Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.051
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(7): 1659-1660, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798438

RESUMEN

Partial agonism describes the relative efficacy of a drug compared to one that produces a greater response in a particular system; the designation is dependent upon the comparator and the system. In this issue of Cell, Huang et al. describe biophysical approaches to define the signature of GPCR partial agonists, providing direct measures of varying intrinsic efficacy.


Asunto(s)
Cafeína
2.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662087

RESUMEN

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Asunto(s)
Agonistas de los Canales de Calcio/química , Activación del Canal Iónico , Contracción Muscular , Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Cafeína/química , Calcio/química , Microscopía por Crioelectrón , Ligandos , Dominios Proteicos , Conejos , Proteínas de Unión a Tacrolimus/química
3.
PLoS Biol ; 22(3): e3002512, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38442128

RESUMEN

It has been suggested that cross-frequency coupling in cortico-hippocampal networks enables the maintenance of multiple visuo-spatial items in working memory. However, whether this mechanism acts as a global neural code for memory retention across sensory modalities remains to be demonstrated. Intracranial EEG data were recorded while drug-resistant patients with epilepsy performed a delayed matched-to-sample task with tone sequences. We manipulated task difficulty by varying the memory load and the duration of the silent retention period between the to-be-compared sequences. We show that the strength of theta-gamma phase amplitude coupling in the superior temporal sulcus, the inferior frontal gyrus, the inferior temporal gyrus, and the hippocampus (i) supports the short-term retention of auditory sequences; (ii) decodes correct and incorrect memory trials as revealed by machine learning analysis; and (iii) is positively correlated with individual short-term memory performance. Specifically, we show that successful task performance is associated with consistent phase coupling in these regions across participants, with gamma bursts restricted to specific theta phase ranges corresponding to higher levels of neural excitability. These findings highlight the role of cortico-hippocampal activity in auditory short-term memory and expand our knowledge about the role of cross-frequency coupling as a global biological mechanism for information processing, integration, and memory in the human brain.


Asunto(s)
Hipocampo , Memoria a Corto Plazo , Humanos , Lóbulo Temporal , Encéfalo , Cafeína
4.
Proc Natl Acad Sci U S A ; 121(11): e2313594121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442182

RESUMEN

The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals. By examining the patterns of muscle activity produced by modulating the excitability of V2a neurons, we provide evidence that V2a neurons supply tonic drive to phrenic circuits rather than increase rhythmic inspiratory drive at the level of the brainstem. Our results demonstrate that the V2a class of neurons contribute to recovery of respiratory function following injury. We propose that altering V2a excitability is a potential strategy to prevent respiratory motor failure and promote recovery of breathing following spinal cord injury.


Asunto(s)
Diafragma , Traumatismos de la Médula Espinal , Animales , Ratones , Tronco Encefálico , Cafeína , Neuronas , Niacinamida
5.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346189

RESUMEN

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Asunto(s)
Habénula , Receptores de GABA-B , Animales , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Habénula/metabolismo , Astacoidea/metabolismo , Terminales Presinápticos/metabolismo , Cafeína , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
N Engl J Med ; 388(12): 1092-1100, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36947466

RESUMEN

BACKGROUND: Coffee is one of the most commonly consumed beverages in the world, but the acute health effects of coffee consumption remain uncertain. METHODS: We conducted a prospective, randomized, case-crossover trial to examine the effects of caffeinated coffee on cardiac ectopy and arrhythmias, daily step counts, sleep minutes, and serum glucose levels. A total of 100 adults were fitted with a continuously recording electrocardiogram device, a wrist-worn accelerometer, and a continuous glucose monitor. Participants downloaded a smartphone application to collect geolocation data. We used daily text messages, sent over a period of 14 days, to randomly instruct participants to consume caffeinated coffee or avoid caffeine. The primary outcome was the mean number of daily premature atrial contractions. Adherence to the randomization assignment was assessed with the use of real-time indicators recorded by the participants, daily surveys, reimbursements for date-stamped receipts for coffee purchases, and virtual monitoring (geofencing) of coffee-shop visits. RESULTS: The mean (±SD) age of the participants was 39±13 years; 51% were women, and 51% were non-Hispanic White. Adherence to the random assignments was assessed to be high. The consumption of caffeinated coffee was associated with 58 daily premature atrial contractions as compared with 53 daily events on days when caffeine was avoided (rate ratio, 1.09; 95% confidence interval [CI], 0.98 to 1.20; P = 0.10). The consumption of caffeinated coffee as compared with no caffeine consumption was associated with 154 and 102 daily premature ventricular contractions, respectively (rate ratio, 1.51; 95% CI, 1.18 to 1.94); 10,646 and 9665 daily steps (mean difference, 1058; 95% CI, 441 to 1675); 397 and 432 minutes of nightly sleep (mean difference, 36; 95% CI, 25 to 47); and serum glucose levels of 95 mg per deciliter and 96 mg per deciliter (mean difference, -0.41; 95% CI, -5.42 to 4.60). CONCLUSIONS: In this randomized trial, the consumption of caffeinated coffee did not result in significantly more daily premature atrial contractions than the avoidance of caffeine. (Funded by the University of California, San Francisco, and the National Institutes of Health; CRAVE ClinicalTrials.gov number, NCT03671759.).


Asunto(s)
Complejos Atriales Prematuros , Glucemia , Cafeína , Café , Duración del Sueño , Caminata , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejos Atriales Prematuros/inducido químicamente , Complejos Atriales Prematuros/etiología , Cafeína/efectos adversos , Cafeína/farmacología , Café/efectos adversos , Glucosa , Estudios Prospectivos , Ingestión de Líquidos , Estudios Cruzados , Glucemia/análisis , Duración del Sueño/efectos de los fármacos , Acelerometría , Electrocardiografía Ambulatoria , Automonitorización de la Glucosa Sanguínea , Aplicaciones Móviles , Envío de Mensajes de Texto , Complejos Prematuros Ventriculares/inducido químicamente , Complejos Prematuros Ventriculares/etiología
7.
Nature ; 585(7825): 453-458, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908306

RESUMEN

Heterochromatin that depends on histone H3 lysine 9 methylation (H3K9me) renders embedded genes transcriptionally silent1-3. In the fission yeast Schizosaccharomyces pombe, H3K9me heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent4,5. Heterochromatin heritability might allow wild-type cells under certain conditions to acquire epimutations, which could influence phenotype through unstable gene silencing rather than DNA change6,7. Here we show that heterochromatin-dependent epimutants resistant to caffeine arise in fission yeast grown with threshold levels of caffeine. Isolates with unstable resistance have distinct heterochromatin islands with reduced expression of embedded genes, including some whose mutation confers caffeine resistance. Forced heterochromatin formation at implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, letting wild-type cells adapt to unfavourable environments without genetic alteration. In some isolates, subsequent or coincident gene-amplification events augment resistance. Caffeine affects two anti-silencing factors: Epe1 is downregulated, reducing its chromatin association, and a shortened isoform of Mst2 histone acetyltransferase is expressed. Thus, heterochromatin-dependent epimutation provides a bet-hedging strategy allowing cells to adapt transiently to insults while remaining genetically wild type. Isolates with unstable caffeine resistance show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to resistance of plant and human fungal pathogens to such agents.


Asunto(s)
Farmacorresistencia Fúngica/genética , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Schizosaccharomyces/genética , Cafeína/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Heterocromatina/efectos de los fármacos , Histona Acetiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
8.
Ann Neurol ; 96(2): 262-275, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767012

RESUMEN

OBJECTIVE: This study was undertaken to investigate the effects of dietary caffeine intake on striatal dopamine function and clinical symptoms in Parkinson disease in a cross-sectional and longitudinal setting. METHODS: One hundred sixty-three early Parkinson disease patients and 40 healthy controls were investigated with [123I]FP-CIT single photon emission computed tomography, and striatal dopamine transporter binding was evaluated in association with the level of daily coffee consumption and clinical measures. After a median interval of 6.1 years, 44 patients with various caffeine consumption levels underwent clinical and imaging reexamination including blood caffeine metabolite profiling. RESULTS: Unmedicated early Parkinson disease patients with high coffee consumption had 8.3 to 15.4% lower dopamine transporter binding in all studied striatal regions than low consumers, after accounting for age, sex, and motor symptom severity. Higher caffeine consumption was further associated with a progressive decline in striatal binding over time. No significant effects of caffeine on motor function were observed. Blood analyses demonstrated a positive correlation between caffeine metabolites after recent caffeine intake and dopamine transporter binding in the ipsilateral putamen. INTERPRETATION: Chronic caffeine intake prompts compensatory and cumulative dopamine transporter downregulation, consistent with caffeine's reported risk reduction in Parkinson disease. However, this decline does not manifest in symptom changes. Transiently increased dopamine transporter binding after recent caffeine intake has implications for dopaminergic imaging guidelines. ANN NEUROL 2024;96:262-275.


Asunto(s)
Cafeína , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Enfermedad de Parkinson , Humanos , Cafeína/administración & dosificación , Masculino , Femenino , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Estudios Transversales , Dopamina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Estudios Longitudinales , Café , Cuerpo Estriado/metabolismo , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Tropanos
9.
Ann Neurol ; 95(4): 677-687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38113326

RESUMEN

OBJECTIVE: Parkinson's disease (PD) is a neurodegenerative disorder with complex etiology. Multiple genetic and environmental factors have been associated with PD, but most PD risk remains unexplained. The aim of this study was to test for statistical interactions between PD-related genetic and environmental exposures in the 23andMe, Inc. research dataset. METHODS: Using a validated PD polygenic risk score and common PD-associated variants in the GBA gene, we explored interactions between genetic susceptibility factors and 7 lifestyle and environmental factors: body mass index (BMI), type 2 diabetes (T2D), tobacco use, caffeine consumption, pesticide exposure, head injury, and physical activity (PA). RESULTS: We observed that T2D, as well as higher BMI, caffeine consumption, and tobacco use, were associated with lower odds of PD, whereas head injury, pesticide exposure, GBA carrier status, and PD polygenic risk score were associated with higher odds. No significant association was observed between PA and PD. In interaction analyses, we found statistical evidence for an interaction between polygenic risk of PD and the following environmental/lifestyle factors: T2D (p = 6.502 × 10-8), PA (p = 8.745 × 10-5), BMI (p = 4.314 × 10-4), and tobacco use (p = 2.236 × 10-3). Although BMI and tobacco use were associated with lower odds of PD regardless of the extent of individual genetic liability, the direction of the relationship between odds of PD and T2D, as well as PD and PA, varied depending on polygenic risk score. INTERPRETATION: We provide preliminary evidence that associations between some environmental and lifestyle factors and PD may be modified by genotype. ANN NEUROL 2024;95:677-687.


Asunto(s)
Traumatismos Craneocerebrales , Diabetes Mellitus Tipo 2 , Enfermedad de Parkinson , Plaguicidas , Humanos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/genética , Interacción Gen-Ambiente , Diabetes Mellitus Tipo 2/complicaciones , Cafeína , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Puntuación de Riesgo Genético , Traumatismos Craneocerebrales/complicaciones
10.
Nature ; 572(7769): 347-351, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31278385

RESUMEN

The high-conductance intracellular calcium (Ca2+) channel RyR2 is essential for the coupling of excitation and contraction in cardiac muscle. Among various modulators, calmodulin (CaM) regulates RyR2 in a Ca2+-dependent manner. Here we reveal the regulatory mechanism by which porcine RyR2 is modulated by human CaM through the structural determination of RyR2 under eight conditions. Apo-CaM and Ca2+-CaM bind to distinct but overlapping sites in an elongated cleft formed by the handle, helical and central domains. The shift in CaM-binding sites on RyR2 is controlled by Ca2+ binding to CaM, rather than to RyR2. Ca2+-CaM induces rotations and intradomain shifts of individual central domains, resulting in pore closure of the PCB95 and Ca2+-activated channel. By contrast, the pore of the ATP, caffeine and Ca2+-activated channel remains open in the presence of Ca2+-CaM, which suggests that Ca2+-CaM is one of the many competing modulators of RyR2 gating.


Asunto(s)
Calmodulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoproteínas/metabolismo , Sitios de Unión , Cafeína/metabolismo , Calcio/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Reproducibilidad de los Resultados , Canal Liberador de Calcio Receptor de Rianodina/química , Porcinos
11.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615240

RESUMEN

The mismatch negativity and the P3a of the event-related EEG potential reflect the electrocortical response to a deviant stimulus in a series of stimuli. Although both components have been investigated in various paradigms, these paradigms usually incorporate many repetitions of the same deviant, thus leaving open whether both components vary as a function of the deviant's position in a series of deviant stimuli-i.e. whether they are subject to qualitative/quantitative habituation from one instantiation of a deviant to the next. This is so because the detection of mismatch negativity/P3a in the event-related EEG potential requires an averaging over dozens or hundreds of stimuli, i.e. over many instantiations of the deviant per participant. The present study addresses this research gap. We used a two-tone oddball paradigm implementing only a small number of (deviant) stimuli per participant, but applying it to a large number of participants (n > 230). Our data show that the mismatch negativity amplitude exhibits no decrease as a function of the deviant's position in a series of (standard and) deviant stimuli. Importantly, only after the very first deviant stimulus, a distinct P3a could be detected, indicative of an orienting reaction and an attention shift, and thus documenting a dissociation of mismatch negativity and P3a.


Asunto(s)
Cafeína , Habituación Psicofisiológica , Humanos , Potenciales Evocados , Electroencefalografía
12.
Nucleic Acids Res ; 51(2): 966-981, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36617976

RESUMEN

Over the past three decades, researchers have found that some engineered aptamers can be made to work well in test tubes but that these same aptamers might fail to function in cells. To help address this problem, we developed the 'Graftamer' approach, an experimental platform that exploits the architecture of a natural riboswitch to enhance in vitro aptamer selection and accelerate in vivo testing. Starting with combinatorial RNA pools that contain structural features of a guanine riboswitch aptamer interspersed with regions of random sequence, we performed multiplexed in vitro selection with a collection of small molecules. This effort yielded aptamers for quinine, guanine, and caffeine that appear to maintain structural features of the natural guanine riboswitch aptamer. Quinine and caffeine aptamers were each grafted onto a natural guanine riboswitch expression platform and reporter gene expression was monitored to determine that these aptamers function in cells. Additionally, we determined the secondary structure features and survival mechanism of a class of RNA sequences that evade the intended selection strategy, providing insight into improving this approach for future efforts. These results demonstrate that the Graftamer strategy described herein represents a convenient and straightforward approach to develop aptamers and validate their in vivo function.


Asunto(s)
Aptámeros de Nucleótidos , Ingeniería Genética , Riboswitch , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Cafeína , Guanina , Ligandos , Conformación de Ácido Nucleico , Quinina , Riboswitch/genética , Ingeniería Genética/métodos
13.
Am J Physiol Cell Physiol ; 326(3): C978-C989, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314722

RESUMEN

Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain. Notably, these alterations were effectively reversed by caffeine. In addition, caffeine mitigated neuroinflammation induced by SD, as evident from suppression of the SD-mediated increase in glial fibrillary acidic protein (GFAP) and nuclear factor-κB (NF-κB) activation. Caffeine restored normal O-GlcNAcylation and O-GlcNAc transferase (OGT) levels while reversing the increased expression of O-GlcNAcase (OGA) in zebrafish brain after SD. Intriguingly, rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, effectively mitigated cognitive deficits, restored p-CREB and c-Fos levels, and attenuated the increase in GFAP in brain induced by SD. In addition, rolipram reversed the decrease in O-GlcNAcylation and OGT expression as well as elevation of OGA expression following SD. Treatment with H89, a PKA inhibitor, significantly impaired the L/M functions of zebrafish compared with the control group, inducing a decrease in O-GlcNAcylation and OGT expression and, conversely, an increase in OGA expression. The H89-induced changes in O-GlcNAc cycling and L/M dysfunction were effectively reversed by glucosamine treatment. H89 suppressed, whereas caffeine and rolipram promoted O-GlcNAc cycling in Neuro2a cells. Our collective findings underscore the interplay between PKA signaling and O-GlcNAc cycling in the regulation of cognitive function in the brain, offering potential therapeutic targets for cognitive deficits associated with SD.NEW & NOTEWORTHY Our observation highlights the intricate interplay between cAMP/PKA signaling and O-GlcNAc cycling, unveiling a novel mechanism that potentially governs the regulation of learning and memory functions. The dynamic interplay between these two pathways provides a novel and nuanced perspective on the molecular foundation of learning and memory regulation. These insights open avenues for the development of targeted interventions to treat conditions that impact cognitive function, including SD.


Asunto(s)
Disfunción Cognitiva , Isoquinolinas , Privación de Sueño , Sulfonamidas , Animales , Privación de Sueño/tratamiento farmacológico , Pez Cebra/metabolismo , Cafeína/farmacología , Rolipram , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
14.
J Biol Chem ; 299(9): 105117, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524132

RESUMEN

Human cytochrome P450 3A4 (CYP3A4) is a major drug-metabolizing enzyme that shows extreme substrate promiscuity. Moreover, its large and malleable active site can simultaneously accommodate several substrate molecules of the same or different nature, which may lead to cooperative binding and allosteric behavior. Due to difficulty of crystallization of CYP3A4-substrate complexes, it remains unknown how multiple substrates can arrange in the active site. We determined crystal structures of CYP3A4 bound to three and six molecules of caffeine, a psychoactive alkaloid serving as a substrate and modulator of CYP3A4. In the ternary complex, one caffeine binds to the active site suitably for C8-hydroxylation, most preferable for CYP3A4. In the senary complex, three caffeine molecules stack parallel to the heme with the proximal ligand poised for 3-N-demethylation. However, the caffeine stack forms extensive hydrophobic interactions that could preclude product dissociation and multiple turnovers. In both complexes, caffeine is also bound in the substrate channel and on the outer surface known as a peripheral site. At all sites, aromatic stacking with the caffeine ring(s) is likely a dominant interaction, while direct and water-mediated polar contacts provide additional stabilization for the substrate-bound complexes. Protein-ligand interactions via the active site R212, intrachannel T224, and peripheral F219 were experimentally confirmed, and the latter two residues were identified as important for caffeine association. Collectively, the structural, spectral, and mutagenesis data provide valuable insights on the ligand binding mechanism and help better understand how purine-based pharmaceuticals and other aromatic compounds could interact with CYP3A4 and mediate drug-drug interactions.


Asunto(s)
Cafeína , Citocromo P-450 CYP3A , Humanos , Sitios de Unión , Cafeína/química , Cafeína/metabolismo , Dominio Catalítico , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ligandos , Especificidad por Sustrato , Unión Proteica , Regulación Alostérica , Cristalografía por Rayos X , Cristalización , Desmetilación , Hemo/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Mutación
15.
Int J Cancer ; 155(6): 1033-1044, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38733325

RESUMEN

Epidemiological evidence regarding the relationship between coffee and tea consumption and the risk of ovarian cancer (OC) is inconsistent. Therefore, we aimed to quantitatively investigate this topic in a large prospective cohort study. This cohort study included 24,715 individuals recruited from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trials between 1993 and 2001. The data used for our analysis included the latest follow-up information collected up to 2015. Coffee intake of ≥4 cups/day (hazard ratio [HR], 0.586; 95% confidence interval [CI]: 0.356-0.966) or caffeine intake of 458.787 mg/day (HR, 0.607; 95% CI: 0.411-0.895) were associated with the lowest HR of incident OC in the fully adjusted model. Participants who consumed varying amounts of tea did not exhibit a statistically significant reduction in the risk of OC. Our findings suggest that a higher consumption of coffee or caffeine is associated with a reduced risk of OC. However, no statistically significant association was observed between tea consumption and the risk of OC.


Asunto(s)
Café , Neoplasias Ováricas , , Humanos , Femenino , Neoplasias Ováricas/epidemiología , Estudios Prospectivos , Persona de Mediana Edad , Incidencia , Anciano , Cafeína/administración & dosificación , Factores de Riesgo , Modelos de Riesgos Proporcionales
16.
Hum Mol Genet ; 31(6): 929-941, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622282

RESUMEN

Dominant GNAO1 mutations cause an emerging group of childhood-onset neurological disorders characterized by developmental delay, intellectual disability, movement disorders, drug-resistant seizures and neurological deterioration. GNAO1 encodes the α-subunit of an inhibitory GTP/GDP-binding protein regulating ion channel activity and neurotransmitter release. The pathogenic mechanisms underlying GNAO1-related disorders remain largely elusive and there are no effective therapies. Here, we assessed the functional impact of two disease-causing variants associated with distinct clinical features, c.139A > G (p.S47G) and c.662C > A (p.A221D), using Caenorhabditis elegans as a model organism. The c.139A > G change was introduced into the orthologous position of the C. elegans gene via CRISPR/Cas9, whereas a knock-in strain carrying the p.A221D variant was already available. Like null mutants, homozygous knock-in animals showed increased egg laying and were hypersensitive to aldicarb, an inhibitor of acetylcholinesterase, suggesting excessive neurotransmitter release by different classes of motor neurons. Automated analysis of C. elegans locomotion indicated that goa-1 mutants move faster than control animals, with more frequent body bends and a higher reversal rate and display uncoordinated locomotion. Phenotypic profiling of heterozygous animals revealed a strong hypomorphic effect of both variants, with a partial dominant-negative activity for the p.A221D allele. Finally, caffeine was shown to rescue aberrant motor function in C. elegans harboring the goa-1 variants; this effect is mainly exerted through adenosine receptor antagonism. Overall, our findings establish a suitable platform for drug discovery, which may assist in accelerating the development of new therapies for this devastating condition, and highlight the potential role of caffeine in controlling GNAO1-related dyskinesia.


Asunto(s)
Proteínas de Caenorhabditis elegans , Discinesias , Acetilcolinesterasa/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cafeína/farmacología , Evaluación Preclínica de Medicamentos , Discinesias/tratamiento farmacológico , Discinesias/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/farmacología , Proteínas de Unión al GTP/genética , Mutación , Neurotransmisores/metabolismo
17.
Curr Opin Neurol ; 37(3): 289-294, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38327229

RESUMEN

PURPOSE OF REVIEW: Caffeine is known to have both beneficial and adverse effects in individuals with headache disorders. This review describes recent findings regarding caffeine that are relevant to headache disorders and puts these findings into the context of clinical management. RECENT FINDINGS: Preclinical studies show that caffeine has complex effects on sleep, brain blood flow, and intracranial pressure that may depend on the timing of caffeine intake relative to the sleep-wake cycle. Caffeine metabolism may have significant inter-individual variation that influences its therapeutic and/or adverse effects. Caffeine has acute therapeutic benefit for some primary headache disorders. For migraine, this benefit is predominantly in milder headache without cutaneous allodynia. High levels of caffeine intake may contribute to progression of headache disorders. Caffeine-containing combination analgesics commonly cause medication overuse headache. Abrupt reduction in caffeine consumption is a trigger for migraine that may be important in situations including the hospital setting, religious and cultural fasting, and pregnancy. SUMMARY: There is not sufficient evidence to support universal guidelines for the use of dietary and medicinal caffeine in headache disorders. A sensible approach based upon available evidence is to limit dietary caffeine intake to moderate amounts with consistent timing before noon, and to use caffeine-containing combination analgesics infrequently for milder headache.


Asunto(s)
Cafeína , Estimulantes del Sistema Nervioso Central , Cafeína/uso terapéutico , Cafeína/farmacología , Cafeína/administración & dosificación , Humanos , Estimulantes del Sistema Nervioso Central/uso terapéutico , Trastornos de Cefalalgia/tratamiento farmacológico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 326(4): H950-H970, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334967

RESUMEN

Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.


Asunto(s)
Señalización del Calcio , Músculo Liso Vascular , Femenino , Masculino , Humanos , Señalización del Calcio/fisiología , Músculo Liso Vascular/metabolismo , Calcio/metabolismo , Andrógenos/metabolismo , Estrógenos/metabolismo , Caracteres Sexuales , Células Endoteliales/metabolismo , Cafeína/farmacología , Miocitos del Músculo Liso/metabolismo
19.
Biochem Biophys Res Commun ; 690: 149240, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988878

RESUMEN

Caffeine, a widely consumed stimulant, is known for its effects on alertness and fatigue reduction by blockade of adenosine receptors. While it holds therapeutic potential, its diverse impacts pose risks, particularly in early development. This study explores the developmental effects of caffeine exposure using Caenorhabditis elegans (C. elegans) as a model organism. We investigated morphological and behavioral changes induced by caffeine exposure at the L1 stage and assessed their impact at the L4 stage, which roughly corresponds to human infancy and adolescence, respectively. Caffeine-exposed worms displayed increased body length, body bends, and pharyngeal pumping rates compared to control worms. These findings indicate heightened food-seeking behavior and greater food intake, leading to the observed morphological changes. While caffeine did not affect other locomotor behaviors, its stimulatory effect on growth and development highlights its significance. This study provides insights into the potential impact of early-life caffeine exposure on long-term health and development, offering a foundation for future research in vertebrates to uncover its implications on metabolism and other metrics of health.


Asunto(s)
Proteínas de Caenorhabditis elegans , Cafeína , Animales , Humanos , Cafeína/farmacología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Receptores Purinérgicos P1
20.
BMC Med ; 22(1): 81, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378567

RESUMEN

BACKGROUND: Caffeine is one of the most utilized drugs in the world, yet its clinical effects are not fully understood. Circulating caffeine levels are influenced by the interplay between consumption behaviour and metabolism. This study aimed to investigate the effects of circulating caffeine levels by considering genetically predicted variation in caffeine metabolism. METHODS: Leveraging genetic variants related to caffeine metabolism that affect its circulating levels, we investigated the clinical effects of plasma caffeine in a phenome-wide association study (PheWAS). We validated novel findings using a two-sample Mendelian randomization framework and explored the potential mechanisms underlying these effects in proteome-wide and metabolome-wide Mendelian randomization. RESULTS: Higher levels of genetically predicted circulating caffeine among caffeine consumers were associated with a lower risk of obesity (odds ratio (OR) per standard deviation increase in caffeine = 0.97, 95% confidence interval (CI) CI: 0.95-0.98, p = 2.47 × 10-4), osteoarthrosis (OR = 0.97, 95% CI: 0.96-0.98, P=1.10 × 10-8) and osteoarthritis (OR: 0.97, 95% CI: 0.96 to 0.98, P = 1.09 × 10-6). Approximately one third of the protective effect of plasma caffeine on osteoarthritis risk was estimated to be mediated through lower bodyweight. Proteomic and metabolomic perturbations indicated lower chronic inflammation, improved lipid profiles, and altered protein and glycogen metabolism as potential biological mechanisms underlying these effects. CONCLUSIONS: We report novel evidence suggesting that long-term increases in circulating caffeine may reduce bodyweight and the risk of osteoarthrosis and osteoarthritis. We confirm prior genetic evidence of a protective effect of plasma caffeine on risk of overweight and obesity. Further clinical study is warranted to understand the translational relevance of these findings before clinical practice or lifestyle interventions related to caffeine consumption are introduced.


Asunto(s)
Cafeína , Osteoartritis , Humanos , Proteoma/genética , Análisis de la Aleatorización Mendeliana , Proteómica , Obesidad/epidemiología , Obesidad/genética , Metaboloma/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA