Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.449
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37703874

RESUMEN

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Asunto(s)
Condensados Biomoleculares , Caenorhabditis elegans , ARN Mensajero , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Oogénesis , Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
2.
Cell ; 177(7): 1814-1826.e15, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31178120

RESUMEN

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.


Asunto(s)
Conducta Animal , Caenorhabditis elegans , Neuronas/metabolismo , ARN de Helminto , ARN Pequeño no Traducido , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/citología , ARN de Helminto/biosíntesis , ARN de Helminto/genética , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética
3.
Cell ; 169(6): 1066-1077.e10, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575670

RESUMEN

Centrosomes are non-membrane-bound compartments that nucleate microtubule arrays. They consist of nanometer-scale centrioles surrounded by a micron-scale, dynamic assembly of protein called the pericentriolar material (PCM). To study how PCM forms a spherical compartment that nucleates microtubules, we reconstituted PCM-dependent microtubule nucleation in vitro using recombinant C. elegans proteins. We found that macromolecular crowding drives assembly of the key PCM scaffold protein SPD-5 into spherical condensates that morphologically and dynamically resemble in vivo PCM. These SPD-5 condensates recruited the microtubule polymerase ZYG-9 (XMAP215 homolog) and the microtubule-stabilizing protein TPXL-1 (TPX2 homolog). Together, these three proteins concentrated tubulin ∼4-fold over background, which was sufficient to reconstitute nucleation of microtubule asters in vitro. Our results suggest that in vivo PCM is a selective phase that organizes microtubule arrays through localized concentration of tubulin by microtubule effector proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrosoma/química , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Caenorhabditis elegans/citología , Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Cell ; 165(5): 1197-1208, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27133166

RESUMEN

Organisms respond to mitochondrial stress through the upregulation of an array of protective genes, often perpetuating an early response to metabolic dysfunction across a lifetime. We find that mitochondrial stress causes widespread changes in chromatin structure through histone H3K9 di-methylation marks traditionally associated with gene silencing. Mitochondrial stress response activation requires the di-methylation of histone H3K9 through the activity of the histone methyltransferase met-2 and the nuclear co-factor lin-65. While globally the chromatin becomes silenced by these marks, remaining portions of the chromatin open up, at which point the binding of canonical stress responsive factors such as DVE-1 occurs. Thus, a metabolic stress response is established and propagated into adulthood of animals through specific epigenetic modifications that allow for selective gene expression and lifespan extension.


Asunto(s)
Caenorhabditis elegans/fisiología , Ensamble y Desensamble de Cromatina , Respuesta de Proteína Desplegada , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Longevidad , Mitocondrias/metabolismo
5.
Cell ; 165(2): 396-409, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27020753

RESUMEN

Multiple division cycles without growth are a characteristic feature of early embryogenesis. The female germline loads proteins and RNAs into oocytes to support these divisions, which lack many quality control mechanisms operating in somatic cells undergoing growth. Here, we describe a small RNA-Argonaute pathway that ensures early embryonic divisions in C. elegans by employing catalytic slicing activity to broadly tune, instead of silence, germline gene expression. Misregulation of one target, a kinesin-13 microtubule depolymerase, underlies a major phenotype associated with pathway loss. Tuning of target transcript levels is guided by the density of homologous small RNAs, whose generation must ultimately be related to target sequence. Thus, the tuning action of a small RNA-catalytic Argonaute pathway generates oocytes capable of supporting embryogenesis. We speculate that the specialized nature of germline chromatin led to the emergence of small RNA-catalytic Argonaute pathways in the female germline as a post-transcriptional control layer to optimize oocyte composition.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Redes y Vías Metabólicas , Oocitos/metabolismo , Animales , Proteínas Argonautas/metabolismo , Secuencia de Bases , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/metabolismo , División Celular , Embrión no Mamífero/citología , Desarrollo Embrionario , Femenino , Cinesinas/metabolismo , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Procesamiento Postranscripcional del ARN
6.
Cell ; 163(3): 541-2, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496599

RESUMEN

To investigate the fundamental question of how nervous systems encode, organize, and sequence behaviors, Kato et al. imaged neural activity with cellular resolution across the brain of the worm Caenorhabditis elegans. Locomotion behavior seems to be continuously represented by cyclical patterns of distributed neural activity that are present even in immobilized animals.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Animales
7.
Cell ; 162(2): 237-238, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26186182

RESUMEN

Throughout development, proliferative progenitors lose their mitotic potential, exit the cell cycle, and differentiate. In this issue, Ruijtenberg and van den Heuvel identify an important lineage-specific role for a SWI/SNF chromatin-remodeling complex that collaborates with core cell-cycle regulators to promote cell-cycle exit and terminal muscle cell differentiation.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Músculos/citología , Animales
8.
Cell ; 163(3): 656-69, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26478179

RESUMEN

While isolated motor actions can be correlated with activities of neuronal networks, an unresolved problem is how the brain assembles these activities into organized behaviors like action sequences. Using brain-wide calcium imaging in Caenorhabditis elegans, we show that a large proportion of neurons across the brain share information by engaging in coordinated, dynamical network activity. This brain state evolves on a cycle, each segment of which recruits the activities of different neuronal sub-populations and can be explicitly mapped, on a single trial basis, to the animals' major motor commands. This organization defines the assembly of motor commands into a string of run-and-turn action sequence cycles, including decisions between alternative behaviors. These dynamics serve as a robust scaffold for action selection in response to sensory input. This study shows that the coordination of neuronal activity patterns into global brain dynamics underlies the high-level organization of behavior.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Animales , Encéfalo/citología , Encéfalo/fisiología , Fenómenos Electrofisiológicos , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Red Nerviosa , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Transducción de Señal
9.
Cell ; 163(6): 1333-47, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26607792

RESUMEN

Interphase chromatin is organized in distinct nuclear sub-compartments, reflecting its degree of compaction and transcriptional status. In Caenorhabditis elegans embryos, H3K9 methylation is necessary to silence and to anchor repeat-rich heterochromatin at the nuclear periphery. In a screen for perinuclear anchors of heterochromatin, we identified a previously uncharacterized C. elegans chromodomain protein, CEC-4. CEC-4 binds preferentially mono-, di-, or tri-methylated H3K9 and localizes at the nuclear envelope independently of H3K9 methylation and nuclear lamin. CEC-4 is necessary for endogenous heterochromatin anchoring, but not for transcriptional repression, in contrast to other known H3K9 methyl-binders in worms, which mediate gene repression but not perinuclear anchoring. When we ectopically induce a muscle differentiation program in embryos, cec-4 mutants fail to commit fully to muscle cell fate. This suggests that perinuclear sequestration of chromatin during development helps restrict cell differentiation programs by stabilizing commitment to a specific cell fate. PAPERCLIP.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/metabolismo , Embrión no Mamífero/citología , Heterocromatina , Código de Histonas , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Diferenciación Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Embrión no Mamífero/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
10.
Cell ; 162(2): 300-313, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144318

RESUMEN

The transition from proliferating precursor cells to post-mitotic differentiated cells is crucial for development, tissue homeostasis, and tumor suppression. To study cell-cycle exit during differentiation in vivo, we developed a conditional knockout and lineage-tracing system for Caenorhabditis elegans. Combined lineage-specific gene inactivation and genetic screening revealed extensive redundancies between previously identified cell-cycle inhibitors and the SWI/SNF chromatin-remodeling complex. Muscle precursor cells missing either SWI/SNF or G1/S inhibitor function could still arrest cell division, while simultaneous inactivation of these regulators caused continued proliferation and a C. elegans tumor phenotype. Further genetic analyses support that SWI/SNF acts in concert with hlh-1 MyoD, antagonizes Polycomb-mediated transcriptional repression, and suppresses cye-1 Cyclin E transcription to arrest cell division of muscle precursors. Thus, SWI/SNF and G1/S inhibitors provide alternative mechanisms to arrest cell-cycle progression during terminal differentiation, which offers insight into the frequent mutation of SWI/SNF genes in human cancers.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/crecimiento & desarrollo , Músculos/citología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Musculares , Músculos/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Proteínas Nucleares , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo
11.
Cell ; 161(7): 1606-18, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26052047

RESUMEN

Proteins begin to fold as they emerge from translating ribosomes. The kinetics of ribosome transit along a given mRNA can influence nascent chain folding, but the extent to which individual codon translation rates impact proteome integrity remains unknown. Here, we show that slower decoding of discrete codons elicits widespread protein aggregation in vivo. Using ribosome profiling, we find that loss of anticodon wobble uridine (U34) modifications in a subset of tRNAs leads to ribosome pausing at their cognate codons in S. cerevisiae and C. elegans. Cells lacking U34 modifications exhibit gene expression hallmarks of proteotoxic stress, accumulate aggregates of endogenous proteins, and are severely compromised in clearing stress-induced protein aggregates. Overexpression of hypomodified tRNAs alleviates ribosome pausing, concomitantly restoring protein homeostasis. Our findings demonstrate that modified U34 is an evolutionarily conserved accelerator of decoding and reveal an unanticipated role for tRNA modifications in maintaining proteome integrity.


Asunto(s)
Caenorhabditis elegans/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Codón , Agregado de Proteínas , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Uridina/genética
12.
Cell ; 160(5): 842-855, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723162

RESUMEN

Low energy states delay aging in multiple species, yet mechanisms coordinating energetics and longevity across tissues remain poorly defined. The conserved energy sensor AMP-activated protein kinase (AMPK) and its corresponding phosphatase calcineurin modulate longevity via the CREB regulated transcriptional coactivator (CRTC)-1 in C. elegans. We show that CRTC-1 specifically uncouples AMPK/calcineurin-mediated effects on lifespan from pleiotropic side effects by reprogramming mitochondrial and metabolic function. This pro-longevity metabolic state is regulated cell nonautonomously by CRTC-1 in the nervous system. Neuronal CRTC-1/CREB regulates peripheral metabolism antagonistically with the functional PPARα ortholog, NHR-49, drives mitochondrial fragmentation in distal tissues, and suppresses the effects of AMPK on systemic mitochondrial metabolism and longevity via a cell-nonautonomous catecholamine signal. These results demonstrate that while both local and distal mechanisms combine to modulate aging, distal regulation overrides local contribution. Targeting central perception of energetic state is therefore a potential strategy to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Catecolaminas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Caenorhabditis elegans/citología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Longevidad , Receptores Citoplasmáticos y Nucleares/metabolismo
13.
Nature ; 628(8008): 630-638, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538795

RESUMEN

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Lisosomas , Animales , Humanos , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestructura , Homeostasis , Longevidad , Lisosomas/metabolismo , Lisosomas/ultraestructura , Secuencias de Aminoácidos , Microscopía Electrónica
14.
Cell ; 156(1-2): 359-72, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439388

RESUMEN

Elucidation of complex phenotypes for mechanistic insights presents a significant challenge in systems biology. We report a strategy to automatically infer mechanistic models of cell fate differentiation based on live-imaging data. We use cell lineage tracing and combinations of tissue-specific marker expression to assay progenitor cell fate and detect fate changes upon genetic perturbation. Based on the cellular phenotypes, we further construct a model for how fate differentiation progresses in progenitor cells and predict cell-specific gene modules and cell-to-cell signaling events that regulate the series of fate choices. We validate our approach in C. elegans embryogenesis by perturbing 20 genes in over 300 embryos. The result not only recapitulates current knowledge but also provides insights into gene function and regulated fate choice, including an unexpected self-renewal. Our study provides a powerful approach for automated and quantitative interpretation of complex in vivo information.


Asunto(s)
Caenorhabditis elegans/citología , Linaje de la Célula , Embrión no Mamífero/citología , Células Madre/citología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Desarrollo Embrionario , Fenotipo , Transcriptoma
15.
Cell ; 156(3): 482-94, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485456

RESUMEN

SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C. elegans SYG-1's specification of proper synapse formation in vivo closely correlates with the heterophilic complex affinity, which appears to be tuned for optimal function. Furthermore, replacement of the interacting domains of SYG-1 and SYG-2 with those from CAM complexes that assume alternative docking geometries or the introduction of segmental flexibility compromised synaptic function. These results suggest that SYG extracellular complexes do not simply act as "molecular velcro" and that their distinct structural features are important in instructing synaptogenesis. PAPERFLICK:


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Inmunoglobulinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Adhesión Celular , Dimerización , Inmunoglobulinas/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Neuronas/citología , Neuronas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Sinapsis/química
16.
Nature ; 623(7986): 406-414, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914938

RESUMEN

Establishing how neural function emerges from network properties is a fundamental problem in neuroscience1. Here, to better understand the relationship between the structure and the function of a nervous system, we systematically measure signal propagation in 23,433 pairs of neurons across the head of the nematode Caenorhabditis elegans by direct optogenetic activation and simultaneous whole-brain calcium imaging. We measure the sign (excitatory or inhibitory), strength, temporal properties and causal direction of signal propagation between these neurons to create a functional atlas. We find that signal propagation differs from model predictions that are based on anatomy. Using mutants, we show that extrasynaptic signalling not visible from anatomy contributes to this difference. We identify many instances of dense-core-vesicle-dependent signalling, including on timescales of less than a second, that evoke acute calcium transients-often where no direct wired connection exists but where relevant neuropeptides and receptors are expressed. We propose that, in such cases, extrasynaptically released neuropeptides serve a similar function to that of classical neurotransmitters. Finally, our measured signal propagation atlas better predicts the neural dynamics of spontaneous activity than do models based on anatomy. We conclude that both synaptic and extrasynaptic signalling drive neural dynamics on short timescales, and that measurements of evoked signal propagation are crucial for interpreting neural function.


Asunto(s)
Caenorhabditis elegans , Vías Nerviosas , Neuronas , Animales , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Calcio/análisis , Calcio/metabolismo , Modelos Neurológicos , Mutación , Vías Nerviosas/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Transducción de Señal/fisiología
17.
Cell ; 155(3): 659-73, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243022

RESUMEN

The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT, is expressed in 38 of the 118 anatomically defined neuron classes of the C. elegans nervous system. We show that distinct cis-regulatory modules drive expression of eat-4/VGLUT in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in distinct combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Proteínas de Homeodominio/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Ratones , Neuronas/clasificación , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular de Glutamato
18.
Cell ; 155(4): 869-80, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24209624

RESUMEN

Variability in gene expression contributes to phenotypic heterogeneity even in isogenic populations. Here, we used the stereotyped, Wnt signaling-dependent development of the Caenorhabditis elegans Q neuroblast to probe endogenous mechanisms that control gene expression variability. We found that the key Hox gene that orients Q neuroblast migration exhibits increased gene expression variability in mutants in which Wnt pathway activity has been perturbed. Distinct features of the gene expression distributions prompted us on a systematic search for regulatory interactions, revealing a network of interlocked positive and negative feedback loops. Interestingly, positive feedback appeared to cooperate with negative feedback to reduce variability while keeping the Hox gene expression at elevated levels. A minimal model correctly predicts the increased gene expression variability across mutants. Our results highlight the influence of gene network architecture on expression variability and implicate feedback regulation as an effective mechanism to ensure developmental robustness.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Variación Genética , Vía de Señalización Wnt , Animales , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Movimiento Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Retroalimentación Fisiológica , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Redes Reguladoras de Genes , Glicoproteínas/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Proteínas Wnt
19.
Nature ; 610(7933): 768-774, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36261532

RESUMEN

Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Hemo , Animales , Humanos , Arritmias Cardíacas/metabolismo , Encefalopatías/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Hemo/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
20.
Annu Rev Cell Dev Biol ; 30: 417-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150010

RESUMEN

Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.


Asunto(s)
Sinapsis/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Ojo/metabolismo , Conos de Crecimiento/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/ultraestructura , Retina/citología , Transmisión Sináptica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA