RESUMEN
Subsets of long-lived, tumor-initiating stem cells often escape cancer therapies. However, sources and mechanisms that generate tumor heterogeneity and drug-resistant cell population are still unfolding. Here, we devise a functional reporter system to lineage trace and/or genetic ablate signaling in TGF-ß-activated squamous cell carcinoma stem cells (SCC-SCs). Dissecting TGF-ß's impact on malignant progression, we demonstrate that TGF-ß concentrating near tumor-vasculature generates heterogeneity in TGF-ß signaling at tumor-stroma interface and bestows slower-cycling properties to neighboring SCC-SCs. While non-responding progenies proliferate faster and accelerate tumor growth, TGF-ß-responding progenies invade, aberrantly differentiate, and affect gene expression. Intriguingly, TGF-ß-responding SCC-SCs show increased protection against anti-cancer drugs, but slower-cycling alone does not confer survival. Rather, TGF-ß transcriptionally activates p21, which stabilizes NRF2, thereby markedly enhancing glutathione metabolism and diminishing effectiveness of anti-cancer therapeutics. Together, these findings establish a surprising non-genetic paradigm for TGF-ß signaling in fueling heterogeneity in SCC-SCs, tumor characteristics, and drug resistance.
Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Resistencia a Antineoplásicos , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Cisplatino/uso terapéutico , Femenino , Perfilación de la Expresión Génica , Glutatión/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/metabolismo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Trasplante de Neoplasias , Células Madre Neoplásicas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Acetato de TetradecanoilforbolRESUMEN
Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFß1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.
Asunto(s)
Anticuerpos Monoclonales , Carcinoma de Células Escamosas , Transición Epitelial-Mesenquimal , Netrina-1 , Neoplasias Cutáneas , Animales , Humanos , Ratones , Células A549 , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores de Netrina/antagonistas & inhibidores , Receptores de Netrina/deficiencia , Receptores de Netrina/genética , Netrina-1/antagonistas & inhibidores , Netrina-1/deficiencia , Netrina-1/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Modelos Animales de Enfermedad , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Metástasis de la Neoplasia/tratamiento farmacológico , Análisis de Expresión Génica de una Sola Célula , RNA-Seq , Molécula de Adhesión Celular Epitelial/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Crecimiento Transformador beta1/farmacologíaRESUMEN
The resistance of cancer cells to therapy is responsible for the death of most patients with cancer1. Epithelial-to-mesenchymal transition (EMT) has been associated with resistance to therapy in different cancer cells2,3. However, the mechanisms by which EMT mediates resistance to therapy remain poorly understood. Here, using a mouse model of skin squamous cell carcinoma undergoing spontaneous EMT during tumorigenesis, we found that EMT tumour cells are highly resistant to a wide range of anti-cancer therapies both in vivo and in vitro. Using gain and loss of function studies in vitro and in vivo, we found that RHOJ-a small GTPase that is preferentially expressed in EMT cancer cells-controls resistance to therapy. Using genome-wide transcriptomic and proteomic profiling, we found that RHOJ regulates EMT-associated resistance to chemotherapy by enhancing the response to replicative stress and activating the DNA-damage response, enabling tumour cells to rapidly repair DNA lesions induced by chemotherapy. RHOJ interacts with proteins that regulate nuclear actin, and inhibition of actin polymerization sensitizes EMT tumour cells to chemotherapy-induced cell death in a RHOJ-dependent manner. Together, our study uncovers the role and the mechanisms through which RHOJ acts as a key regulator of EMT-associated resistance to chemotherapy.
Asunto(s)
Carcinoma de Células Escamosas , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Cutáneas , Proteínas de Unión al GTP rho , Actinas/efectos de los fármacos , Actinas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteómica , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Animales , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Perfilación de la Expresión Génica , GenomaAsunto(s)
Neoplasias de la Boca , Terapia Neoadyuvante , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/cirugía , Terapia Neoadyuvante/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante/métodos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/cirugíaRESUMEN
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% decrease in ESCC incidence vs. Zn-untreated controls. Zn treatment eliminated ESCCs by affecting a spectrum of biological processes that included downregulation of expression of the two miRs and miR-31-controlled inflammatory pathway, stimulation of miR-21-PDCD4 axis apoptosis, and reversal of the ESCC metabolome: with decrease in putrescine, increase in glucose, accompanied by downregulation of metabolite enzymes ODC and HK2. Thus, Zn treatment or miR-31/21 silencing are effective therapeutic strategies for ESCC in this rodent model and should be examined in the human counterpart exhibiting the same biological processes.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , MicroARNs , Humanos , Ratas , Animales , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Antagomirs , Zinc/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/complicaciones , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas de Unión al ARN/metabolismoRESUMEN
Bromodomain and extraterminal (BET) domain inhibitors (BETis) show efficacy on NUT midline carcinoma (NMC). However, not all NMC patients respond, and responders eventually develop resistance and relapse. Using CRISPR and ORF expression screens, we systematically examined the ability of cancer drivers to mediate resistance of NMC to BETis and uncovered six general classes/pathways mediating resistance. Among these, we showed that RRAS2 attenuated the effect of JQ1 in part by sustaining ERK pathway function during BRD4 inhibition. Furthermore, overexpression of Kruppel-like factor 4 (KLF4), mediated BETi resistance in NMC cells through restoration of the E2F and MYC gene expression program. Finally, we found that expression of cyclin D1 or an oncogenic cyclin D3 mutant or RB1 loss protected NMC cells from BETi-induced cell cycle arrest. Consistent with these findings, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors showed synergistic effects with BETis on NMC in vitro as well as in vivo, thereby establishing a potential two-drug therapy for NMC.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Azepinas/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Triazoles/uso terapéutico , Animales , Azepinas/farmacología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Ciclinas/metabolismo , Resistencia a Antineoplásicos , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Desnudos , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Proteínas de Neoplasias , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Oncogénicas/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacologíaRESUMEN
NXP900 is a selective and potent SRC family kinase (SFK) inhibitor, currently being dosed in a phase 1 clinical trial, that locks SRC in the "closed" conformation, thereby inhibiting both kinase-dependent catalytic activity and kinase-independent functions. In contrast, several multi-targeted kinase inhibitors that inhibit SRC, including dasatinib and bosutinib, bind their target in the active "open" conformation, allowing SRC and other SFKs to act as a scaffold to promote tumorigenesis through non-catalytic functions. NXP900 exhibits a unique target selectivity profile with sub-nanomolar activity against SFK members over other kinases. This results in highly potent and specific SFK pathway inhibition. Here, we demonstrate that esophageal squamous cell carcinomas and head and neck squamous cell carcinomas are exquisitely sensitive to NXP900 treatment in cell culture and in vivo, and we identify a patient population that could benefit from treatment with NXP900.
Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Inhibidores de Proteínas Quinasas , Familia-src Quinasas , Humanos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Benzamidas/farmacología , Benzamidas/química , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Femenino , Acetamidas , Morfolinas , PiridinasRESUMEN
BACKGROUND: At the first interim analysis of the phase 3 ENGOT-cx11/GOG-3047/KEYNOTE-A18 study, the addition of pembrolizumab to chemoradiotherapy provided a statistically significant and clinically meaningful improvement in progression-free survival in patients with locally advanced cervical cancer. We report the overall survival results from the second interim analysis of this study. METHODS: Eligible patients with newly diagnosed, high-risk (FIGO 2014 stage IB2-IIB with node-positive disease or stage III-IVA regardless of nodal status), locally advanced, histologically confirmed, squamous cell carcinoma, adenocarcinoma, or adenosquamous cervical cancer were randomly assigned 1:1 to receive five cycles of pembrolizumab (200 mg) or placebo every 3 weeks with concurrent chemoradiotherapy, followed by 15 cycles of pembrolizumab (400 mg) or placebo every 6 weeks. Pembrolizumab or placebo and cisplatin were administered intravenously. Patients were stratified at randomisation by planned external beam radiotherapy type (intensity-modulated radiotherapy [IMRT] or volumetric-modulated arc therapy [VMAT] vs non-IMRT or non-VMAT), cervical cancer stage at screening (FIGO 2014 stage IB2-IIB node positive vs III-IVA), and planned total radiotherapy (external beam radiotherapy plus brachytherapy) dose (<70 Gy vs ≥70 Gy [equivalent dose of 2 Gy]). Primary endpoints were progression-free survival per RECIST 1.1 by investigator or by histopathological confirmation of suspected disease progression and overall survival defined as the time from randomisation to death due to any cause. Safety was a secondary endpoint. FINDINGS: Between June 9, 2020, and Dec 15, 2022, 1060 patients at 176 sites in 30 countries across Asia, Australia, Europe, North America, and South America were randomly assigned to treatment, with 529 patients in the pembrolizumab-chemoradiotherapy group and 531 patients in the placebo-chemoradiotherapy group. At the protocol-specified second interim analysis (data cutoff Jan 8, 2024), median follow-up was 29·9 months (IQR 23·3-34·3). Median overall survival was not reached in either group; 36-month overall survival was 82·6% (95% CI 78·4-86·1) in the pembrolizumab-chemoradiotherapy group and 74·8% (70·1-78·8) in the placebo-chemoradiotherapy group. The hazard ratio for death was 0·67 (95% CI 0·50-0·90; p=0·0040), meeting the protocol-specified primary objective. 413 (78%) of 528 patients in the pembrolizumab-chemoradiotherapy group and 371 (70%) of 530 in the placebo-chemoradiotherapy group had a grade 3 or higher adverse event, with anaemia, white blood cell count decreased, and neutrophil count decreased being the most common adverse events. Potentially immune-mediated adverse events occurred in 206 (39%) of 528 patients in the pembrolizumab-chemoradiotherapy group and 90 (17%) of 530 patients in the placebo-chemoradiotherapy group. This study is registered with ClinicalTrials.gov, NCT04221945. INTERPRETATION: Pembrolizumab plus chemoradiotherapy significantly improved overall survival in patients with locally advanced cervical cancer These data, together with results from the first interim analysis, support this immuno-chemoradiotherapy strategy as a new standard of care for this population. FUNDING: Merck Sharp & Dohme, a subsidiary of Merck & Co.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Quimioradioterapia , Neoplasias del Cuello Uterino , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/mortalidad , Adenocarcinoma/radioterapia , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Antineoplásicos Inmunológicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Adenoescamoso/tratamiento farmacológico , Carcinoma Adenoescamoso/mortalidad , Carcinoma Adenoescamoso/radioterapia , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/radioterapia , Quimioradioterapia/métodos , Método Doble Ciego , Estadificación de Neoplasias , Supervivencia sin Progresión , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/radioterapiaRESUMEN
BACKGROUND: First-line chemotherapy for advanced esophageal squamous-cell carcinoma results in poor outcomes. The monoclonal antibody nivolumab has shown an overall survival benefit over chemotherapy in previously treated patients with advanced esophageal squamous-cell carcinoma. METHODS: In this open-label, phase 3 trial, we randomly assigned adults with previously untreated, unresectable advanced, recurrent, or metastatic esophageal squamous-cell carcinoma in a 1:1:1 ratio to receive nivolumab plus chemotherapy, nivolumab plus the monoclonal antibody ipilimumab, or chemotherapy. The primary end points were overall survival and progression-free survival, as determined by blinded independent central review. Hierarchical testing was performed first in patients with tumor-cell programmed death ligand 1 (PD-L1) expression of 1% or greater and then in the overall population (all randomly assigned patients). RESULTS: A total of 970 patients underwent randomization. At a 13-month minimum follow-up, overall survival was significantly longer with nivolumab plus chemotherapy than with chemotherapy alone, both among patients with tumor-cell PD-L1 expression of 1% or greater (median, 15.4 vs. 9.1 months; hazard ratio, 0.54; 99.5% confidence interval [CI], 0.37 to 0.80; P<0.001) and in the overall population (median, 13.2 vs. 10.7 months; hazard ratio, 0.74; 99.1% CI, 0.58 to 0.96; P = 0.002). Overall survival was also significantly longer with nivolumab plus ipilimumab than with chemotherapy among patients with tumor-cell PD-L1 expression of 1% or greater (median, 13.7 vs. 9.1 months; hazard ratio, 0.64; 98.6% CI, 0.46 to 0.90; P = 0.001) and in the overall population (median, 12.7 vs. 10.7 months; hazard ratio, 0.78; 98.2% CI, 0.62 to 0.98; P = 0.01). Among patients with tumor-cell PD-L1 expression of 1% or greater, a significant progression-free survival benefit was also seen with nivolumab plus chemotherapy over chemotherapy alone (hazard ratio for disease progression or death, 0.65; 98.5% CI, 0.46 to 0.92; P = 0.002) but not with nivolumab plus ipilimumab as compared with chemotherapy. The incidence of treatment-related adverse events of grade 3 or 4 was 47% with nivolumab plus chemotherapy, 32% with nivolumab plus ipilimumab, and 36% with chemotherapy alone. CONCLUSIONS: Both first-line treatment with nivolumab plus chemotherapy and first-line treatment with nivolumab plus ipilimumab resulted in significantly longer overall survival than chemotherapy alone in patients with advanced esophageal squamous-cell carcinoma, with no new safety signals identified. (Funded by Bristol Myers Squibb and Ono Pharmaceutical; CheckMate 648 ClinicalTrials.gov number, NCT03143153.).
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Esofágicas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Ipilimumab/administración & dosificación , Nivolumab/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno B7-H1/antagonistas & inhibidores , Carcinoma de Células Escamosas/mortalidad , Neoplasias Esofágicas/mortalidad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Ipilimumab/efectos adversos , Masculino , Persona de Mediana Edad , Nivolumab/efectos adversos , Supervivencia sin Progresión , Análisis de SupervivenciaRESUMEN
BACKGROUND: In a pilot study involving patients with cutaneous squamous-cell carcinoma, a high percentage of patients had a pathological complete response with the use of two doses of neoadjuvant cemiplimab before surgery. Data from a phase 2 study are needed to confirm these findings. METHODS: We conducted a phase 2, confirmatory, multicenter, nonrandomized study to evaluate cemiplimab as neoadjuvant therapy in patients with resectable stage II, III, or IV (M0) cutaneous squamous-cell carcinoma. Patients received cemiplimab, administered at a dose of 350 mg every 3 weeks for up to four doses, before undergoing surgery with curative intent. The primary end point was a pathological complete response (the absence of viable tumor cells in the surgical specimen) on independent review at a central laboratory, with a null hypothesis that a pathological complete response would be observed in 25% of patients. Key secondary end points included a pathological major response (the presence of viable tumor cells that constitute ≤10% of the surgical specimen) on independent review, a pathological complete response and a pathological major response on investigator assessment at a local laboratory, an objective response on imaging, and adverse events. RESULTS: A total of 79 patients were enrolled and received neoadjuvant cemiplimab. On independent review, a pathological complete response was observed in 40 patients (51%; 95% confidence interval [CI], 39 to 62) and a pathological major response in 10 patients (13%; 95% CI, 6 to 22). These results were consistent with the pathological responses determined on investigator assessment. An objective response on imaging was observed in 54 patients (68%; 95% CI, 57 to 78). Adverse events of any grade that occurred during the study period, regardless of whether they were attributed to the study treatment, were observed in 69 patients (87%). Grade 3 or higher adverse events that occurred during the study period were observed in 14 patients (18%). CONCLUSIONS: Neoadjuvant therapy with cemiplimab was associated with a pathological complete response in a high percentage of patients with resectable cutaneous squamous-cell carcinoma. (Funded by Regeneron Pharmaceuticals and Sanofi; ClinicalTrials.gov number, NCT04154943.).
Asunto(s)
Carcinoma de Células Escamosas , Terapia Neoadyuvante , Neoplasias Cutáneas , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/cirugía , Carcinoma de Células Escamosas/patología , Estadificación de Neoplasias , Proyectos Piloto , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/cirugía , Inducción de Remisión , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/efectos adversos , Antineoplásicos Inmunológicos/uso terapéuticoRESUMEN
Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.
Asunto(s)
Proliferación Celular , Docetaxel , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-myc , Proteínas Represoras , Neoplasias de la Lengua , Femenino , Humanos , Masculino , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Docetaxel/farmacología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Pronóstico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias de la Lengua/patología , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/tratamiento farmacológico , Neoplasias de la Lengua/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
The sensitivity of laryngeal squamous cell carcinoma (LSCC) to chemotherapy shows large heterogeneity. The role of miRNA in small extracellular vesicles (sEV) in chemotherapy resistance is under investigation. However, the regulation and sorting mechanism of sEV miRNAs remains unclear. In this study, small RNA sequencing was used to explore miRNA expression profiles in sEV of LSCC after cisplatin stimulation; RNA pull-down, mass spectrometry, and EMSA were used to clarify the binding of candidate RNA-binding protein (RBP) and candidate miRNA. Immunostaining and microRNA fluorescence in situ hybridization were performed to identify how candidate RBP affects miRNA stability and nuclear/cytoplasmic distribution. In vivo experiments were performed to verify the biological functions and response to cisplatin of candidate RBP. We found that cisplatin stimulation induced increased expression of miR-148a-3p and sEV sorting. ANXA11 binds to miR-148a-3p in a sequence-specific manner. ANXA11 inhibits tumor cell proliferation and drug resistance by binding to and retaining miR-148a-3p. Cisplatin stimulation reduced ANXA11 expression and promoted miR-148a-3p efflux through sEV pathways. ANXA11 overexpression reduced in vivo tumor proliferation and cisplatin-resistance. Taken together, ANXA11 mediates cisplatin resistance through sEV miRNA resorting. Mechanically, ANXA11 binds to miR-148a-3p in a sequence-specific manner to regulate its resorting and thus influences tumor proliferation and chemoresistance.
Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Vesículas Extracelulares , Neoplasias Laríngeas , Ratones Desnudos , MicroARNs , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Anexinas/metabolismo , Anexinas/genética , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/tratamiento farmacológico , Neoplasias Laríngeas/patología , Ratones Endogámicos BALB C , MicroARNs/metabolismo , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genéticaRESUMEN
PURPOSE: Oral Squamous Cell Carcinoma (OSCC) is the 6th most common cancer worldwide. It is generally aggressive and closely associated with chemoresistance and poor survival. There is accumulating evidence for the involvement of inhibitors of apoptosis proteins (IAPs), including IAP1 and XIAP, in mediating chemotherapy resistance in OSCC. Various strategies for targeting IAPs have been designed and tested in recent years and several small molecule IAP inhibitors are in clinical trials as monotherapies as well as in combination with radiotherapy and chemotherapy. The purpose of this study was to evaluate and compare the efficacy and biological activity of three IAP inhibitors both as stand-alone and sensitising agents to cisplatin in a preclinical model of squamous cell carcinoma of the tongue. METHODS: Cisplatin-sensitive SCC4 and -resistant SCC4cisR cells were utilised in this study. Apoptosis was evaluated by flow cytometric analysis of Annexin V/Propidium Iodide-stained cells. Expression of IAP proteins was determined by western blotting and knockdown of cIAP1, livin and XIAP was conducted by transfection of cells with siRNA. RESULTS: We establish for the first time the therapeutic efficacy of the Smac mimetic, BV6 and the XIAP inhibitor Embelin, for OSCC. Both of these IAP targeting agents synergistically enhanced cisplatin-mediated apoptotic cell death in resistant cells which was mediated in part by depletion of XIAP. In addition, knockdown of XIAP using siRNA enhanced cisplatin-mediated cell death, demonstrating the importance of targeting XIAP in this sensitisation. CONCLUSION: These findings provide pre-clinical evidence that IAP inhibition may be a valuable therapeutic option in OSCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Cisplatino/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Línea Celular Tumoral , Neoplasias de la Boca/tratamiento farmacológico , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Apoptosis/fisiología , Proteínas Portadoras , ARN Interferente PequeñoRESUMEN
Early detection and treatment are critical for improving the outcome of patients with cancer1. Understanding the largely uncharted biology of carcinogenesis requires deciphering molecular processes in premalignant lesions, and revealing the determinants of the intralesional immune reaction during cancer development. The adaptive immune response within tumours has previously been shown to be strongest at the earliest stage of carcinoma2,3. Here we show that immune activation and immune escape occur before tumour invasion, and reveal the relevant immune biomarkers of the pre-invasive stages of carcinogenesis in the lung. We used gene-expression profiling and multispectral imaging to analyse a dataset of 9 morphological stages of the development of lung squamous cell carcinoma, which includes 122 well-annotated biopsies from 77 patients. We identified evolutionary trajectories of cancer and immune pathways that comprise (1) a linear increase in proliferation and DNA repair from normal to cancerous tissue; (2) a transitory increase of metabolism and early immune sensing, through the activation of resident immune cells, in low-grade pre-invasive lesions; (3) the activation of immune responses and immune escape through immune checkpoints and suppressive interleukins from high-grade pre-invasive lesions; and, ultimately, (4) the activation of the epithelial-mesenchymal transition in the invasive stage of cancer. We propose that carcinogenesis in the lung involves a dynamic co-evolution of pre-invasive bronchial cells and the immune response. These findings highlight the need to develop immune biomarkers for early detection as well as immunotherapy-based chemopreventive approaches for individuals who are at high risk of developing lung cancer.
Asunto(s)
Carcinogénesis/inmunología , Carcinogénesis/patología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Escape del Tumor/inmunología , Adulto , Anciano , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Detección Precoz del Cáncer , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Escape del Tumor/efectos de los fármacos , Escape del Tumor/genética , Microambiente TumoralRESUMEN
Tumor-associated macrophages (TAMs) are often associated with chemoresistance and resultant poor clinical outcome in solid tumors. Here, we demonstrated that TAMs-released chemokine-C-C motif chemokine 22 (CCL22) in esophageal squamous cell carcinoma (ESCC) stroma was tightly correlated with the chemoresistance of ESCC patients. TAMs-secreted CCL22 was able to block the growth inhibitory and apoptosis-promoting effects of cisplatin on ESCC cells. Mechanistically, CCL22 stimulated intratumoral diacylglycerol kinase α (DGKα) to produce phosphatidic acid (PA), which suppressed the activity of NADPH oxidase 4 (NOX4) and then blocked the overproduction of intratumoral reactive species oxygen (ROS) induced by cisplatin. CCL22 activated DGKα/nuclear factor-κB (NF-κB) axis to upregulate the level of several members of ATP binding cassette (ABC) transporter superfamily, including ABC sub-family G member 4 (ABCG4), ABC sub-family A member 3 (ABCA3), and ABC sub-family A member 5 (ABCA5), to lower the intratumoral concentration of cisplatin. Consequently, these processes induced the cisplatin resistance in ESCC cells. In xenografted models, targeting DGKα with 5'-cholesterol-conjugated small-interfering (si) RNA enhanced the chemosensitivity of cisplatin in ESCC treatment, especially in the context of TAMs. Our data establish the correlation between the TAMs-induced intratumoral metabolic product/ROS axis and chemotherapy efficacy in ESCC treatment and reveal relevant molecular mechanisms.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Cisplatino/farmacología , Cisplatino/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Macrófagos Asociados a Tumores , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno , ARN Interferente Pequeño/genética , Proliferación Celular , Quimiocinas/farmacología , Quimiocinas/uso terapéutico , Línea Celular Tumoral , Quimiocina CCL22/farmacología , Quimiocina CCL22/uso terapéuticoRESUMEN
BACKGROUND: In preliminary findings from the recurrent or metastatic cervical cancer cohort of CheckMate 358, nivolumab showed durable anti-tumour responses, and the combination of nivolumab plus ipilimumab showed promising clinical activity. Here, we report long-term outcomes from this cohort. METHODS: CheckMate 358 was a phase 1-2, open-label, multicohort trial. The metastatic cervical cancer cohort enrolled patients from 30 hospitals and cancer centres across ten countries. Female patients aged 18 years or older with a histologically confirmed diagnosis of squamous cell carcinoma of the cervix with recurrent or metastatic disease, an Eastern Cooperative Oncology Group performance status of 0 or 1, and up to two previous systemic therapies were enrolled into the nivolumab 240 mg every 2 weeks group, the randomised groups (nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks [NIVO3 plus IPI1] or nivolumab 1 mg/kg every 3 weeks plus ipilimumab 3 mg/kg every 3 weeks for four cycles then nivolumab 240 mg every 2 weeks [NIVO1 plus IPI3]), or the NIVO1 plus IPI3 expansion group. All doses were given intravenously. Patients were randomly assigned (1:1) to NIVO3 plus IPI1 or NIVO1 plus IPI3 via an interactive voice response system. Treatment continued until disease progression, unacceptable toxicity, or consent withdrawal, or for up to 24 months. The primary endpoint was investigator-assessed objective response rate. Anti-tumour activity and safety were analysed in all treated patients. This study is registered with ClinicalTrials.gov (NCT02488759) and is now completed. FINDINGS: Between October, 2015, and March, 2020, 193 patients were recruited in the recurrent or metastatic cervical cancer cohort of CheckMate 358, of whom 176 were treated. 19 patients received nivolumab monotherapy, 45 received NIVO3 plus IPI1, and 112 received NIVO1 plus IPI3 (45 in the randomised group and 67 in the expansion group). Median follow-up times were 19·9 months (IQR 8·2-44·8) with nivolumab, 12·6 months (7·8-37·1) with NIVO3 plus IPI1, and 16·7 months (7·2-27·5) with pooled NIVO1 plus IPI3. Objective response rates were 26% (95% CI 9-51; five of 19 patients) with nivolumab, 31% (18-47; 14 of 45 patients) with NIVO3 plus IPI1, 40% (26-56; 18 of 45 patients) with randomised NIVO1 plus IPI3, and 38% (29-48; 43 of 112 patients) with pooled NIVO1 plus IPI3. The most common grade 3-4 treatment-related adverse events were diarrhoea, hepatic cytolysis, hyponatraemia, pneumonitis, and syncope (one [5%] patient each; nivolumab group), diarrhoea, increased gamma-glutamyl transferase, increased lipase, and vomiting (two [4%] patients each; NIVO3 plus IPI1 group), and increased lipase (nine [8%] patients) and anaemia (seven [6%] patients; pooled NIVO1 plus IPI3 group). Serious treatment-related adverse events were reported in three (16%) patients in the nivolumab group, 12 (27%) patients in the NIVO3 plus IPI1 group, and 47 (42%) patients in the pooled NIVO1 plus IPI3 group. There was one treatment-related death due to immune-mediated colitis in the NIVO1 plus IPI3 group. INTERPRETATION: Nivolumab monotherapy and nivolumab plus ipilimumab combination therapy showed promise in the CheckMate 358 study as potential treatment options for recurrent or metastatic cervical cancer. Future randomised controlled trials of nivolumab plus ipilimumab or other dual immunotherapy regimens are warranted to confirm treatment benefit in this patient population. FUNDING: Bristol Myers Squibb and Ono Pharmaceutical.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Ipilimumab , Recurrencia Local de Neoplasia , Nivolumab , Neoplasias del Cuello Uterino , Humanos , Nivolumab/administración & dosificación , Nivolumab/uso terapéutico , Nivolumab/efectos adversos , Femenino , Ipilimumab/administración & dosificación , Ipilimumab/efectos adversos , Ipilimumab/uso terapéutico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Persona de Mediana Edad , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Adulto , Anciano , Supervivencia sin Progresión , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/secundario , Metástasis de la NeoplasiaRESUMEN
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant tumor with a poor prognosis due to insidious symptoms that make early diagnosis difficult. Despite the combination of multiple treatment modalities, the recurrence and mortality rates of ESCC remain high. Neoadjuvant chemotherapy combined with immunotherapy is an emerging treatment modality that improves the prognosis of patients with ESCC. However, owing to the presence of hyperprogression and pseudoprogression, the currently used methods cannot accurately evaluate the efficacy of this therapy in patients, thus creating an evaluation bias and depriving these patients of the opportunity to benefit. We used untargeted lipidomics to identify the differences in lipid composition between cancer specimens and normal tissue specimens in the neoadjuvant chemotherapy combined with the immunotherapy group and the surgery-alone group of esophageal cancer patients and constructed a prediction model based on sphingomyelin 12:1;2O/30:0 and triglyceride (TG) 60:3 | TG 18:0_24:1_18 using a machine learning approach, which helps to better evaluate the neoadjuvant efficacy of combination therapy and better guide the treatment of ESCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Terapia Neoadyuvante/métodos , Carcinoma de Células Escamosas/tratamiento farmacológico , Resultado del Tratamiento , Lipidómica , Quimioterapia Adyuvante , Esofagectomía/métodos , InmunoterapiaRESUMEN
Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.
Asunto(s)
Carcinoma de Células Escamosas , Diferenciación Celular , Fenretinida , Queratinocitos , Neoplasias de la Boca , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Diferenciación Celular/efectos de los fármacos , Neoplasias de la Boca/patología , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/prevención & control , Fenretinida/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/prevención & control , Carcinoma de Células Escamosas/metabolismo , Quimioprevención/métodos , Receptores de Ácido Retinoico/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Mucosa Bucal/patología , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismoRESUMEN
Oral squamous cell carcinoma (OSCC), which accounts for 90% of all oral cancers, has become a public health crisis worldwide. despite advances in therapeutic interventions, the prognosis remains poor for advanced-stage OSCC. In this study, we investigate the anticancer activity and the mode of action of hellebrigenin in human OSCC. The findings demonstrated that hellebrigenin exerted cytotoxic effects in OSCC cells through cell cycle arrest at the G2/M phase and downregulation of cell cycle-related proteins (cyclins A2, B1 and D3, Cdc2, CDK4 and CDK6). Moreover, hellebrigenin caused activation of PARP and caspase 3, 8 and 9, followed by downregulation of antiapoptotic proteins (Bcl-2 and Bcl-xL) and upregulation of pro-apoptotic proteins (Bax and Bak). The hellebrigenin treatment also increased Fas, DR5, DcR2 and DcR3 expressions in oral cancer cells, indicating the compound causes oral cancer cell apoptosis through both intrinsic and extrinsic pathways. Regarding upstream signalling, hellebrigenin was found to reduce the phosphorylation of ERK, p38, and JNK, indicating that hellebrigenin triggers caspase-mediated apoptosis by downregulating MAPK signalling pathway. Finally, the human apoptosis array findings revealed that hellebrigenin specifically suppressed the expression of XIAP to execute its pro-apoptotic activities. Taken together, the study suggests that hellebrigenin can act as a potent anticancer compound in human OSCC.
Asunto(s)
Bufanólidos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismoRESUMEN
Tumor resistance remains an obstacle to successfully treating oral squamous cell carcinoma (OSCC). Cisplatin is widely used as a cytotoxic drug to treat solid tumors, including advanced OSCC, but with low efficacy due to chemoresistance. Therefore, identifying the pathways that contribute to chemoresistance may show new possibilities for improving the treatment. This work explored the role of the tumor necrosis factor-alpha (TNF-alpha)/NFkB signaling in driving the cisplatin resistance of OSCC and its potential as a pharmacological target to overcome chemoresistance. Differential accessibility analysis demonstrated the enrichment of opened chromatin regions in members of the TNF-alpha/NFkB signaling pathway, and RNA-Seq confirmed the upregulation of TNF-alpha/NFkB signaling in cisplatin-resistant cell lines. NFkB was accumulated in cisplatin-resistant cell lines and in cancer stem cells (CSC), and the administration of TNF-alpha increased the CSC, suggesting that TNF-alpha/NFkB signaling is involved in the accumulation of CSC. TNF-alpha stimulation also increased the histone deacetylases HDAC1 and SIRT1. Cisplatin-resistant cell lines were sensitive to the pharmacological inhibition of NFkB, and low doses of the NFkB inhibitors, CBL0137, and emetine, efficiently reduced the CSC and the levels of SIRT1, increasing histone acetylation. The NFkB inhibitors decreased stemness potential, clonogenicity, migration, and invasion of cisplatin-resistant cell lines. The administration of the emetine significantly reduced the tumor growth of cisplatin-resistant xenograft models, decreasing NFkB and SIRT1, increasing histone acetylation, and decreasing CSC. TNF-alpha/NFkB/SIRT1 signaling regulates the epigenetic machinery by modulating histone acetylation, CSC, and aggressiveness of cisplatin-resistant OSCC and the NFkB inhibition is a potential strategy to treat chemoresistant OSCC.