Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.929
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
2.
Nature ; 575(7781): 87-97, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31695213

RESUMEN

The capture and use of carbon dioxide to create valuable products might lower the net costs of reducing emissions or removing carbon dioxide from the atmosphere. Here we review ten pathways for the utilization of carbon dioxide. Pathways that involve chemicals, fuels and microalgae might reduce emissions of carbon dioxide but have limited potential for its removal, whereas pathways that involve construction materials can both utilize and remove carbon dioxide. Land-based pathways can increase agricultural output and remove carbon dioxide. Our assessment suggests that each pathway could scale to over 0.5 gigatonnes of carbon dioxide utilization annually. However, barriers to implementation remain substantial and resource constraints prevent the simultaneous deployment of all pathways.


Asunto(s)
Dióxido de Carbono/economía , Dióxido de Carbono/aislamiento & purificación , Secuestro de Carbono , Tecnología/economía , Tecnología/tendencias , Dióxido de Carbono/metabolismo , Carbón Orgánico/metabolismo , Bosques , Microalgas/metabolismo , Fotosíntesis , Suelo/química
3.
BMC Plant Biol ; 24(1): 137, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408939

RESUMEN

The deleterious impact of osmotic stress, induced by water deficit in arid and semi-arid regions, poses a formidable challenge to cotton production. To protect cotton farming in dry areas, it's crucial to create strong plans to increase soil water and reduce stress on plants. The carboxymethyl cellulose (CMC), gibberellic acid (GA3) and biochar (BC) are individually found effective in mitigating osmotic stress. However, combine effect of CMC and GA3 with biochar on drought mitigation is still not studied in depth. The present study was carried out using a combination of GA3 and CMC with BC as amendments on cotton plants subjected to osmotic stress levels of 70 (70 OS) and 40 (40 OS). There were five treatment groups, namely: control (0% CMC-BC and 0% GA3-BC), 0.4%CMC-BC, 0.4%GA3-BC, 0.8%CMC-BC, and 0.8%GA3-BC. Each treatment was replicated five times with a completely randomized design (CRD). The results revealed that 0.8 GA3-BC led to increase in cotton shoot fresh weight (99.95%), shoot dry weight (95.70%), root fresh weight (73.13%), and root dry weight (95.74%) compared to the control group under osmotic stress. There was a significant enhancement in cotton chlorophyll a (23.77%), chlorophyll b (70.44%), and total chlorophyll (35.44%), the photosynthetic rate (90.77%), transpiration rate (174.44%), and internal CO2 concentration (57.99%) compared to the control group under the 40 OS stress. Thus 0.8GA3-BC can be potential amendment for reducing osmotic stress in cotton cultivation, enhancing agricultural resilience and productivity.


Asunto(s)
Carboximetilcelulosa de Sodio , Carbón Orgánico , Giberelinas , Gossypium , Clorofila A , Presión Osmótica , Agua
4.
BMC Plant Biol ; 24(1): 115, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365582

RESUMEN

Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Raphanus , Contaminantes del Suelo , Cromo , Clorofila A , Ecosistema , Carbón Orgánico , Suelo/química
5.
BMC Plant Biol ; 24(1): 139, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413916

RESUMEN

Drought stress poses a significant challenge to maize production, leading to substantial harm to crop growth and yield due to the induction of oxidative stress. Deashed biochar (DAB) in combination with carboxymethyl cellulose (CMC) presents an effective approach for addressing this problem. DAB improves soil structure by increasing porosity and water retention and enhancing plant nutrient utilization efficiency. The CMC provides advantages to plants by enhancing soil water retention, improving soil structure, and increasing moisture availability to the plant roots. The present study was conducted to investigate the effects of DAB and CMC amendments on maize under field capacity (70 FC) and drought stress. Six different treatments were implemented in this study, namely 0 DAB + 0CMC, 25 CMC, 0.5 DAB, 0.5 DAB + 25 CMC, 1 DAB, and 1 DAB + 25 CMC, each with six replications, and they were arranged according to a completely randomized design. Results showed that 1 DAB + 25 CMC caused significant enhancement in maize shoot fresh weight (24.53%), shoot dry weight (38.47%), shoot length (32.23%), root fresh weight (19.03%), root dry weight (87.50%) and root length (69.80%) over control under drought stress. A substantial increase in maize chlorophyll a (40.26%), chlorophyll b (26.92%), total chlorophyll (30.56%), photosynthetic rate (21.35%), transpiration rate (32.61%), and stomatal conductance (91.57%) under drought stress showed the efficiency of 1 DAB + 25 CMC treatment compared to the control. The enhancement in N, P, and K concentrations in both the root and shoot validated the effectiveness of the performance of the 1 DAB + 25 CMC treatment when compared to the control group under drought stress. In conclusion, it is recommended that the application of 1 DAB + 25 CMC serves as a beneficial amendment for alleviating drought stress in maize.


Asunto(s)
Carbón Orgánico , Zea mays , Carboximetilcelulosa de Sodio/farmacología , Clorofila A , Sequías , Suelo/química , Agua
6.
BMC Plant Biol ; 24(1): 314, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654167

RESUMEN

BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.


Asunto(s)
Azospirillum brasilense , Carbón Orgánico , Suelo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiología , Suelo/química , Deshidratación , Sequías
7.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491471

RESUMEN

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Asunto(s)
Cadmio , Giberelinas , Contaminantes del Suelo , Cadmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/metabolismo , Suelo/química , Malondialdehído/metabolismo
8.
BMC Plant Biol ; 24(1): 498, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834982

RESUMEN

Biochar (BC) is an organic compound formed by the pyrolysis of organic wastes. Application of BCs as soil amendments has many benefits including carbon sequestration, enhanced soil fertility and sustainable agriculture production. In the present study, we acidified the different BCs prepared from rice straw, rice husk, wheat straw, cotton stalk, poultry manure, sugarcane press mud and vegetable waste; following which, we applied them in a series of pot experiments. Comparisons were made between acidified and non- acidified BCs for their effects on seed germination, soil properties (EC, pH) nutrient contents (P, K, Na) and organic matter. The treatments comprised of a control, and all above-described BCs (acidified as well as non-acidified) applied to soil at the rate of 1% (w/w). The maize crop was selected as a test crop. The results showed that acidified poultry manure BC significantly improved germination percentage, shoot length, and biomass of maize seedlings as compared to other BCs and their respective control plants. However, acidified BCs caused a significant decrease in nutrient contents (P, K, Na) of soil,maize seedlings, and the soil organic matter contents as compared to non- acidified BCs. But when compared with control treatments, all BCs treatments (acidified and non-acidified) delivered higher levels of nutrients and organic matter contents. It was concluded that none of the BCs (acidified and non-acidified) had caused negative effect on soil conditions and growth of maize. In addition, the acidification of BC prior to its application to alkaline soils might had altered soil chemistry and delivered better maize growth. Moving forward, more research is needed to understand the long-term effects of modified BCs on nutrient dynamics in different soils. In addition, the possible effects of BC application timings, application rates, particle size, and crop species have to be evaluated systemtically.


Asunto(s)
Carbón Orgánico , Germinación , Suelo , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Carbón Orgánico/química , Carbón Orgánico/farmacología , Suelo/química , Germinación/efectos de los fármacos , Nutrientes/metabolismo , Estiércol , Agricultura/métodos , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos
9.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262953

RESUMEN

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Asunto(s)
Micorrizas , Antioxidantes , Zea mays , Carbón Orgánico , Ácido Edético , Clorofila A , Estrés Salino , Clorofila , Suelo
10.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724950

RESUMEN

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Asunto(s)
Carbón Orgánico , Sequías , Estrés Salino , Solanum lycopersicum , Agua , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Carbón Orgánico/farmacología , Agua/metabolismo , Riego Agrícola , Fotosíntesis/efectos de los fármacos
11.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867179

RESUMEN

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Asunto(s)
Carbón Orgánico , Compostaje , Semillas , Suelo , Trigonella , Trigonella/metabolismo , Trigonella/fisiología , Trigonella/crecimiento & desarrollo , Suelo/química , Semillas/crecimiento & desarrollo , Compostaje/métodos , Deshidratación , Agua/metabolismo , Salinidad
12.
BMC Plant Biol ; 24(1): 660, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987664

RESUMEN

Arsenic (As) contamination is a major environmental pollutant that adversely affects plant physiological processes and can hinder nutrients and water availability. Such conditions ultimately resulted in stunted growth, low yield, and poor plant health. Using rhizobacteria and composted biochar (ECB) can effectively overcome this problem. Rhizobacteria have the potential to enhance plant growth by promoting nutrient uptake, producing growth hormones, and suppressing diseases. Composted biochar can enhance plant growth by improving aeration, water retention, and nutrient cycling. Its porous structure supports beneficial microorganisms, increasing nutrient uptake and resilience to stressors, ultimately boosting yields while sequestering carbon. Therefore, the current study was conducted to investigate the combined effect of previously isolated Bacillus faecalis (B. faecalis) and ECB as amendments on maize cultivated under different As levels (0, 300, 600 mg As/kg soil). Four treatments (control, 0.5% composted biochar (0.5ECB), B. faecalis, and 0.5ECB + B. faecalis) were applied in four replications following a completely randomized design. Results showed that the 0.5ECB + B. faecalis treatment led to a significant rise in maize plant height (~ 99%), shoot length (~ 55%), root length (~ 82%), shoot fresh (~ 87%), and shoot dry weight (~ 96%), root fresh (~ 97%), and dry weight (~ 91%) over the control under 600As stress. There was a notable increase in maize chlorophyll a (~ 99%), chlorophyll b (~ 81%), total chlorophyll (~ 94%), and shoot N, P, and K concentration compared to control under As stress, also showing the potential of 0.5ECB + B. faecalis treatment. Consequently, the findings suggest that applying 0.5ECB + B. faecalis is a strategy for alleviating As stress in maize plants.


Asunto(s)
Arsénico , Carbón Orgánico , Zea mays , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Arsénico/toxicidad , Bacillus/fisiología , Contaminantes del Suelo/toxicidad , Clorofila/metabolismo
13.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824521

RESUMEN

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Asunto(s)
Carbón Orgánico , Clorofila , Germinación , Potasio , Estrés Salino , Sodio , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/fisiología , Germinación/efectos de los fármacos , Carbón Orgánico/farmacología , Clorofila/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Suelo/química , Grano Comestible/crecimiento & desarrollo , Grano Comestible/efectos de los fármacos , Grano Comestible/metabolismo , Pakistán , Salinidad
14.
BMC Plant Biol ; 24(1): 744, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098900

RESUMEN

BACKGROUND: Soil contamination by heavy metals is a critical environmental challenge, with Pb being of particular concern due to its propensity to be readily absorbed and accumulated by plants, despite its lack of essential biological functions or beneficial roles in cellular metabolism. Within the scope of phytoremediation, the use of plants for the decontamination of various environmental matrices, the present study investigated the potential of activated charcoal (AC) to enhance the tolerance and mitigation capacity of S. sesban seedlings when exposed to Pb. The experiment was conducted as a factorial arrangement in a completely randomized design in hydroponic conditions. The S. sesban seedlings were subjected to a gradient of Pb concentrations (0, 0.02, 0.2, 2, and 10 mg/L) within the nutrient solution, alongside two distinct AC treatments (0 and 1% inclusion in the culture media). The study reached its conclusion after 60 days. RESULTS: The seedlings exposed to Pb without AC supplementation indicated an escalation in peroxidase (POX) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels, signaling an increase in oxidative stress. Conversely, the incorporation of AC into the treatment regime markedly bolstered the antioxidative defense system, as evidenced by the significant elevation in antioxidant capacity and a concomitant reduction in the biomarkers of oxidative stress (POX, ROS, and MDA). CONCLUSIONS: With AC application, a notable improvement was observed in the chlorophyll a, total chlorophyll, and plant fresh and dry biomass. These findings illuminate the role of activated charcoal as a viable adjunct in phytoremediation strategies aimed at ameliorating heavy metal stress in plants.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hidroponía , Plomo , Sesbania , Contaminantes del Suelo , Carbón Orgánico/farmacología , Plomo/toxicidad , Plomo/metabolismo , Sesbania/metabolismo , Sesbania/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Clorofila/metabolismo , Malondialdehído/metabolismo
15.
BMC Plant Biol ; 24(1): 545, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872089

RESUMEN

The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.


Asunto(s)
Arsénico , Biodegradación Ambiental , Carbón Orgánico , Oryza , Contaminantes del Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Compostaje/métodos , Araceae/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Suelo/química
16.
BMC Plant Biol ; 24(1): 655, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987695

RESUMEN

BACKGROUND: Biochar, a carbon-rich source and natural growth stimulant, is usually produced by the pyrolysis of agricultural biomass. It is widely used to enhance plant growth, enzyme activity, and crop productivity. However, there are no conclusive studies on how different levels of biochar application influence these systems. METHODS AND RESULTS: The present study elucidated the dose-dependent effects of biochar application on the physiological performance, enzyme activity, and dry matter accumulation of tobacco plants via field experiments. In addition, transcriptome analysis was performed on 60-day-old (early growth stage) and 100-day-old (late growth stage) tobacco leaves to determine the changes in transcript levels at the molecular level under various biochar application levels (0, 600, and 1800 kg/ha). The results demonstrated that optimum biochar application enhances plant growth, regulates enzymatic activity, and promotes biomass accumulation in tobacco plants, while higher biochar doses had adverse effects. Furthermore, transcriptome analysis revealed a total of 6561 differentially expressed genes (DEGs) that were up- or down-regulated in the groupwise comparison under different treatments. KEGG pathways analysis demonstrated that carbon fixation in photosynthetic organisms (ko00710), photosynthesis (ko00195), and starch and sucrose metabolism (ko00500) pathways were significantly up-regulated under the optimal biochar dosage (600 kg/ha) and down-regulated under the higher biochar dosage (1800 kg/ha). CONCLUSION: Collectively, these results indicate that biochar application at an optimal rate (600 kg/ha) could positively affect photosynthesis and carbon fixation, which in turn increased the synthesis and accumulation of sucrose and starch, thus promoting the growth and dry matter accumulation of tobacco plants. However, a higher biochar dosage (1800 kg/ha) disturbs the crucial source-sink balance of organic compounds and inhibits the growth of tobacco plants.


Asunto(s)
Carbón Orgánico , Perfilación de la Expresión Génica , Nicotiana , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Nicotiana/efectos de los fármacos , Transcriptoma , Biomasa , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Fotosíntesis/efectos de los fármacos
17.
BMC Plant Biol ; 24(1): 608, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926861

RESUMEN

Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.


Asunto(s)
Amaranthus , Cadmio , Carbón Orgánico , Microplásticos , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Germinación/efectos de los fármacos , Nutrientes/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/metabolismo
18.
BMC Plant Biol ; 24(1): 304, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644487

RESUMEN

Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.


Asunto(s)
Amaranthus , Carbón Orgánico , Medicago sativa , Suelo , Zea mays , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Amaranthus/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Zea mays/fisiología , Medicago sativa/efectos de los fármacos , Medicago sativa/crecimiento & desarrollo , Medicago sativa/fisiología , Suelo/química , Salinidad , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos
19.
Chemphyschem ; 25(4): e202300507, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38200663

RESUMEN

The nettle, sage, mint and lemon balm herbs were used for biochars preparation. The physicochemical parameters of obtained materials were related to the lignocellulose composition of the precursors. It has been proved that the content of mineral substance has a significant influence on development of surface area, whereas the amount of hemicellulose affects the content of surface functional groups. It has been also shown that the obtained biochars are characterized by great energy parameters. The higher heating values (HHV) of the carbonaceous materials are comparable to the typical energy sources. The greatest HHV value (20.36 MJ/kg) was characteristic for the biochar obtained by pyrolysis of the lemon balm. In addition, the biochars were used for ionic polymers adsorption from one- and two-components solutions. Despite the adsorbed amounts of macromolecules are not great is has been proved that polyethylenimine and polyacrylic acid have positive influence on their mutual adsorption.


Asunto(s)
Carbón Orgánico , Pirólisis , Adsorción , Carbón Orgánico/química , Iones
20.
Chemphyschem ; 25(10): e202300777, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38446670

RESUMEN

The pine cones (PC), spruce cones (SC) and fir cones (FC) were used for biocarbons preparation. Chemical activation with sodium hydroxide was applied to prepare activated biocarbons. All the materials under investigation were characterized by the N2 adsorption, scanning electron microscopy (SEM), elemental analysis (CHNS), infrared spectroscopy (ATR FT-IR), and the Boehm's titration method. Moreover, pHpzc (the point of zero charge) was determined. It was shown that cones are a good, cheap precursor from which biocarbons with a developed porous structure, characterized by good adsorption properties, can be obtained. All the obtained adsorbents are characterized mainly by a microporous structure. Moreover, they contain both acidic and basic surface functional groups (acidic ones prevail over basic ones). The tested activated biocarbons have large specific surface area values ranging from 578 to 1182 m2 g-1. The efficacy of selected materials in the adsorption of an essential contaminant of increasing concern, tetracycline (TC), was investigated. The experimental data were described using the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of the tested biocarbons ranges from 200 to 392 mg g-1. Thermodynamic studies proved that adsorption is a spontaneous and endothermic process. In summary, economical and environmentally friendly adsorbents were obtained.


Asunto(s)
Antibacterianos , Tetraciclina , Adsorción , Antibacterianos/química , Tetraciclina/química , Pinus/química , Propiedades de Superficie , Picea/química , Abies/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA