Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.820
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 163(6): 1348-59, 2015 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627734

RESUMEN

Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.


Asunto(s)
Oído Interno/crecimiento & desarrollo , Células Ciliadas Auditivas/citología , Adenosina Trifosfato/metabolismo , Animales , Anoctamina-1 , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Oído Interno/citología , Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/metabolismo , Ratones , Ratones Noqueados , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/metabolismo
2.
Nat Immunol ; 17(5): 538-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27043413

RESUMEN

Acidic mammalian chitinase (AMCase) is known to be induced by allergens and helminths, yet its role in immunity is unclear. Using AMCase-deficient mice, we show that AMCase deficiency reduced the number of group 2 innate lymphoid cells during allergen challenge but was not required for establishment of type 2 inflammation in the lung in response to allergens or helminths. In contrast, AMCase-deficient mice showed a profound defect in type 2 immunity following infection with the chitin-containing gastrointestinal nematodes Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. The impaired immunity was associated with reduced mucus production and decreased intestinal expression of the signature type 2 response genes Il13, Chil3, Retnlb, and Clca1. CD103(+) dendritic cells, which regulate T cell homing, were also reduced in mesenteric lymph nodes of infected AMCase-deficient mice. Thus, AMCase functions as a critical initiator of protective type 2 responses to intestinal nematodes but is largely dispensable for allergic responses in the lung.


Asunto(s)
Quitinasas/inmunología , Tracto Gastrointestinal/inmunología , Inmunidad/inmunología , Infecciones por Strongylida/inmunología , Animales , Quitinasas/genética , Quitinasas/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/inmunología , Canales de Cloruro/metabolismo , Citometría de Flujo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/parasitología , Expresión Génica/inmunología , Hormonas Ectópicas/genética , Hormonas Ectópicas/inmunología , Hormonas Ectópicas/metabolismo , Interacciones Huésped-Parásitos/inmunología , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Inmunidad/genética , Péptidos y Proteínas de Señalización Intercelular , Interleucina-13/genética , Interleucina-13/inmunología , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Nematospiroides dubius/inmunología , Nematospiroides dubius/fisiología , Nippostrongylus/inmunología , Nippostrongylus/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/parasitología , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/inmunología , beta-N-Acetilhexosaminidasas/metabolismo
3.
EMBO J ; 42(24): e115030, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37984335

RESUMEN

Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.


Asunto(s)
Canales de Cloruro , Activación del Canal Iónico , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Anoctamina-1/genética , Anoctamina-1/química , Anoctamina-1/metabolismo , Ligandos , Microscopía por Crioelectrón , Sitios de Unión , Calcio/metabolismo
4.
Nature ; 591(7849): 327-331, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597752

RESUMEN

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/ultraestructura , Animales , Encéfalo/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/ultraestructura , Cloruros/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Femenino , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Mutación , Oocitos , Conformación Proteica , Xenopus laevis
5.
J Cell Sci ; 137(4)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38294065

RESUMEN

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Asunto(s)
Proteínas de la Membrana , Microglía , Animales , Microglía/metabolismo , Proteínas de la Membrana/metabolismo , Cloruros/metabolismo , Pez Cebra/metabolismo , Protones , Fagocitos/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo
6.
PLoS Pathog ; 20(5): e1012245, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768235

RESUMEN

Albendazole (a benzimidazole) and ivermectin (a macrocyclic lactone) are the two most commonly co-administered anthelmintic drugs in mass-drug administration programs worldwide. Despite emerging resistance, we do not fully understand the mechanisms of resistance to these drugs nor the consequences of delivering them in combination. Albendazole resistance has primarily been attributed to variation in the drug target, a beta-tubulin gene. Ivermectin targets glutamate-gated chloride channels (GluCls), but it is unknown whether GluCl genes are involved in ivermectin resistance in nature. Using Caenorhabditis elegans, we defined the fitness costs associated with loss of the drug target genes singly or in combinations of the genes that encode GluCl subunits. We quantified the loss-of-function effects on three traits: (i) multi-generational competitive fitness, (ii) fecundity, and (iii) development. In competitive fitness and development assays, we found that a deletion of the beta-tubulin gene ben-1 conferred albendazole resistance, but ivermectin resistance required the loss of two GluCl genes (avr-14 and avr-15). The fecundity assays revealed that loss of ben-1 did not provide any fitness benefit in albendazole conditions and that no GluCl deletion mutants were resistant to ivermectin. Next, we searched for evidence of multi-drug resistance across the three traits. Loss of ben-1 did not confer resistance to ivermectin, nor did loss of any single GluCl subunit or combination confer resistance to albendazole. Finally, we assessed the development of 124 C. elegans wild strains across six benzimidazoles and seven macrocyclic lactones to identify evidence of multi-drug resistance between the two drug classes and found a strong phenotypic correlation within a drug class but not across drug classes. Because each gene affects various aspects of nematode physiology, these results suggest that it is necessary to assess multiple fitness traits to evaluate how each gene contributes to anthelmintic resistance.


Asunto(s)
Antihelmínticos , Caenorhabditis elegans , Resistencia a Medicamentos , Ivermectina , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Antihelmínticos/farmacología , Resistencia a Medicamentos/genética , Ivermectina/farmacología , Alelos , Aptitud Genética/efectos de los fármacos , Albendazol/farmacología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Selección Genética
7.
J Biol Chem ; 300(7): 107437, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838776

RESUMEN

Together with its ß-subunit OSTM1, ClC-7 performs 2Cl-/H+ exchange across lysosomal membranes. Pathogenic variants in either gene cause lysosome-related pathologies, including osteopetrosis and lysosomal storage. CLCN7 variants can cause recessive or dominant disease. Different variants entail different sets of symptoms. Loss of ClC-7 causes osteopetrosis and mostly neuronal lysosomal storage. A recently reported de novo CLCN7 mutation (p.Tyr715Cys) causes widespread severe lysosome pathology (hypopigmentation, organomegaly, and delayed myelination and development, "HOD syndrome"), but no osteopetrosis. We now describe two additional HOD individuals with the previously described p.Tyr715Cys and a novel p.Lys285Thr mutation, respectively. Both mutations decreased ClC-7 inhibition by PI(3,5)P2 and affected residues lining its binding pocket, and shifted voltage-dependent gating to less positive potentials, an effect partially conferred to WT subunits in WT/mutant heteromers. This shift predicts augmented pH gradient-driven Cl- uptake into vesicles. Overexpressing either mutant induced large lysosome-related vacuoles. This effect depended on Cl-/H+-exchange, as shown using mutants carrying uncoupling mutations. Fibroblasts from the p.Y715C patient also displayed giant vacuoles. This was not observed with p.K285T fibroblasts probably due to residual PI(3,5)P2 sensitivity. The gain of function caused by the shifted voltage-dependence of either mutant likely is the main pathogenic factor. Loss of PI(3,5)P2 inhibition will further increase current amplitudes, but may not be a general feature of HOD. Overactivity of ClC-7 induces pathologically enlarged vacuoles in many tissues, which is distinct from lysosomal storage observed with the loss of ClC-7 function. Osteopetrosis results from a loss of ClC-7, but osteoclasts remain resilient to increased ClC-7 activity.


Asunto(s)
Canales de Cloruro , Enfermedades por Almacenamiento Lisosomal , Lisosomas , Humanos , Masculino , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Mutación con Ganancia de Función , Células HEK293 , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/metabolismo , Lisosomas/genética , Proteínas de la Membrana , Mutación Missense , Fosfatos de Fosfatidilinositol/metabolismo , Ubiquitina-Proteína Ligasas , Vacuolas/metabolismo , Vacuolas/genética , Vacuolas/patología
8.
J Biol Chem ; 300(7): 107432, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825009

RESUMEN

The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.


Asunto(s)
Anoctaminas , Canales de Cloruro , Humanos , Anoctamina-1/metabolismo , Anoctamina-1/genética , Anoctaminas/metabolismo , Anoctaminas/genética , Anoctaminas/química , Calcio/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Cloruros/metabolismo , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Dominios Proteicos
9.
J Biol Chem ; 300(10): 107779, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39276933

RESUMEN

Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury. Chloride voltage-gated channel seven (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the spinal dorsal horns and in small- and medium-sized neurons located in the DRGs of spared nerve injury mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating neuropathic pain.


Asunto(s)
Canales de Cloruro , Regulación hacia Abajo , Ganglios Espinales , Hiperalgesia , Animales , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/genética , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ratones , Masculino , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/genética , Neuralgia/metabolismo , Neuralgia/patología , Neuralgia/genética , Ratones Endogámicos C57BL
10.
Physiol Rev ; 98(3): 1493-1590, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29845874

RESUMEN

CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory ß-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl- channels, whereas ClC-3 through ClC-7 are 2Cl-/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl- channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.


Asunto(s)
Canales de Cloruro/metabolismo , Animales , Canales de Cloruro/química , Canales de Cloruro/genética , Sordera/genética , Endocitosis , Endosomas/metabolismo , Humanos , Riñón/metabolismo , Enfermedades Renales/genética , Músculo Esquelético/metabolismo , Mutación , Miotonía/genética , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Osteopetrosis/genética
11.
PLoS Pathog ; 19(3): e1011188, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36917600

RESUMEN

Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.


Asunto(s)
Copépodos , Parásitos , Phthiraptera , Animales , Ivermectina/farmacología , Ivermectina/metabolismo , Phthiraptera/metabolismo , Parásitos/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ácido Glutámico/farmacología
12.
Ann Neurol ; 96(3): 608-624, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38877824

RESUMEN

OBJECTIVE: The aim of this study was to explore the pathogenesis of CLCN6-related disease and to assess whether its Cl-/H+-exchange activity is crucial for the biological role of ClC-6. METHODS: We performed whole-exome sequencing on a girl with development delay, intractable epilepsy, behavioral abnormities, retinal dysfunction, progressive brain atrophy, suggestive of neuronal ceroid lipofuscinoses (NCLs). We generated and analyzed the first knock-in mouse model of a patient variant (p.E200A) and compared it with a Clcn6-/- mouse model. Additional functional tests were performed with heterologous expression of mutant ClC-6. RESULTS: We identified a de novo heterozygous p.E200A variant in the proband. Expression of disease-causing ClC-6E200A or ClC-6Y553C mutants blocked autophagic flux and activated transcription factors EB (TFEB) and E3 (TFE3), leading to autophagic vesicle and cholesterol accumulation. Such alterations were absent with a transport-deficient ClC-6E267A mutant. Clcn6E200A/+ mice developed severe neurodegeneration with typical features of NCLs. Mutant ClC-6E200A, but not loss of ClC-6 in Clcn6-/- mice, increased lysosomal biogenesis by suppressing mTORC1-TFEB signaling, blocked autophagic flux through impairing lysosomal function, and increased apoptosis. Carbohydrate and lipid deposits accumulated in Clcn6E200A/+ brain, while only lipid storage was found in Clcn6-/- brain. Lysosome dysfunction, autophagy defects, and gliosis were early pathogenic events preceding neuron loss. INTERPRETATION: CLCN6 is a novel genetic cause of NCLs, highlighting the importance of considering CLCN6 mutations in the diagnostic workup for molecularly undefined forms of NCLs. Uncoupling of Cl- transport from H+ countertransport in the E200A mutant has a dominant effect on the autophagic/lysosomal pathway. ANN NEUROL 2024;96:608-624.


Asunto(s)
Canales de Cloruro , Modelos Animales de Enfermedad , Mutación , Lipofuscinosis Ceroideas Neuronales , Animales , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Canales de Cloruro/genética , Ratones , Femenino , Humanos , Mutación/genética , Autofagia/genética , Secuenciación del Exoma , Proteínas de la Membrana
13.
Stem Cells ; 42(10): 902-913, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39097775

RESUMEN

It has been documented that caspase 3 activity is necessary for skeletal muscle regeneration, but how its activity is regulated is largely unknown. Our previous report shows that intracellular TMEM16A, a calcium activated chloride channel, significantly regulates caspase 3 activity in myoblasts during skeletal muscle development. By using a mouse line with satellite cell (SC)-specific deletion of TMEM16A, we examined the role of TMEM16A in regulating caspase 3 activity in SC (or SC-derived myoblast) as well as skeletal muscle regeneration. The mutant animals displayed apparently impaired regeneration capacity in adult muscle along with enhanced ER stress and elevated caspase 3 activity in Tmem16a-/- SC derived myoblasts. Blockade of either excessive ER stress or caspase 3 activity by small molecules significantly restored the inhibited myogenic differentiation of Tmem16a-/- SCs, indicating that excessive caspase 3 activity resulted from TMEM16A deletion contributes to the impaired muscle regeneration and the upstream regulator of caspase 3 was ER stress. Our results revealed an essential role of TMEM16A in satellite cell-mediated skeletal muscle regeneration by ensuring a moderate level of caspase 3 activity.


Asunto(s)
Anoctamina-1 , Caspasa 3 , Canales de Cloruro , Estrés del Retículo Endoplásmico , Músculo Esquelético , Regeneración , Células Satélite del Músculo Esquelético , Animales , Células Satélite del Músculo Esquelético/metabolismo , Regeneración/fisiología , Caspasa 3/metabolismo , Músculo Esquelético/metabolismo , Ratones , Anoctamina-1/metabolismo , Anoctamina-1/genética , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Ratones Noqueados , Diferenciación Celular
14.
Mol Cell ; 68(3): 479-490.e5, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056323

RESUMEN

Transcription of expanded microsatellite repeats is associated with multiple human diseases, including myotonic dystrophy, Fuchs endothelial corneal dystrophy, and C9orf72-ALS/FTD. Reducing production of RNA and proteins arising from these expanded loci holds therapeutic benefit. Here, we tested the hypothesis that deactivated Cas9 enzyme impedes transcription across expanded microsatellites. We observed a repeat length-, PAM-, and strand-dependent reduction of repeat-containing RNAs upon targeting dCas9 directly to repeat sequences; targeting the non-template strand was more effective. Aberrant splicing patterns were rescued in DM1 cells, and production of RAN peptides characteristic of DM1, DM2, and C9orf72-ALS/FTD cells was drastically decreased. Systemic delivery of dCas9/gRNA by adeno-associated virus led to reductions in pathological RNA foci, rescue of chloride channel 1 protein expression, and decreased myotonia. These observations suggest that transcription of microsatellite repeat-containing RNAs is more sensitive to perturbation than transcription of other RNAs, indicating potentially viable strategies for therapeutic intervention.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Terapia Genética/métodos , Repeticiones de Microsatélite , Distrofia Miotónica/terapia , Transcripción Genética , Empalme Alternativo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Activación Enzimática , Femenino , Vectores Genéticos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Transgénicos , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , ARN Guía de Kinetoplastida/biosíntesis , ARN Guía de Kinetoplastida/genética , Transducción Genética , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
15.
PLoS Genet ; 18(10): e1010488, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315586

RESUMEN

Transcriptional adaptation is a powerful gene regulation mechanism that can increase genetic robustness. Transcriptional adaptation occurs when a gene is mutated and is mediated by the mutant RNA, rather than by protein feedback loops. We show here that transcriptional adaptation occurs in the C. elegans clh family of Cl- channels and that it requires exon-junction complex (EJC) proteins RNP-4, MAG-1, and eiF4AIII. Depending on which exons are deleted in distinct clh-1 alleles, different clh genes are regulated in an EJC-dependent manner. Our results support the idea that different transcriptional adaptation outcomes may be directed by the differential interaction of the EJC with its target mutant RNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/genética , ARN Mensajero/genética , Exones/genética , Núcleo Celular/metabolismo , Empalme del ARN/genética , ARN/metabolismo , Canales de Cloruro/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(31): e2200727119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35878032

RESUMEN

In response to acidic pH, the widely expressed proton-activated chloride (PAC) channel opens and conducts anions across cellular membranes. By doing so, PAC plays an important role in both cellular physiology (endosome acidification) and diseases associated with tissue acidosis (acid-induced cell death). Despite the available structural information, how proton binding in the extracellular domain (ECD) leads to PAC channel opening remains largely unknown. Here, through comprehensive mutagenesis and electrophysiological studies, we identified several critical titratable residues, including two histidine residues (H130 and H131) and an aspartic acid residue (D269) at the distal end of the ECD, together with the previously characterized H98 at the transmembrane domain-ECD interface, as potential pH sensors for human PAC. Mutations of these residues resulted in significant changes in pH sensitivity. Some combined mutants also exhibited large basal PAC channel activities at neutral pH. By combining molecular dynamics simulations with structural and functional analysis, we further found that the ß12 strand at the intersubunit interface and the associated "joint region" connecting the upper and lower ECDs allosterically regulate the proton-dependent PAC activation. Our studies suggest a distinct pH-sensing and gating mechanism of this new family of ion channels sensitive to acidic environment.


Asunto(s)
Canales de Cloruro , Cloruros , Protones , Ácido Aspártico/química , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Fenómenos Electrofisiológicos , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis
17.
PLoS Genet ; 18(6): e1010271, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727842

RESUMEN

The TGF-ß-regulated Chloride Intracellular Channel 4 (CLIC4) is an essential participant in the formation of breast cancer stroma. Here, we used data available from the TCGA and METABRIC datasets to show that CLIC4 expression was higher in breast cancers from younger women and those with early-stage metastatic disease. Elevated CLIC4 predicted poor outcome in breast cancer patients and was linked to the TGF-ß pathway. However, these associations did not reveal the underlying biological contribution of CLIC4 to breast cancer progression. Constitutive ablation of host Clic4 in two murine metastatic breast cancer models nearly eliminated lung metastases without reducing primary tumor weight, while tumor cells ablated of Clic4 retained metastatic capability in wildtype hosts. Thus, CLIC4 was required for host metastatic competence. Pre- and post-metastatic proteomic analysis identified circulating pro-metastatic soluble factors that differed in tumor-bearing CLIC4-deficient and wildtype hosts. Vascular abnormalities and necrosis increased in primary tumors from CLIC4-deficient hosts. Transcriptional profiles of both primary tumors and pre-metastatic lungs of tumor-bearing CLIC4-deficient hosts were consistent with a microenvironment where inflammatory pathways were elevated. Altogether, CLIC4 expression in human breast cancers may serve as a prognostic biomarker; therapeutic targeting of CLIC4 could reduce primary tumor viability and host metastatic competence.


Asunto(s)
Neoplasias de la Mama , Canales de Cloruro , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Canales de Cloruro/biosíntesis , Canales de Cloruro/genética , Femenino , Humanos , Ratones , Metástasis de la Neoplasia , Proteómica , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
18.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969762

RESUMEN

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Asunto(s)
Brugia Malayi , Canales de Cloruro , Indoles , Animales , Brugia Malayi/efectos de los fármacos , Brugia Malayi/genética , Brugia Malayi/metabolismo , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ácido Glutámico/metabolismo , Indoles/farmacología , Ivermectina/farmacología , Ligandos
19.
J Neurosci ; 43(4): 526-539, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36283831

RESUMEN

The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl- channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate.SIGNIFICANCE STATEMENT Proton-activated Cl- channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.


Asunto(s)
Hidrato de Cloral , Canales de Cloruro , Ratones , Animales , Masculino , Humanos , Hidrato de Cloral/farmacología , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Protones , Cloruros/metabolismo , Ratones Endogámicos C57BL
20.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881423

RESUMEN

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Asunto(s)
Tamaño de la Célula , Canales de Cloruro , Canales Catiónicos TRPV , Malla Trabecular , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/agonistas , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Animales , Ratones , Tamaño de la Célula/efectos de los fármacos , Humanos , Calcio/metabolismo , Ratones Endogámicos C57BL , Presión Osmótica , Señalización del Calcio/efectos de los fármacos , Masculino , Presión Intraocular/fisiología , Presión Intraocular/efectos de los fármacos , Células Cultivadas , Femenino , Leucina/análogos & derivados , Morfolinas , Pirroles , Sulfonamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA