RESUMEN
Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.
Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genéticaRESUMEN
How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.
Asunto(s)
Huesos/citología , Células Madre Mesenquimatosas/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/citología , Linaje de la Célula , Cruzamientos Genéticos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de SeñalRESUMEN
Insufficient intracellular anabolism is a crucial factor involved in many pathological processes in the body1,2. The anabolism of intracellular substances requires the consumption of sufficient intracellular energy and the production of reducing equivalents. ATP acts as an 'energy currency' for biological processes in cells3,4, and the reduced form of NADPH is a key electron donor that provides reducing power for anabolism5. Under pathological conditions, it is difficult to correct impaired anabolism and to increase insufficient levels of ATP and NADPH to optimum concentrations1,4,6-8. Here we develop an independent and controllable nanosized plant-derived photosynthetic system based on nanothylakoid units (NTUs). To enable cross-species applications, we use a specific mature cell membrane (the chondrocyte membrane (CM)) for camouflage encapsulation. As proof of concept, we demonstrate that these CM-NTUs enter chondrocytes through membrane fusion, avoid lysosome degradation and achieve rapid penetration. Moreover, the CM-NTUs increase intracellular ATP and NADPH levels in situ following exposure to light and improve anabolism in degenerated chondrocytes. They can also systemically correct energy imbalance and restore cellular metabolism to improve cartilage homeostasis and protect against pathological progression of osteoarthritis. Our therapeutic strategy for degenerative diseases is based on a natural photosynthetic system that can controllably enhance cell anabolism by independently providing key energy and metabolic carriers. This study also provides an enhanced understanding of the preparation and application of bioorganisms and composite biomaterials for the treatment of disease.
Asunto(s)
Condrocitos , Osteoartritis , Fotosíntesis , Plantas , Humanos , Adenosina Trifosfato/metabolismo , Condrocitos/metabolismo , NADP/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , Plantas/metabolismo , Cartílago/citología , Cartílago/metabolismo , Homeostasis , Metabolismo Energético , Fusión de MembranaRESUMEN
Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.
Asunto(s)
Diferenciación Celular , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/metabolismo , Animales , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Ratones Noqueados , Cresta Neural/citología , Cresta Neural/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Cráneo/citología , Cráneo/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , beta Catenina/metabolismoRESUMEN
Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.
Asunto(s)
Condrocitos/citología , Células Clonales/citología , Placa de Crecimiento/citología , Nicho de Células Madre/fisiología , Envejecimiento , Animales , Cartílago/citología , Autorrenovación de las Células , Células Clonales/metabolismo , Femenino , Placa de Crecimiento/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , RatonesRESUMEN
The mandible is composed of several musculoskeletal tissues including bone, cartilage, and tendon that require precise patterning to ensure structural and functional integrity. Interestingly, most of these tissues are derived from one multipotent cell population called cranial neural crest cells (CNCCs). How CNCCs are properly instructed to differentiate into various tissue types remains nebulous. To better understand the mechanisms necessary for the patterning of mandibular musculoskeletal tissues we utilized the avian mutant talpid2 (ta2) which presents with several malformations of the facial skeleton including dysplastic tendons, mispatterned musculature, and bilateral ectopic cartilaginous processes extending off Meckel's cartilage. We found an ectopic epithelial BMP signaling domain in the ta2 mandibular prominence (MNP) that correlated with the subsequent expansion of SOX9+ cartilage precursors. These findings were validated with conditional murine models suggesting an evolutionarily conserved mechanism for CNCC-derived musculoskeletal patterning. Collectively, these data support a model in which cilia are required to define epithelial signal centers essential for proper musculoskeletal patterning of CNCC-derived mesenchyme.
Asunto(s)
Mandíbula , Cresta Neural , Animales , Embrión de Pollo , Ratones , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Tipificación del Cuerpo/genética , Cartílago/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/citología , Diferenciación Celular , Pollos/genética , Cilios/metabolismo , Cilios/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/crecimiento & desarrollo , Mandíbula/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Mesodermo/crecimiento & desarrollo , Cresta Neural/citología , Cresta Neural/metabolismo , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genéticaRESUMEN
Bone development starts with condensations of undifferentiated mesenchymal cells that set a framework for future bones within the primordium. In the endochondral pathway, mesenchymal cells inside the condensation differentiate into chondrocytes and perichondrial cells in a SOX9-dependent mechanism. However, the identity of mesenchymal cells outside the condensation and how they participate in developing bones remain undefined. Here we show that mesenchymal cells surrounding the condensation contribute to both cartilage and perichondrium, robustly generating chondrocytes, osteoblasts, and marrow stromal cells in developing bones. Single-cell RNA-seq analysis of Prrx1-cre-marked limb bud mesenchymal cells at E11.5 reveals that Notch effector Hes1 is expressed in a mutually exclusive manner with Sox9 that is expressed in pre-cartilaginous condensations. Analysis of a Notch signaling reporter CBF1:H2B-Venus reveals that peri-condensation mesenchymal cells are active for Notch signaling. In vivo lineage-tracing analysis using Hes1-creER identifies that Hes1+ early mesenchymal cells surrounding the SOX9+ condensation at E10.5 contribute to both cartilage and perichondrium at E13.5, subsequently becoming growth plate chondrocytes, osteoblasts of trabecular and cortical bones, and marrow stromal cells in postnatal bones. In contrast, Hes1+ cells in the perichondrium at E12.5 or E14.5 do not generate chondrocytes within cartilage, contributing to osteoblasts and marrow stromal cells only through the perichondrial route. Therefore, Hes1+ peri-condensation mesenchymal cells give rise to cells of the skeletal lineage through cartilage-dependent and independent pathways, supporting the theory that early mesenchymal cells outside the condensation also play important roles in early bone development.
Asunto(s)
Desarrollo Óseo , Huesos , Cartílago , Diferenciación Celular , Linaje de la Célula , Condrocitos , Células Madre Mesenquimatosas , Factor de Transcripción HES-1 , Animales , Ratones , Huesos/citología , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Factor de Transcripción HES-1/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Receptores Notch/metabolismoRESUMEN
The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.
Asunto(s)
Cartílago , Condrocitos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Condrocitos/citología , Cartílago/citología , Cartílago/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Conejos , Porosidad , Ácido Poliglicólico/química , Neovascularización Fisiológica/efectos de los fármacosRESUMEN
Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos , Campos Electromagnéticos , Osteogénesis , Serina-Treonina Quinasas TOR , Animales , Ratones , Osteogénesis/efectos de la radiación , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/fisiología , Línea Celular , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Cartílago/metabolismo , Cartílago/citología , Cartílago/fisiología , Transducción de Señal , Regulación de la Expresión Génica/efectos de la radiaciónRESUMEN
Mesenchymal stromal cells (MSCs) are promising candidates for cartilage repair therapy due to their self-renewal, chondrogenic, and immunomodulatory capacities. It is widely recognized that a shift from fetal bovine serum (FBS)-containing medium toward a fully chemically defined serum-free (SF) medium would be necessary for clinical applications of MSCs to eliminate issues such as xeno-contamination and batch-to-batch variation. However, there is a notable gap in the literature regarding the evaluation of the chondrogenic ability of SF-expanded MSCs (SF-MSCs). In this study, we compared the in vivo regeneration effect of FBS-MSCs and SF-MSCs in a rat osteochondral defect model and found poor cartilage repair outcomes for SF-MSCs. Consequently, a comparative analysis of FBS-MSCs and SF-MSCs expanded using two SF media, MesenCult™-ACF (ACF), and Custom StemPro™ MSC SFM XenoFree (XF) was conducted in vitro. Our results show that SF-expanded MSCs constitute variations in morphology, surface markers, senescence status, differentiation capacity, and senescence/apoptosis status. Highly proliferative MSCs supported by SF medium do not always correlate to their chondrogenic and cartilage repair ability. Prior determination of the SF medium's ability to support the chondrogenic ability of expanded MSCs is therefore crucial when choosing an SF medium to manufacture MSCs for clinical application in cartilage repair.
Asunto(s)
Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Medio de Cultivo Libre de Suero , Ratas , Células Cultivadas , Proliferación Celular , Trasplante de Células Madre Mesenquimatosas/métodos , Cartílago/citología , Cartílago/metabolismo , Masculino , Suero/metabolismo , Cartílago Articular/citología , Cartílago Articular/metabolismo , Técnicas de Cultivo de Célula/métodosRESUMEN
Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-ß1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-ß1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.
Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Matriz Extracelular , Células Madre Mesenquimatosas , Esferoides Celulares , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Condrogénesis/genética , Matriz Extracelular/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Cultivadas , Gelatina de Wharton/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula/métodos , Ingeniería de Tejidos/métodos , Cartílago/citología , Cartílago/metabolismo , Diente Primario/citología , Diente Primario/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismoRESUMEN
Craniofacial development is a complex morphogenic process that requires highly orchestrated interactions between multiple cell types. Blood vessel-derived angiocrine factors are known to promote proliferation of chondrocytes in Meckel's cartilage to drive jaw outgrowth, however the specific factors controlling this process remain unknown. Here, we use in vitro and ex vivo cell and tissue culture, as well as genetic mouse models, to identify IGF1 as a novel angiocrine factor directing Meckel's cartilage growth during embryonic development. We show that IGF1 is secreted by blood vessels and that deficient IGF1 signalling underlies mandibular hypoplasia in Wnt1-Cre; Vegfafl/fl mice that exhibit vascular and associated jaw defects. Furthermore, conditional removal of IGF1 from blood vessels causes craniofacial defects including a shortened mandible, and reduced proliferation of Meckel's cartilage chondrocytes. This demonstrates a crucial angiocrine role for IGF1 during craniofacial cartilage growth, and identifies IGF1 as a putative therapeutic for jaw and/or cartilage growth disorders.
Asunto(s)
Vasos Sanguíneos/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Desarrollo Maxilofacial/fisiología , Animales , Antígenos CD/genética , Cadherinas/deficiencia , Cadherinas/genética , Cartílago/citología , Cartílago/metabolismo , Cartílago/patología , Línea Celular , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Factor I del Crecimiento Similar a la Insulina/genética , Mandíbula/citología , Mandíbula/metabolismo , Ratones , Ratones Noqueados , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteína Wnt1/deficiencia , Proteína Wnt1/genéticaRESUMEN
Chondrocytes proliferate and mature into hypertrophic chondrocytes. Vascular invasion into the cartilage occurs in the terminal hypertrophic chondrocyte layer, and terminal hypertrophic chondrocytes die by apoptosis or transdifferentiate into osteoblasts. Runx2 is essential for osteoblast differentiation and chondrocyte maturation. Runx2-deficient mice are composed of cartilaginous skeletons and lack the vascular invasion into the cartilage. However, the requirement of Runx2 in the vascular invasion into the cartilage, mechanism of chondrocyte transdifferentiation to osteoblasts, and its significance in bone development remain to be elucidated. To investigate these points, we generated Runx2fl/flCre mice, in which Runx2 was deleted in hypertrophic chondrocytes using Col10a1 Cre. Vascular invasion into the cartilage was similarly observed in Runx2fl/fl and Runx2fl/flCre mice. Vegfa expression was reduced in the terminal hypertrophic chondrocytes in Runx2fl/flCre mice, but Vegfa was strongly expressed in osteoblasts in the bone collar, suggesting that Vegfa expression in bone collar osteoblasts is sufficient for vascular invasion into the cartilage. The apoptosis of terminal hypertrophic chondrocytes was increased and their transdifferentiation was interrupted in Runx2fl/flCre mice, leading to lack of primary spongiosa and osteoblasts in the region at E16.5. The osteoblasts appeared in this region at E17.5 in the absence of transdifferentiation, and the number of osteoblasts and the formation of primary spongiosa, but not secondary spongiosa, reached to levels similar those in Runx2fl/fl mice at birth. The bone structure and volume and all bone histomophometric parameters were similar between Runx2fl/fl and Runx2fl/flCre mice after 6 weeks of age. These findings indicate that Runx2 expression in terminal hypertrophic chondrocytes is not required for vascular invasion into the cartilage, but is for their survival and transdifferentiation into osteoblasts, and that the transdifferentiation is necessary for trabecular bone formation in embryonic and neonatal stages, but not for acquiring normal bone structure and volume in young and adult mice.
Asunto(s)
Transdiferenciación Celular/genética , Condrocitos/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/fisiología , Osteogénesis/genética , Factores de Edad , Animales , Apoptosis/genética , Hueso Esponjoso/citología , Hueso Esponjoso/embriología , Hueso Esponjoso/crecimiento & desarrollo , Cartílago/irrigación sanguínea , Cartílago/citología , Cartílago/metabolismo , Supervivencia Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Periostio/citología , Periostio/embriología , Periostio/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
The endoplasmic reticulum (ER) stress transducer BBF2H7/CREB3L2 is an ER-resident transmembrane transcription factor. In response to physiological ER stress, it is processed at the transmembrane region to generate a cytoplasmic N terminus, which contains a basic leucine zipper (bZIP) domain, and luminal C terminus. The BBF2H7 N terminus functions as a transcription factor to promote the expression of ER-Golgi trafficking-related genes and plays crucial roles in chondrocyte differentiation. Here, we found that the BBF2H7 C terminus is secreted into the extracellular space as a signaling molecule for cell-to-cell communication. The secreted BBF2H7 C terminus directly binds to both Indian hedgehog and its receptor Patched-1, followed by activation of Hedgehog signaling, resulting in promoting the proliferation of neighboring chondrocytes. The dual N- and C-terminal functions of BBF2H7 triggered by physiological ER stress may allow chondrocytes to simultaneously regulate distinct cellular events for differentiation and proliferation in developing cartilage.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cartílago/metabolismo , Proliferación Celular , Condrocitos/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cartílago/citología , Células Cultivadas , Condrocitos/citología , Retículo Endoplásmico/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Estructura Terciaria de ProteínaRESUMEN
Several recent studies have demonstrated that coculture of chondrocytes (CHs) with bone marrow-derived mesenchymal stem cells (MSCs) improves their chondrogenesis. This implies that intercellular communication dictates fate decisions in recipient cells and/or reprograms their metabolic state to support a differentiated function. While this coculture phenomenon is compelling, the differential chondroinductivity of zonal CHs on MSC cocultures, the nature of the molecular cargo, and their transport mechanisms remains undetermined. Here, we demonstrate that juvenile CHs in coculture with adult MSCs promote functional differentiation and improved matrix production. We further demonstrate that close proximity between the two cell types is a prerequisite for this response and that the outcome of this interaction improves viability, chondrogenesis, matrix formation, and homeostasis in the recipient MSCs. Furthermore, we visualized the transfer of intracellular contents from CHs to nearby MSCs and showed that inhibition of extracellular vesicle (EV) transfer blocks the synergistic effect of coculture, identifying EVs as the primary mode of communication in these cocultures. These findings will forward the development of therapeutic agents and more effective delivery systems to promote cartilage repair.
Asunto(s)
Cartílago/citología , Cartílago/fisiología , Condrocitos/citología , Condrocitos/fisiología , Vesículas Extracelulares/fisiología , Células Madre Mesenquimatosas/citología , Animales , Bovinos , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Técnicas de Cocultivo/métodos , Matriz Extracelular/fisiología , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
Chondrogenesis is a highly coordinated event in embryo development, adult homeostasis, and repair of the vertebrate cartilage. Fate decisions and differentiation of chondrocytes accompany differential expression of genes critical for each step of chondrogenesis. SOX9 is a master transcription factor that participates in sequential events in chondrogenesis by regulating a series of downstream factors in a stage-specific manner. SOX9 either works alone or in combination with downstream SOX transcription factors, SOX5 and SOX6 as chondrogenic SOX Trio. SOX9 is reduced in the articular cartilage of patients with osteoarthritis while highly maintained during tumorigenesis of cartilage and bone. Gene therapy using viral and non-viral vectors accompanied by tissue engineering (scaffolds) is a promising tool to regenerate impaired cartilage. Delivery of SOX9 or chondrogenic SOX Trio into cells produces efficient therapeutic effects on chondrogenesis and this event is facilitated by scaffolds. Non-viral vector-guided delivery systems encapsulated or loaded in mechanically stable solid scaffolds are useful for the regeneration of articular cartilage. Here we review major milestones and most recent studies focusing on regulation and function of chondrogenic SOX Trio, during chondrogenesis and cartilage regeneration, and on the development of advanced technologies in gene delivery with tissue engineering to improve efficiency of cartilage repair process.
Asunto(s)
Cartílago/citología , Diferenciación Celular , Condrogénesis , Regeneración , Factor de Transcripción SOX9/metabolismo , Animales , Cartílago/metabolismo , HumanosRESUMEN
The interphase region at the base of the growth plate includes blood vessels, cells and mineralized tissues. In this region, cartilage is mineralized and replaced with bone. Blood vessel extremities permeate this space providing nutrients, oxygen and signaling factors. All these different components form a complex intertwined 3D structure. Here we use cryo-FIB SEM to elaborate this 3D structure without removing the water. As it is challenging to image mineralized and unmineralized tissues in a hydrated state, we provide technical details of the parameters used. We obtained two FIB SEM image stacks that show that the blood vessels are in intimate contact not only with cells, but in some locations also with mineralized tissues. There are abundant red blood cells at the extremities of the vessels. We also documented large multinucleated cells in contact with mineralized cartilage and possibly also with bone. We observed membrane bound mineralized particles in these cells, as well as in blood serum, but not in the hypertrophic chondrocytes. We confirm that there is an open pathway from the blood vessel extremities to the mineralizing cartilage. Based on the sparsity of the mineralized particles, we conclude that mainly ions in solution are used for mineralizing cartilage and bone, but these are augmented by the supply of mineralized particles.
Asunto(s)
Cartílago/ultraestructura , Microscopía por Crioelectrón/métodos , Placa de Crecimiento/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica de Rastreo/métodos , Tibia/ultraestructura , Animales , Membrana Basal/ultraestructura , Vasos Sanguíneos/citología , Vasos Sanguíneos/ultraestructura , Desarrollo Óseo , Calcificación Fisiológica , Cartílago/citología , Cartílago/crecimiento & desarrollo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/ultraestructura , Matriz Extracelular/metabolismo , Matriz Extracelular/ultraestructura , Femenino , Placa de Crecimiento/citología , Placa de Crecimiento/crecimiento & desarrollo , Ratones Endogámicos BALB C , Morfogénesis , Tibia/citología , Tibia/crecimiento & desarrolloRESUMEN
Extracellular vesicles (EVs), mainly exosomes and microvesicles, are bilayer lipids containing biologically active information, including nucleic acids and proteins. They are involved in cell communication and signalling, mediating many biological functions including cell growth, migration and proliferation. Recently, EVs have received great attention in the field of tissue engineering and regenerative medicine. Many in vivo and in vitro studies have attempted to evaluate the chondrogenesis potential of these microstructures and their roles in cartilage regeneration. EVs derived from mesenchymal stem cells (MSCs) or chondrocytes have been found to induce chondrocyte proliferation and chondrogenic differentiation of stem cells in vitro. Preclinical studies have shown that exosomes derived from MSCs have promising results in cartilage repair and in cell-free therapy of osteoarthritis. This review will focus on the in vitro and in vivo chondrogenesis and cartilage regeneration of EVs as well as their potential in the treatment of osteoarthritis.
Asunto(s)
Cartílago/citología , Condrogénesis , Vesículas Extracelulares/fisiología , Medicina Regenerativa , Animales , HumanosRESUMEN
Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.
Asunto(s)
Cartílago/embriología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Esbozos de los Miembros/embriología , Mesodermo/embriología , Animales , Cartílago/citología , Matriz Extracelular/metabolismo , Esbozos de los Miembros/citología , Mesodermo/citología , Proteoglicanos/metabolismoRESUMEN
The mammalian skull is composed of the calvarial bones and cartilages. Malformation of craniofacial cartilage has been identified in multiple human syndromes. However, the mechanisms of their development remain largely unknown. In the present study, we identified Pdgfra as a novel player of chondrocranial cartilage development. Our data show that Pdgfra is required for normal chondrocranial cartilage development. Using tissue-specific genetic tools, we demonstrated that Pdgfra is essential for chondrocyte progenitors formation, but not in mature chondrocytes. Further analysis revealed that Pdgfra regulates chondrocytes progenitors development at two stages: in embryonic mesenchymal stem cells (eMSCs), Pdgfra directs their differentiation toward chondrocyte progenitors; in chondrocytes progenitors, Pdgfra activation promotes cell proliferation. We also found that excessive Pdgfra activity causes ectopic cartilage formation. Our data show that Pdgfra directs eMSCs differentiation via inhibiting Wnt9a transcription and its downstream signaling, and activating Wnt signaling rescues ectopic cartilage phenotype caused by excessive Pdgfra activity. In summary, our study dissected the role of Pdgfra signaling in chondrocranial cartilage formation, and illustrated the underlying mechanisms at multiple stages.