Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 37(3): 450-459, 2020 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-32597087

RESUMEN

Calnexin is a lectin-like molecular chaperone protein on the endoplasmic reticulum, mediating unfolded protein responses, the endoplasmic reticulum Ca 2+ homeostasis, and Ca 2+ signals conduction. In recent years, studies have found that calnexin plays a key role in the heart diseases. This study aims to explore the role of calnexin in the activation of cardiac fibroblasts. A transverse aortic constriction (TAC) mouse model was established to observe the activation of cardiac fibroblasts in vivo, and the in vitro cardiac fibroblasts activation model was established by transforming growth factor ß1 (TGFß1) stimulation. The adenovirus was respectively used to gene overexpression and silencing calnexin in cardiac fibroblasts to elucidate the relationship between calnexin and cardiac fibroblasts activation, as well as the possible underlying mechanism. We confirmed the establishment of TAC model by echocardiography, hematoxylin-eosin, Masson, and Sirius red staining, and detecting the expression of cardiac fibrosis markers in cardiac tissues. After TGFß1 stimulation, markers of the activation of cardiac fibroblast, and proliferation and migration of cardiac fibroblast were detected by quantitative PCR, Western blot, EdU assay, and wound healing assay respectively. The results showed that the calnexin expression was reduced in both the TAC mice model and the activated cardiac fibroblasts. The overexpression of calnexin relieved cardiac fibroblasts activation, in contrast, the silencing of calnexin promoted cardiac fibroblasts activation. Furthermore, we found that the endoplasmic reticulum stress was activated during cardiac fibroblasts activation, and endoplasmic reticulum stress was relieved after overexpression of calnexin. Conversely, after the silencing of calnexin, endoplasmic reticulum stress was further aggravated, accompanying with the activation of cardiac fibroblasts. Our data suggest that the overexpression of calnexin may prevent cardiac fibroblasts against activation by alleviating endoplasmic reticulum stress.


Asunto(s)
Calnexina , Fibroblastos , Corazón , Chaperonas Moleculares , Animales , Calnexina/fisiología , Estrés del Retículo Endoplásmico , Fibroblastos/fisiología , Corazón/fisiología , Ratones
2.
Glycobiology ; 25(10): 1090-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26085184

RESUMEN

Calnexin (CNX), known as a lectin chaperone located in the endoplasmic reticulum (ER), specifically recognizes G1M9GN2-proteins and facilitates their proper folding with the assistance of ERp57 in mammalian cells. However, it has been left unidentified how CNX works in Aspergillus oryzae, which is a filamentous fungus widely exploited in biotechnology. In this study, we found that a protein disulfide isomerase homolog TigA can bind with A. oryzae CNX (AoCNX), which was revealed to specifically recognize monoglucosylated glycans, similarly to CNX derived from other species, and accelerate the folding of G1M9GN2-ribonuclease (RNase) in vitro. For refolding experiments, a homogeneous monoglucosylated high-mannose-type glycoprotein G1M9GN2-RNase was chemoenzymatically synthesized from G1M9GN-oxazoline and GN-RNase. Denatured G1M9GN2-RNase was refolded with highest efficiency in the presence of both soluble form of AoCNX and TigA. TigA contains two thioredoxin domains with CGHC motif, mutation analysis of which revealed that the one in N-terminal regions is involved in binding to AoCNX, while the other in catalyzing protein refolding. The results suggested that in glycoprotein folding process of A. oryzae, TigA plays a similar role as ERp57 in mammalian cells, as a partner protein of AoCNX.


Asunto(s)
Aspergillus oryzae/metabolismo , Calnexina/fisiología , Proteínas Fúngicas/fisiología , Glicoproteínas/fisiología , Proteínas de Choque Térmico/fisiología , Secuencia de Carbohidratos , Proteínas Fúngicas/química , Glicoproteínas/química , Glicosilación , Proteínas de Choque Térmico/química , Cinética , Datos de Secuencia Molecular , Unión Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
3.
FASEB J ; 25(11): 3929-37, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21831887

RESUMEN

Peripheral myelin protein 22 (PMP22) and protein 0 (P0) are major peripheral myelin glycoproteins, and mutations in these two proteins are associated with hereditary demyelinating peripheral neuropathies. Calnexin, calreticulin, and ERp57 are critical components of protein quality control responsible for proper folding of newly synthesized glycoproteins. Here, using confocal microscopy, we show that cell surface targeting of P0 and PMP22 is not affected in the absence of the endoplasmic reticulum chaperones. However, the folding and function (adhesiveness) of PMP22 and P0, measured using the adhesion assay, are affected significantly in the absence of calnexin but not in the absence of calreticulin. Deficiency in oxidoreductase ERp57 results in impaired folding and function of P0, a disulfide bond-containing protein, but does not have any effect on folding or function of PMP22 (a protein that does not contain a disulfide bond). We concluded that calnexin and ERp57, but not calreticulin, play an important role in the biology of peripheral myelin proteins PMP22 and P0, and, consequently, these chaperones may contribute to the pathogenesis of peripheral neuropathies and the diversity of these neurological disorders.


Asunto(s)
Calnexina/fisiología , Retículo Endoplásmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteína P0 de la Mielina/química , Proteínas de la Mielina/química , Proteína Disulfuro Isomerasas/fisiología , Animales , Calnexina/deficiencia , Calreticulina/deficiencia , Células HEK293 , Humanos , Ratones , Proteína Disulfuro Isomerasas/deficiencia , Pliegue de Proteína
4.
J Biol Chem ; 285(24): 18928-38, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20400506

RESUMEN

Calnexin is a molecular chaperone and a component of the quality control of the secretory pathway. We have generated calnexin gene-deficient mice (cnx(-/-)) and showed that calnexin deficiency leads to myelinopathy. Calnexin-deficient mice were viable with no discernible effects on other systems, including immune function, and instead they demonstrated dysmyelination as documented by reduced conductive velocity of nerve fibers and electron microscopy analysis of sciatic nerve and spinal cord. Myelin of the peripheral and central nervous systems of cnx(-/-) mice was disorganized and decompacted. There were no abnormalities in neuronal growth, no loss of neuronal fibers, and no change in fictive locomotor pattern in the absence of calnexin. This work reveals a previously unrecognized and important function of calnexin in myelination and provides new insights into the mechanisms responsible for myelin diseases.


Asunto(s)
Calnexina/genética , Calnexina/fisiología , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Animales , Animales Recién Nacidos , Calnexina/metabolismo , Membrana Celular/metabolismo , Electrofisiología/métodos , Retículo Endoplásmico/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pliegue de Proteína , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Médula Espinal/metabolismo , Médula Espinal/ultraestructura
5.
Front Immunol ; 12: 757669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603342

RESUMEN

The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and ß-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another ß-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.


Asunto(s)
Calnexina/fisiología , Inflamación/metabolismo , Interleucinas/fisiología , Antígenos de Histocompatibilidad Menor/fisiología , Chaperonas Moleculares/fisiología , Dimerización , Glicoproteínas/química , Humanos , Interleucinas/química , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Subunidades de Proteína , Receptores de Interleucina/química
6.
Neuron ; 49(2): 229-41, 2006 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-16423697

RESUMEN

In sensory neurons, successful maturation of signaling molecules and regulation of Ca2+ are essential for cell function and survival. Here, we demonstrate a multifunctional role for calnexin as both a molecular chaperone uniquely required for rhodopsin maturation and a regulator of Ca2+ that enters photoreceptor cells during light stimulation. Mutations in Drosophila calnexin lead to severe defects in rhodopsin (Rh1) expression, whereas other photoreceptor cell proteins are expressed normally. Mutations in calnexin also impair the ability of photoreceptor cells to control cytosolic Ca2+ levels following activation of the light-sensitive TRP channels. Finally, mutations in calnexin lead to retinal degeneration that is enhanced by light, suggesting that calnexin's function as a Ca2+ buffer is important for photoreceptor cell survival. Our results illustrate a critical role for calnexin in Rh1 maturation and Ca2+ regulation and provide genetic evidence that defects in calnexin lead to retinal degeneration.


Asunto(s)
Señalización del Calcio/fisiología , Calnexina/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsina/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Northern Blotting , Calcio/metabolismo , Supervivencia Celular/fisiología , Cromatografía de Afinidad , ADN/biosíntesis , ADN/genética , Drosophila , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Luz , Microscopía Electrónica , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutación/genética , Mutación/fisiología , Técnicas de Placa-Clamp , Células Fotorreceptoras de Invertebrados/citología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Rodopsina/biosíntesis , Rodopsina/genética
7.
Biochim Biophys Acta ; 1783(9): 1585-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18457676

RESUMEN

Cystic fibrosis (CF) is caused by the mutation in CF transmembrane conductance regulator (CFTR), a cAMP-dependent Cl(-) channel at the plasma membrane of epithelium. The most common mutant, DeltaF508 CFTR, has competent Cl(-) channel function, but fails to express at the plasma membrane since it is retained in the endoplasmic reticulum (ER) by the ER quality control system. Here, we show that calnexin (CNX) is not necessary for the ER retention of DeltaF508 CFTR. Our data show that CNX knockout (KO) does not affect the biosynthetic processing, cellular localization or the Cl(-) channel function of DeltaF508 CFTR. Importantly, cAMP-induced Cl(-) current in colonic epithelium from CNX KO/DeltaF508 CFTR mice was comparable with that of DeltaF508 CFTR mice, indicating that CNX KO failed to rescue the ER retention of DeltaF508 CFTR in vivo. Moreover, we show that CNX assures the efficient expression of WT CFTR, but not DeltaF508 CFTR, by inhibiting the proteasomal degradation, indicating that CNX might stimulate the productive folding of WT CFTR, but not DeltaF508 CFTR, which has folding defects.


Asunto(s)
Calnexina/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Retículo Endoplásmico/metabolismo , Animales , Calnexina/genética , Línea Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Epitelio/fisiología , Ratones , Ratones Noqueados , Pliegue de Proteína , Eliminación de Secuencia
8.
Mol Ther ; 16(2): 269-79, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18071334

RESUMEN

The key to successful cancer immunotherapy is to induce an effective anticancer immunity that will overcome the acquired cancer-specific immune tolerance. In this study, we found that dendritic cells (DCs) from multiple myeloma (MM) patients suppressed rather than induced a cancer cell-specific immune response. We demonstrated that CD4(+)CD25(high) T cells from MM patients suppressed the proliferation of activated peripheral blood lymphocytes. Further analysis illustrated that MM cell lysates or MM-specific idiotype immunoglobulins (MM Id-Ig) specifically induced the expansion of peripheral CD4(+)CD25(high)FoxP3(high) T regulatory (Treg) cells in vitro. Supraphysiological expression of calnexin (CNX) using lentiviral (LV) vectors in DCs of MM patients overcame the immune suppression and enhanced MM-specific CD4 and CD8 T-cell responses. However, overexpression of CNX did not affect the peripheral expansion of Treg cells stimulated by MM antigens. Thus, the immune suppression effect of Treg cells in cancer patients may be overcome by improving antigen processing in DCs, which in turn may lower the activation threshold of the immune effector cells. This concept of modulating anticancer immunity by genetically engineering cancer patients' DCs may improve immunotherapeutic regimens in cancer treatment.


Asunto(s)
Calnexina/fisiología , Células Dendríticas/inmunología , Tolerancia Inmunológica/inmunología , Mieloma Múltiple/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , Western Blotting , Antígenos CD4/inmunología , Antígenos CD4/metabolismo , Calnexina/genética , Proliferación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Idiotipos de Inmunoglobulinas/genética , Idiotipos de Inmunoglobulinas/inmunología , Idiotipos de Inmunoglobulinas/metabolismo , Subunidad alfa del Receptor de Interleucina-2/inmunología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Lentivirus/genética , Modelos Genéticos , Datos de Secuencia Molecular , Mieloma Múltiple/patología , Alineación de Secuencia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
9.
Trends Biochem Sci ; 28(1): 49-57, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12517452

RESUMEN

Glycan moieties are essential for folding, sorting and targeting of glycoproteins through the secretory pathway to various cellular compartments. The molecular mechanisms that underlie these processes, however, are only now coming to light. Recent crystallographic and NMR studies of proteins located in the endoplasmic reticulum (ER), Golgi complex and ER-Golgi intermediate compartment have illuminated their roles in glycoprotein folding and secretion. Calnexin and calreticulin, both ER-resident proteins, have lectin domains that are crucial for their function as chaperones. The crystal structure of the carbohydrate-recognition domain of ER-Golgi intermediate compartment (ERGIC)-53 complements the biochemical and functional characterization of the protein, confirming that a lectin domain is essential for the role of this protein in sorting and transfer of glycoproteins from the ER to the Golgi complex. The lectin domains of calnexin and ERGIC-53 are structurally similar, although there is little primary sequence similarity. By contrast, sequence similarity between ERGIC-53 and vesicular integral membrane protein (VIP36), a Golgi-resident protein, leaves little doubt that a similar lectin domain is central to the transport and/or sorting functions of VIP36. The theme emerging from these studies is that carbohydrate recognition and modification are central to mediation of glycoprotein folding and secretion.


Asunto(s)
Lectinas/fisiología , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Calnexina/química , Calnexina/fisiología , Calreticulina/química , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Conformación Proteica , Transporte de Proteínas , Homología de Secuencia de Aminoácido
10.
Cell Death Differ ; 14(3): 586-96, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16858427

RESUMEN

The endoplasmic reticulum (ER) has evolved specific mechanisms to ensure protein folding as well as the maintenance of its own homeostasis. When these functions are not achieved, specific ER stress signals are triggered to activate either adaptive or apoptotic responses. Here, we demonstrate that MCF-7 cells are resistant to tunicamycin-induced apoptosis. We show that the expression level of the ER chaperone calnexin can directly influence tunicamycin sensitivity in this cell line. Interestingly, the expression of a calnexin lacking the chaperone domain (DeltaE) partially restores their sensitivity to tunicamycin-induced apoptosis. Indeed, we show that DeltaE acts as a scaffold molecule to allow the cleavage of Bap31 and thus generate the proapoptotic p20 fragment. Utilizing the ability of MCF-7 cells to resist tunicamycin-induced apoptosis, we have characterized a molecular mechanism by which calnexin regulates ER-stress-mediated apoptosis in a manner independent of its chaperone functions but dependent of its binding to Bap31.


Asunto(s)
Neoplasias de la Mama/metabolismo , Calnexina/metabolismo , Carcinoma/metabolismo , Regulación Neoplásica de la Expresión Génica , Tunicamicina/farmacología , Secuencia de Aminoácidos , Apoptosis , Calnexina/genética , Calnexina/fisiología , Caspasa 3/metabolismo , Línea Celular Tumoral , Células Clonales , Resistencia a Antineoplásicos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Activación Enzimática , Humanos , Datos de Secuencia Molecular
11.
Mol Cell Biol ; 25(9): 3690-703, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15831474

RESUMEN

Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPalpha promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants.


Asunto(s)
Proteínas Tirosina Fosfatasas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Tirosina/metabolismo , Animales , Calnexina/fisiología , Línea Celular , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Humanos , Fosforilación , Pliegue de Proteína , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas Tirosina Quinasas Receptoras/análisis , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Tirosina Quinasa 3 Similar a fms
12.
Cell Mol Biol Lett ; 13(1): 38-48, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17952377

RESUMEN

We cultured calnexin-disrupted and wild-type Saccharomyces cerevisiae strains under conditions of heat stress. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced mRNA level of the molecular chaperone PDI in the ER was clearly higher in calnexin-disrupted S. cerevisiae relative to the wild type at 37 degrees C, despite being almost the same in the two strains under normal conditions. The western blotting analysis for PDI protein expression in the ER yielded results that show a parallel in their mRNA levels in the two strains. We suggest that PDI may interact with calnexin under heat stress conditions, and that the induction of PDI in the ER can recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.


Asunto(s)
Calnexina/genética , Calor , Proteína Disulfuro Isomerasas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Eliminación de Secuencia/genética , Calnexina/deficiencia , Calnexina/fisiología , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Chaperonas Moleculares/genética , Proteína Disulfuro Isomerasas/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética
13.
Mol Cell Biol ; 22(21): 7398-404, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12370287

RESUMEN

Calnexin is a ubiquitously expressed type I membrane protein which is exclusively localized in the endoplasmic reticulum (ER). In mammalian cells, calnexin functions as a chaperone molecule and plays a key role in glycoprotein folding and quality control within the ER by interacting with folding intermediates via their monoglucosylated glycans. In order to gain more insight into the physiological roles of calnexin, we have generated calnexin gene-deficient mice. Despite its profound involvement in protein folding, calnexin is not essential for mammalian-cell viability in vivo: calnexin gene knockout mice were carried to full term, although 50% died within 48 h and the majority of the remaining mice had to be sacrificed within 4 weeks, with only a very few mice surviving to 3 months. Calnexin gene-deficient mice were smaller than their littermates and showed very obvious motor disorders, associated with a dramatic loss of large myelinated nerve fibers. Thus, the critical contribution of calnexin to mammalian physiology is tissue specific.


Asunto(s)
Calnexina/genética , Calnexina/fisiología , Neuronas Motoras/patología , Fibras Nerviosas Mielínicas/patología , Alelos , Animales , Animales Recién Nacidos , Supervivencia Celular , Embrión de Mamíferos/citología , Retículo Endoplásmico/metabolismo , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Modelos Genéticos , Chaperonas Moleculares , Vaina de Mielina/patología , Fenotipo , Pliegue de Proteína , Recombinación Genética , Células Madre/citología , Factores de Tiempo , Transfección
14.
Mol Biol Cell ; 15(5): 2133-42, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14978212

RESUMEN

The thiol oxidoreductase endoplasmic reticulum (ER)p57 interacts with newly synthesized glycoproteins through ternary complexes with the chaperones/lectins calnexin or calreticulin. On proteasomal inhibition calnexin and calreticulin concentrate in the pericentriolar endoplasmic reticulum-derived quality control compartment that we recently described. Surprisingly, ERp57 remained in an endoplasmic reticulum pattern. Using asialoglycoprotein receptor H2a and H2b as models, we determined in pulse-chase experiments that both glycoproteins initially bind to calnexin and ERp57. However, H2b, which will exit to the Golgi, dissociated from calnexin and remained bound for a longer period to ERp57, whereas the opposite was true for the endoplasmic reticulum-associated degradation substrate H2a that will go to the endoplasmic reticulum-derived quality control compartment. At 15 degrees C, ERp57 colocalized with H2b adjacent to an endoplasmic reticulum-Golgi intermediate compartment marker. Posttranslational inhibition of glucose excision prolonged association of H2a precursor to calnexin but not to ERp57. Preincubation with a low concentration (15 microg/ml) of the glucosidase inhibitor castanospermine prevented the association of H2a to ERp57 but not to calnexin. This low concentration of castanospermine accelerated the degradation of H2a, suggesting that ERp57 protects the glycoprotein from degradation and not calnexin. Our results suggest an early chaperone-mediated sorting event with calnexin being involved in the quality control retention of molecules bound for endoplasmic reticulum-associated degradation and ERp57 giving initial protection from degradation and later assisting the maturation of molecules that will exit to the Golgi.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Calnexina/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/fisiología , Isomerasas/fisiología , Animales , Calnexina/metabolismo , Glucosa/análisis , Glucosa/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/metabolismo , Indolizinas/farmacología , Isomerasas/antagonistas & inhibidores , Isomerasas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Células 3T3 NIH , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Proteína Disulfuro Isomerasas , Transporte de Proteínas
15.
Immunol Res ; 35(1-2): 151-62, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17003517

RESUMEN

MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.


Asunto(s)
Retículo Endoplásmico/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Calnexina/fisiología , Calreticulina/fisiología , Proteínas de Choque Térmico/fisiología , Humanos , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Ratones , Conformación Proteica , Proteína Disulfuro Isomerasas/fisiología
16.
Int Rev Cytol ; 245: 91-121, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16125546

RESUMEN

Glycosylated proteins destined for the cell surface or to be secreted from the cell are trafficked through the endoplasmic reticulum during synthesis and folding. Correct folding is determined in large part by the sequence of the protein, but it is also assisted by interaction with enzymes and chaperones of the endoplasmic reticulum. Calreticulin, calnexin, and ERp57 are among the endoplasmic chaperones that interact with partially folded glycoproteins and determine if the proteins are to be released from the endoplasmic reticulum to be expressed, or alternatively, if they are to be sent to the proteosome for degradation. Studies on the effect of alterations in the expression and function of these proteins are providing information about the importance of this quality control system, as well as uncovering other important functions these proteins play outside of the endoplasmic reticulum.


Asunto(s)
Calnexina/fisiología , Calreticulina/fisiología , Retículo Endoplásmico/metabolismo , Proteínas de Choque Térmico/fisiología , Chaperonas Moleculares/fisiología , Proteína Disulfuro Isomerasas/fisiología , Animales , Biodegradación Ambiental , Glicosilación , Humanos , Pliegue de Proteína , Transporte de Proteínas
17.
Biochem J ; 380(Pt 2): 441-8, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-14984369

RESUMEN

Folding of newly synthesized proteins within the ER (endoplasmic reticulum) is a rate-limiting step in protein secretion. Thus ER molecular chaperones and foldases have a major impact in determining the rate and yield of these crucial cellular processes. Calnexin is a key ER chaperone implicated in the folding, retention and targeting for degradation of proteins that go through the secretory pathway. Calnexin molecules contain a highly conserved central domain (hcd) that has been proposed to be involved in the interaction with folding substrates and other chaperones. To gain a better understanding of the roles played by calnexin in the secretory pathway, we examined the efficiency of fission yeast (Schizosaccharomyces pombe) strains expressing calnexin mutants to secrete different model proteins. Remarkably, calnexin hcd-deletion mutants, although devoid of detectable chaperone activity in vitro, confer viability and cause a considerable increase in the secretion of heterologous cellulase. Surprisingly the quality-control efficiency, measured as the activity/amount ratio of secreted model protein, was not severely reduced in these calnexin hcd-deletion mutant strains. Our results indicate that the essential function of calnexin does not reside in its role in the folding or in the retention of misfolded proteins. These observations suggest the existence of a highly stringent quality control mechanism in the ER of S. pombe that might reduce the secretion efficiency of endogenous proteins.


Asunto(s)
Calnexina/fisiología , Chaperonas Moleculares/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Calnexina/química , Celulasa/química , Celulasa/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Mutación/fisiología , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/citología , Especificidad de la Especie
18.
Dev Comp Immunol ; 46(2): 356-63, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24858031

RESUMEN

Calnexin (Cnx) is an endoplasmic reticulum membrane-bound lectin chaperone that comprises a dedicated maturation system with another lectin chaperone calreticulin (Crt). This maturation system is known as the Cnx/Crt cycle. The main functions of Cnx are Ca(2+) storage, glycoprotein folding, and quality control of synthesis. Recent studies have shown that Cnx is important in phagocytosis and in optimizing dendritic cell immunity. However, the functions of Cnx in invertebrate innate immunity remain unclear. In this research, we characterized Cnx in the kuruma shrimp Marsupenaeus japonicus (designated as MjCnx) and detected its function in shrimp immunity. The expression of MjCnx was upregulated in several tissues challenged with Vibrio anguillarum. Recombinant MjCnx could bind to bacteria by binding polysaccharides. MjCnx protein existed in the cytoplasm and on the membrane of hemocytes and was upregulated by bacterial challenge. The recombinant MjCnx enhanced the clearance of V. anguillarum in vivo, and the clearance effects were impaired after silencing MjCnx with RNA interference assay. Recombinant MjCnx promoted phagocytosis efficiency of hemocytes. These results suggest that MjCnx functions as one of the pattern recognition receptors and has crucial functions in shrimp antibacterial immunity.


Asunto(s)
Proteínas de Artrópodos/fisiología , Calnexina/fisiología , Inmunidad Innata , Penaeidae/inmunología , Animales , Proteínas de Artrópodos/química , Bacillus/inmunología , Calnexina/química , Células Cultivadas , Expresión Génica/inmunología , Hemocitos/inmunología , Hemocitos/microbiología , Micrococcus/inmunología , Penaeidae/metabolismo , Penaeidae/microbiología , Fagocitosis , Filogenia , Polisacáridos Bacterianos/química , Unión Proteica , Transporte de Proteínas , Staphylococcus aureus/inmunología , Vibrio/inmunología
19.
Diabetes ; 60(8): 2041-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21646389

RESUMEN

OBJECTIVE: In diabetes, when glucose consumption is restricted, the heart adapts to use fatty acid (FA) exclusively. The majority of FA provided to the heart comes from the breakdown of circulating triglyceride (TG), a process catalyzed by lipoprotein lipase (LPL) located at the vascular lumen. The objective of the current study was to determine the mechanisms behind LPL processing and breakdown after moderate and severe diabetes. RESEARCH DESIGN AND METHODS: To induce acute hyperglycemia, diazoxide, a selective, ATP-sensitive K(+) channel opener was used. For chronic diabetes, streptozotocin, a ß-cell-specific toxin was administered at doses of 55 or 100 mg/kg to generate moderate and severe diabetes, respectively. Cardiac LPL processing into active dimers and breakdown at the vascular lumen was investigated. RESULTS: After acute hyperglycemia and moderate diabetes, more LPL is processed into an active dimeric form, which involves the endoplasmic reticulum chaperone calnexin. Severe diabetes results in increased conversion of LPL into inactive monomers at the vascular lumen, a process mediated by FA-induced expression of angiopoietin-like protein 4 (Angptl-4). CONCLUSIONS: In acute hyperglycemia and moderate diabetes, exaggerated LPL processing to dimeric, catalytically active enzyme increases coronary LPL, delivering more FA to the heart when glucose utilization is compromised. In severe chronic diabetes, to avoid lipid oversupply, FA-induced expression of Angptl-4 leads to conversion of LPL to inactive monomers at the coronary lumen to impede TG hydrolysis. Results from this study advance our understanding of how diabetes changes coronary LPL, which could contribute to cardiovascular complications seen with this disease.


Asunto(s)
Diabetes Mellitus Experimental/enzimología , Ácidos Grasos no Esterificados/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/biosíntesis , Animales , Calnexina/fisiología , Diazóxido , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Lipoproteína Lipasa/metabolismo , Masculino , Miocardio/metabolismo , Multimerización de Proteína , Ratas , Ratas Wistar , Estreptozocina
20.
PLoS One ; 6(12): e28865, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22163332

RESUMEN

Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER) that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.


Asunto(s)
Aspergillus fumigatus/metabolismo , Calnexina/química , Calnexina/fisiología , Proteínas Fúngicas/fisiología , Lectinas/química , Animales , Calnexina/genética , Cationes , Medios de Cultivo/farmacología , Cartilla de ADN/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Femenino , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Inmunosupresores/uso terapéutico , Ratones , Reacción en Cadena de la Polimerasa/métodos , Pliegue de Proteína , Temperatura , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA