arf1-ARNO4M and Arf1-BFA-ARNO4M, where BFA contributes negative electrostatic potential to the protein interface. The data also corroborate previous hypotheses about the mechanism of interfacial binding and confirm that alternating patches of hydrophobic and polar interactions lead to BFA binding specificity. These findings demonstrate the impact of BFA on this protein-protein interface and have implications for the design of other interfacial drug candidates.


Asunto(s)
Factor 1 de Ribosilacion-ADP , Tiocianatos , Brefeldino A/farmacología , Brefeldino A/química , Electricidad Estática , Factor 1 de Ribosilacion-ADP/química , Proteínas/metabolismo
5.
Cell ; 138(2): 377-88, 2009 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-19632185

RESUMEN

Prostate apoptosis response-4 (Par-4) is a proapoptotic protein with intracellular functions in the cytoplasm and nucleus. Unexpectedly, we noted Par-4 protein is spontaneously secreted by normal and cancer cells in culture, and by Par-4 transgenic mice that are resistant to spontaneous tumors. Short exposure to endoplasmic reticulum (ER) stress-inducing agents further increased cellular secretion of Par-4 by a brefeldin A-sensitive pathway. Secretion occurred independently of caspase activation and apoptosis. Interestingly, extracellular Par-4 induced apoptosis by binding to the stress response protein, glucose-regulated protein-78 (GRP78), expressed at the surface of cancer cells. The interaction of extracellular Par-4 and cell surface GRP78 led to apoptosis via ER stress and activation of the FADD/caspase-8/caspase-3 pathway. Moreover, apoptosis inducible by TRAIL, which also exerts cancer cell-specific effects, is dependent on extracellular Par-4 signaling via cell surface GRP78. Thus, Par-4 activates an extrinsic pathway involving cell surface GRP78 receptor for induction of apoptosis.


Asunto(s)
Apoptosis , Receptores de Trombina/metabolismo , Animales , Brefeldino A/farmacología , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Receptores de Trombina/química
6.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627405

RESUMEN

T cells experience complex temporal patterns of stimulus via receptor-ligand-binding interactions with surrounding cells. From these temporal patterns, T cells are able to pick out antigenic signals while establishing self-tolerance. Although features such as duration of antigen binding have been examined, our understanding of how T cells interpret signals with different frequencies or temporal stimulation patterns is relatively unexplored. We engineered T cells to respond to light as a stimulus by building an optogenetically controlled chimeric antigen receptor (optoCAR). We discovered that T cells respond to minute-scale oscillations of activation signal by stimulating optoCAR T cells with tunable pulse trains of light. Systematically scanning signal oscillation period from 1 to 150 min revealed that expression of CD69, a T cell activation marker, reached a local minimum at a period of ∼25 min (corresponding to 5 to 15 min pulse widths). A combination of inhibitors and genetic knockouts suggest that this frequency filtering mechanism lies downstream of the Erk signaling branch of the T cell response network and may involve a negative feedback loop that diminishes Erk activity. The timescale of CD69 filtering corresponds with the duration of T cell encounters with self-peptide-presenting APCs observed via intravital imaging in mice, indicating a potential functional role for temporal filtering in vivo. This study illustrates that the T cell signaling machinery is tuned to temporally filter and interpret time-variant input signals in discriminatory ways.


Asunto(s)
Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Lectinas Tipo C/genética , Fototransducción/genética , Receptores Quiméricos de Antígenos/genética , Autotolerancia , Linfocitos T/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Brefeldino A/farmacología , Ingeniería Celular/métodos , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/inmunología , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Células K562 , Lectinas Tipo C/inmunología , Luz , Activación de Linfocitos/efectos de los fármacos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Monensina/farmacología , Optogenética/métodos , Cultivo Primario de Células , Proteína Tirosina Fosfatasa no Receptora Tipo 22/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/citología , Linfocitos T/efectos de la radiación
7.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892028

RESUMEN

Amino acid permeases (AAPs) transporters are crucial for the long-distance transport of amino acids in plants, from source to sink. While Arabidopsis and rice have been extensively studied, research on foxtail millet is limited. This study identified two transcripts of SiAAP9, both of which were induced by NO3- and showed similar expression patterns. The overexpression of SiAAP9L and SiAAP9S in Arabidopsis inhibited plant growth and seed size, although SiAAP9 was found to transport more amino acids into seeds. Furthermore, SiAAP9-OX transgenic Arabidopsis showed increased tolerance to high concentrations of glutamate (Glu) and histidine (His). The high overexpression level of SiAAP9 suggested its protein was not only located on the plasma membrane but potentially on other organelles, as well. Interestingly, sequence deletion reduced SiAAP9's sensitivity to Brefeldin A (BFA), and SiAAP9 had ectopic localization on the endoplasmic reticulum (ER). Protoplast amino acid uptake experiments indicated that SiAAP9 enhanced Glu transport into foxtail millet cells. Overall, the two transcripts of SiAAP9 have similar functions, but SiAAP9L shows a higher colocalization with BFA compartments compared to SiAAP9S. Our research identifies a potential candidate gene for enhancing the nutritional quality of foxtail millet through breeding.


Asunto(s)
Arabidopsis , Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Transporte de Proteínas , Brefeldino A/farmacología , Aminoácidos/metabolismo , Ácido Glutámico/metabolismo
8.
Plant J ; 112(3): 786-799, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36111506

RESUMEN

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is a glycolytic enzyme, but undergoes stress-induced nuclear translocation for moonlighting. We previously reported that in response to heat stress, GAPC accumulated in the nucleus to modulate transcription and thermotolerance. Here we show a cellular and molecular mechanism that mediates heat-induced nuclear translocation of cytosolic GAPC in Arabidopsis thaliana. Heat-induced GAPC nuclear accumulation and plant heat tolerance were reduced in Arabidopsis phospholipase D (PLD) knockout mutants of pldδ and pldα1pldδ, but not of pldα1. These changes were restored to wild type by genetic complementation with active PLDδ, but not with catalytically inactive PLDδ. GAPC overexpression enhanced the seedling thermotolerance and the expression of heat-inducible genes, but this effect was abolished in the pldδ background. Heat stress elevated the levels of the PLD product phosphatidic acid (PA) in the nucleus in wild type, but not in pldδ plants. Lipid labeling demonstrated the heat-induced nuclear co-localization of PA and GAPC, which was impaired by zinc, which inhibited the PA-GAPC interaction, and by the membrane trafficking inhibitor brefeldin A (BFA). The GAPC nuclear accumulation and seedling thermotolerance were also decreased by treatment with zinc or BFA. Our data suggest that PLDδ and PA are critical for the heat-induced nuclear translocation of GAPC. We propose that PLDδ-produced PA mediates the process via lipid-protein interaction and that the lipid mediation acts as a cellular conduit linking stress perturbations at cell membranes to nuclear functions in plants coping with heat stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fosfolipasa D , Arabidopsis/metabolismo , Ácidos Fosfatidicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfolipasas/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Plantones/genética , Plantones/metabolismo , Brefeldino A/farmacología , Zinc/metabolismo
9.
Plant Cell Physiol ; 64(4): 392-404, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36318453

RESUMEN

Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Several compounds are used to induce the unfolded protein response (UPR) in animals, with different modes of action, but which ER stress-inducing drugs induce ER stress in microalgae or land plants is unclear. In this study, we examined the effects of seven chemicals that were reported to induce ER stress in animals on the growth, UPR gene expression and fatty acid profiles of Chlamydomonas reinhardtii (Chlamydomonas) and Arabidopsis thaliana (Arabidopsis): 2-deoxyglucose, dithiothreitol (DTT), tunicamycin (TM), thapsigargin, brefeldin A (BFA), monensin (MON) and eeyarestatin I. In both model photosynthetic organisms, DTT, TM, BFA and MON treatment induced ER stress, as indicated by the induction of spliced bZIP1 and bZIP60, respectively. In Chlamydomonas, DTT, TM and BFA treatment induced the production of transcripts related to lipid biosynthesis, but MON treatment did not. In Arabidopsis, DTT, TM, BFA and MON inhibited seed germination and seedling growth with the activation of bZIP60. These findings lay the foundation for using four types of ER stress-inducing drugs in photosynthetic organisms, and they help uncover the mode of action of each compound.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas , Arabidopsis/metabolismo , Chlamydomonas/metabolismo , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldino A/farmacología , Fenotipo , Lípidos
10.
J Virol ; 96(4): e0200521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34878889

RESUMEN

Birnaviruses are members of the Birnaviridae family, responsible for major economic losses to poultry and aquaculture. The family is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome. Infectious bursal disease virus (IBDV), the prototypic family member, is the etiological agent of Gumboro disease, a highly contagious immunosuppressive disease in the poultry industry worldwide. We previously demonstrated that IBDV hijacks the endocytic pathway for establishing the viral replication complexes on endosomes associated with the Golgi complex (GC). Here, we report that IBDV reorganizes the GC to localize the endosome-associated replication complexes without affecting its secretory functionality. By analyzing crucial proteins involved in the secretory pathway, we showed the essential requirement of Rab1b for viral replication. Rab1b comprises a key regulator of GC transport and we demonstrate that transfecting the negative mutant Rab1b N121I or knocking down Rab1b expression by RNA interference significantly reduces the yield of infectious viral progeny. Furthermore, we showed that the Rab1b downstream effector Golgi-specific BFA resistance factor 1 (GBF1), which activates the small GTPase ADP ribosylation factor 1 (ARF1), is required for IBDV replication, since inhibiting its activity by treatment with brefeldin A (BFA) or golgicide A (GCA) significantly reduces the yield of infectious viral progeny. Finally, we show that ARF1 dominant negative mutant T31N overexpression hampered IBDV infection. Taken together, these results demonstrate that IBDV requires the function of the Rab1b-GBF1-ARF1 axis to promote its replication, making a substantial contribution to the field of birnavirus-host cell interactions. IMPORTANCE Birnaviruses are unconventional members of the dsRNA viruses, with the lack of a transcriptionally active core being the main differential feature. This structural trait, among others that resemble those of the plus single-stranded (+ssRNA) viruses features, suggests that birnaviruses might follow a different replication program from that conducted by prototypical dsRNA members and the hypothesis that birnaviruses could be evolutionary links between +ssRNA and dsRNA viruses has been argued. Here, we present original data showing that IBDV-induced GC reorganization and the cross talk between IBDV and the Rab1b-GBF1-ARF1 mediate the intracellular trafficking pathway. The replication of several +ssRNA viruses depends on the cellular protein GBF1, but its role in the replication process is not clear. Thus, our findings make a substantial contribution to the field of birnavirus-host cell interactions and provide further evidence supporting the proposed evolutionary connection role of birnaviruses, an aspect which we consider especially relevant for researchers working in the virology field.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Vías Secretoras/fisiología , Replicación Viral/fisiología , Proteínas de Unión al GTP rab1/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Animales , Brefeldino A/farmacología , Línea Celular , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Piridinas/farmacología , Quinolinas/farmacología , Vías Secretoras/efectos de los fármacos , Compartimentos de Replicación Viral/metabolismo , Replicación Viral/efectos de los fármacos , Proteínas de Unión al GTP rab1/genética
11.
Plant Cell ; 32(5): 1644-1664, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32193204

RESUMEN

Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , GTP Fosfohidrolasas/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Epistasis Genética/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Unión Proteica/efectos de los fármacos , Nicotiana/metabolismo , Red trans-Golgi/efectos de los fármacos , Red trans-Golgi/metabolismo
12.
Ann Bot ; 131(6): 967-983, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37076269

RESUMEN

BACKGROUND AND AIMS: Endosidins are a group of low-molecular-weight compounds, first identified by 'chemical biology' screening assays, that have been used to target specific components of the endomembrane system. In this study, we employed multiple microscopy-based screening techniques to elucidate the effects of endosidin 5 (ES5) on the Golgi apparatus and the secretion of extracellular matrix (ECM) components in Penium margaritaceum. These effects were compared with those caused by treatments with brefeldin A and concanamycin A. Penium margaritaceum's extensive Golgi apparatus and endomembrane system make it an outstanding model organism for screening changes to the endomembrane system. Here we detail changes to the Golgi apparatus and secretion of ECM material caused by ES5. METHODS: Changes to extracellular polymeric substance (EPS) secretion and cell wall expansion were screened using fluorescence microscopy. Confocal laser scanning microscopy and transmission electron microscopy were used to assess changes to the Golgi apparatus, the cell wall and the vesicular network. Electron tomography was also performed to detail the changes to the Golgi apparatus. KEY RESULTS: While other endosidins were able to impact EPS secretion and cell wall expansion, only ES5 completely inhibited EPS secretion and cell wall expansion over 24 h. Short treatments of ES5 resulted in displacement of the Golgi bodies from their typical linear alignment. The number of cisternae decreased per Golgi stack and trans face cisternae in-curled to form distinct elongate circular profiles. Longer treatment resulted in a transformation of the Golgi body to an irregular aggregate of cisternae. These alterations could be reversed by removal of ES5 and returning cells to culture. CONCLUSIONS: ES5 alters secretion of ECM material in Penium by affecting the Golgi apparatus and does so in a markedly different way from other endomembrane inhibitors such as brefeldin A and concanamycin A.


Asunto(s)
Carofíceas , Brefeldino A/farmacología , Matriz Extracelular de Sustancias Poliméricas , Aparato de Golgi , Matriz Extracelular
13.
Bioorg Med Chem ; 90: 117380, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329677

RESUMEN

27 novel 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione derivatives of brefeldin A were designed and synthesized to make them more conducive to the cancer treatment. The antiproliferative activity of all the target compounds was tested against six human cancer cell lines and one human normal cell line. Compound 10d exhibited nearly the most potent cytotoxicity with IC50 values of 0.58, 0.69, 1.82, 0.85, 0.75, 0.33 and 1.75 µM against A549, DU-145, A375, HeLa, HepG2, MDA-MB-231 and L-02 cell lines. Moreover, 10d inhibited metastasis and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. The potent anticancer effects of 10d were prompted based on the aforementioned results, the therapeutic potential of 10d for breast cancer was worth further exploration.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Relación Estructura-Actividad , Línea Celular Tumoral , Brefeldino A/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Apoptosis , Estructura Molecular
14.
Cell ; 133(6): 1055-67, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18555781

RESUMEN

The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.


Asunto(s)
Aparato de Golgi/metabolismo , Transporte de Proteínas , Animales , Brefeldino A/farmacología , Células COS , Línea Celular , Chlorocebus aethiops , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/ultraestructura , Humanos , Cinética , Modelos Biológicos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos
15.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982858

RESUMEN

OSW-1, a steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, is a promising compound for an anticancer drug; however, its cytotoxic mechanisms have not been fully elucidated. Therefore, we analyzed the stress responses triggered by OSW-1 in the mouse neuroblastoma cell line Neuro2a by comparing it with brefeldin A (BFA), a Golgi apparatus-disrupting reagent. Among the Golgi stress sensors TFE3/TFEB and CREB3, OSW-1 induced dephosphorylation of TFE3/TFEB but not cleavage of CREB3, and induction of the ER stress-inducible genes GADD153 and GADD34 was slight. On the other hand, the induction of LC3-II, an autophagy marker, was more pronounced than the BFA stimulation. To elucidate OSW-1-induced gene expression, we performed a comprehensive gene analysis using a microarray method and observed changes in numerous genes involved in lipid metabolism, such as cholesterol, and in the regulation of the ER-Golgi apparatus. Abnormalities in ER-Golgi transport were also evident in the examination of secretory activity using NanoLuc-tag genes. Finally, we established Neuro2a cells lacking oxysterol-binding protein (OSBP), which were severely reduced by OSW-1, but found OSBP deficiency had little effect on OSW-1-induced cell death and the LC3-II/LC3-I ratio in Neuro2a cells. Future work to elucidate the relationship between OSW-1-induced atypical Golgi stress responses and autophagy induction may lead to the development of new anticancer agents.


Asunto(s)
Antineoplásicos , Saponinas , Ratones , Animales , Saponinas/farmacología , Línea Celular , Colestenonas/farmacología , Antineoplásicos/farmacología , Aparato de Golgi/metabolismo , Brefeldino A/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
16.
Molecules ; 28(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298761

RESUMEN

Brefeldin A has a wide range of anticancer activity against a variety of tumor cells. Its poor pharmacokinetic properties and significant toxicity seriously hinder its further development. In this manuscript, 25 brefeldin A-isothiocyanate derivatives were designed and synthesized. Most derivatives showed good selectivity between HeLa cells and L-02 cells. In particular, 6 exhibited potent antiproliferative activity against HeLa cells (IC50 = 1.84 µM) with no obvious cytotoxic activity to L-02 (IC50 > 80 µM). Further cellular mechanism tests indicated that 6 induced HeLa cell cycle arrest at G1 phase. Cell nucleus fragmentation and decreased mitochondrial membrane potential suggested 6 could induce apoptosis in HeLa cells through the mitochondrial-dependent pathway.


Asunto(s)
Antineoplásicos , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Brefeldino A/farmacología , Brefeldino A/uso terapéutico , Proliferación Celular , Apoptosis , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Relación Estructura-Actividad
17.
Plant J ; 107(2): 448-466, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932060

RESUMEN

The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan-cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Brefeldino A/farmacología , Membrana Celular/metabolismo , Deshidratación , Glicosiltransferasas/fisiología , Aparato de Golgi/metabolismo , Respuesta al Choque Térmico , Sistemas de Translocación de Proteínas/efectos de los fármacos
18.
Plant J ; 108(2): 426-440, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34343378

RESUMEN

The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas R-SNARE/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Brefeldino A/farmacología , Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas R-SNARE/genética
19.
J Cell Sci ; 133(24)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33262309

RESUMEN

Golgi stacks are the basic structural units of the Golgi. Golgi stacks are separated from each other and scattered in the cytoplasm of Drosophila cells. Here, we report that the ARF-GEF inhibitor Brefeldin A (BFA) induces the formation of BFA bodies, which are aggregates of Golgi stacks, trans-Golgi networks and recycling endosomes. Recycling endosomes are located in the centers of BFA bodies, while Golgi stacks surround them on their trans sides. Live imaging of S2 cells revealed that Golgi stacks repeatedly merged and separated on their trans sides, and BFA caused successive merger by inhibiting separation, forming BFA bodies. S2 cells carrying genome-edited BFA-resistant mutant Sec71M717L did not form BFA bodies at high concentrations of BFA; S2 cells carrying genome-edited BFA-hypersensitive mutant Sec71F713Y produced BFA bodies at low concentrations of BFA. These results indicate that Sec71 is the sole BFA target for BFA body formation and controls Golgi stack separation. Finally, we showed that impairment of Sec71 in fly photoreceptors induces BFA body formation, with accumulation of both apical and basolateral cargoes, resulting in inhibition of polarized transport.


Asunto(s)
Drosophila , Aparato de Golgi , Animales , Brefeldino A/farmacología , Endosomas , Red trans-Golgi
20.
J Virol ; 95(14): e0053121, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952644

RESUMEN

Mouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the endoplasmic reticulum (ER) membrane into a functional N-terminal signal peptide (SP) and the C terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, and yet it was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug brefeldin A (BFA), which interferes with the ER-to-Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels that were not rescued by proteasomal or lysosomal inhibitors. A Rem mutant lacking glycosylation was cleaved into SP and Rem-CT but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not reach this BFA-dependent compartment. Treatment with endoglycosidase H indicated that Rem-CT does not traffic through the Golgi apparatus. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, was colocalized with Rab5-positive (Rab5+) early endosomes. The expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (containing a mutation of threonine to asparagine at position 31 [T31N]) mimicked the effects of BFA by reducing Rem-CT levels and increased Rem-CT association with early and late endosomes. Inhibition of the AAA ATPase p97/VCP rescued Rem-CT in the presence of BFA or DN Arf1 and prevented localization to Rab5+ endosomes. Thus, Rem-CT uses an unconventional p97-mediated scheme for trafficking to early endosomes. IMPORTANCE Mouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP uses the p97/VCP ATPase to elude ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used mutants, inhibitors, and confocal microscopy to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation and the p97 ATPase for early endosome trafficking without passage through the Golgi apparatus. Thus, Rem-CT uses a novel intracellular trafficking pathway, potentially impacting host antiviral immunity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Retículo Endoplásmico/metabolismo , Virus del Tumor Mamario del Ratón/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Endosomas/metabolismo , Células HEK293 , Humanos , Microscopía Confocal , Proteínas Nucleares/antagonistas & inhibidores , Precursores de Proteínas/metabolismo , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA