Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174292

RESUMEN

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Asunto(s)
Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/fisiología , Cinetocoros/ultraestructura , Centrómero/fisiología , Proteína A Centromérica/metabolismo , Proteína A Centromérica/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiología , Proteínas Nucleares/metabolismo
2.
Nat Rev Mol Cell Biol ; 13(12): 789-803, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23175282

RESUMEN

Successful cell division requires the precise and timely coordination of chromosomal, cytoskeletal and membrane trafficking events. These processes are regulated by the competing actions of protein kinases and phosphatases. Aurora B is one of the most intensively studied kinases. In conjunction with inner centromere protein (INCENP), borealin (also known as Dasra) and survivin it forms the chromosomal passenger complex (CPC). This complex targets to different locations at differing times during mitosis, where it regulates key mitotic events: correction of chromosome-microtubule attachment errors; activation of the spindle assembly checkpoint; and construction and regulation of the contractile apparatus that drives cytokinesis. Our growing understanding of the CPC has seen it develop from a mere passenger riding on the chromosomes to one of the main controllers of mitosis.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Mitosis , Animales , Aurora Quinasa B , Aurora Quinasas , Proteínas de Ciclo Celular/fisiología , Centrómero/fisiología , Drosophila melanogaster/fisiología , Humanos , Ratones , Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Huso Acromático/fisiología
3.
PLoS Genet ; 17(8): e1009743, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34464380

RESUMEN

Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres.


Asunto(s)
Centrómero/genética , Centrómero/fisiología , Cryptococcus/genética , Autoantígenos/genética , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Cryptococcus/metabolismo , Metilación de ADN , Epigénesis Genética/genética , Epigénesis Genética/fisiología , Epigenómica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(19): 10368-10377, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332163

RESUMEN

Nucleoli, the sites of ribosome biogenesis and the largest structures in human nuclei, form around nucleolar organizer regions (NORs) comprising ribosomal DNA (rDNA) arrays. NORs are located on the p-arms of the five human acrocentric chromosomes. Defining the rules of engagement between these p-arms and nucleoli takes on added significance as describing the three-dimensional organization of the human genome represents a major research goal. Here we used fluorescent in situ hybridization (FISH) and immuno-FISH on metaphase chromosomes from karyotypically normal primary and hTERT-immortalized human cell lines to catalog NORs in terms of their relative rDNA content and activity status. We demonstrate that a proportion of acrocentric p-arms in cell lines and from normal human donors have no detectable rDNA. Surprisingly, we found that all NORs with detectable rDNA are active, as defined by upstream binding factor loading. We determined the nucleolar association status of all NORs during interphase, and found that nucleolar association of acrocentric p-arms can occur independently of rDNA content, suggesting that sequences elsewhere on these chromosome arms drive nucleolar association. In established cancer lines, we characterize a variety of chromosomal rearrangements involving acrocentric p-arms and observe silent, rDNA-containing NORs that are dissociated from nucleoli. In conclusion, our findings indicate that within human nuclei, positioning of all 10 acrocentric chromosomes is dictated by nucleolar association. Furthermore, these nucleolar associations are buffered against interindividual variation in the distribution of rDNA.


Asunto(s)
ADN Ribosómico/genética , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/fisiología , Línea Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrómero/fisiología , Cromosomas Humanos/metabolismo , ADN Ribosómico/metabolismo , Genoma Humano/genética , Genoma Humano/fisiología , Humanos , Hibridación Fluorescente in Situ/métodos , Región Organizadora del Nucléolo/genética , Ribosomas/metabolismo
5.
Plant Cell ; 31(9): 2035-2051, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31311836

RESUMEN

Centromeres mediate the pairing of homologous chromosomes during meiosis; this pairing is particularly challenging for polyploid plants such as hexaploid bread wheat (Triticum aestivum), as their meiotic machinery must differentiate homologs from similar homoeologs. However, the sequence compositions (especially functional centromeric satellites) and evolutionary history of wheat centromeres are largely unknown. Here, we mapped T. aestivum centromeres by chromatin immunoprecipitation sequencing using antibodies to the centromeric-specific histone H3 variant (CENH3); this identified two types of functional centromeric satellites that are abundant in two of the three subgenomes. These centromeric satellites had unit sizes greater than 500 bp and contained specific sites with highly phased binding to CENH3 nucleosomes. Phylogenetic analysis revealed that the satellites have diverged in the three T. aestivum subgenomes, and the more homogeneous satellite arrays are associated with CENH3. Satellite signals decreased and the degree of satellites variation increased from diploid to hexaploid wheat. Moreover, several T. aestivum centromeres lack satellite repeats. Rearrangements, including local expansion and satellite variations, inversions, and changes in gene expression, occurred during the evolution from diploid to tetraploid and hexaploid wheat. These results reveal the asymmetry in centromere organization among the wheat subgenomes, which may play a role in proper homolog pairing during meiosis.


Asunto(s)
Centrómero/fisiología , Poliploidía , Triticum/genética , Triticum/fisiología , Centrómero/clasificación , Cromosomas de las Plantas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Meiosis , Nucleosomas/clasificación , Filogenia , Proteínas de Plantas , Especificidad de la Especie , Triticum/citología
6.
PLoS Biol ; 16(8): e2005388, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080861

RESUMEN

Cell size scales with ploidy in a great range of eukaryotes, but the underlying mechanisms remain unknown. Using various orthogonal single-cell approaches, we show that cell size increases linearly with centromere (CEN) copy number in budding yeast. This effect is due to a G1 delay mediated by increased degradation of Cln3, the most upstream G1 cyclin acting at Start, and specific centromeric signaling proteins, namely Mad3 and Bub3. Mad3 binds both Cln3 and Cdc4, the adaptor component of the Skp1/Cul1/F-box (SCF) complex that targets Cln3 for degradation, these interactions being essential for the CEN-dosage dependent effects on cell size. Our results reveal a pathway that modulates cell size as a function of CEN number, and we speculate that, in cooperation with other CEN-independent mechanisms, it could assist the cell to attain efficient mass/ploidy ratios.


Asunto(s)
Procesos de Crecimiento Celular/fisiología , Centrómero/fisiología , Ciclina G1/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Aumento de la Célula , Centrómero/metabolismo , Ciclinas/metabolismo , Fase G1/fisiología , Regulación Fúngica de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/fisiología , Proteínas Nucleares/metabolismo , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 115(46): 11784-11789, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30373818

RESUMEN

De novo kinetochore assembly, but not template-directed assembly, is dependent on COMA, the kinetochore complex engaged in cohesin recruitment. The slowing of replication fork progression by treatment with phleomycin (PHL), hydroxyurea, or deletion of the replication fork protection protein Csm3 can activate de novo kinetochore assembly in COMA mutants. Centromere DNA looping at the site of de novo kinetochore assembly can be detected shortly after exposure to PHL. Using simulations to explore the thermodynamics of DNA loops, we propose that loop formation is disfavored during bidirectional replication fork migration. One function of replication fork stalling upon encounters with DNA damage or other blockades may be to allow time for thermal fluctuations of the DNA chain to explore numerous configurations. Biasing thermodynamics provides a mechanism to facilitate macromolecular assembly, DNA repair, and other nucleic acid transactions at the replication fork. These loop configurations are essential for sister centromere separation and kinetochore assembly in the absence of the COMA complex.


Asunto(s)
Centrómero/fisiología , Replicación del ADN/fisiología , Cinetocoros/fisiología , Proteínas de Ciclo Celular , Centrómero/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona , ADN/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Cinetocoros/metabolismo , Fleomicinas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Termodinámica , Cohesinas
8.
J Cell Sci ; 131(16)2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115751

RESUMEN

Accurate chromosome segregation critically depends on the formation of attachments between microtubule polymers and each sister chromatid. The kinetochore is the macromolecular complex that assembles at the centromere of each chromosome during mitosis and serves as the link between the DNA and the microtubules. In this Cell Science at a Glance article and accompanying poster, we discuss the activities and molecular players that are involved in generating kinetochore-microtubule attachments, including the initial stages of lateral kinetochore-microtubule interactions and maturation to stabilized end-on attachments. We additionally explore the features that contribute to the ability of the kinetochore to track with dynamic microtubules. Finally, we examine the contributions of microtubule-associated proteins to the organization and stabilization of the mitotic spindle and the control of microtubule dynamics.


Asunto(s)
Cinetocoros/fisiología , Microtúbulos/fisiología , Animales , Centrómero/metabolismo , Centrómero/fisiología , Segregación Cromosómica/fisiología , Humanos , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo
9.
Nat Rev Mol Cell Biol ; 9(1): 33-46, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18097444

RESUMEN

Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.


Asunto(s)
Cinetocoros/fisiología , Cinetocoros/ultraestructura , Microtúbulos/fisiología , Microtúbulos/ultraestructura , Animales , Ciclo Celular/fisiología , Centrómero/fisiología , Centrómero/ultraestructura , Cromosomas/fisiología , Humanos
10.
J Plant Res ; 133(4): 471-478, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32410007

RESUMEN

The centromere and telomere are universal heterochromatic domains; however, the proper positioning of those domains in nuclear space during the mitotic interphase differs among eukaryotes. Consequently, the question arises how and why this difference occurs. Studies over the past 2 decades have identified several nuclear membrane proteins, nucleolar proteins, and the structural maintenance of a chromosome complex as factors involved in the positional control of centromeres and/or telomeres during the mitotic interphase in yeasts, animals, and plants. In this review, with a primary focus on plants, the roles of those factors are summarized, and the biological significance of proper centromere and telomere positionings during the mitotic interphase is discussed in an effort to provide guidance for this question.


Asunto(s)
Centrómero , Plantas , Telómero , Animales , Centrómero/genética , Centrómero/fisiología , Interfase , Plantas/genética , Telómero/genética
11.
Hum Mol Genet ; 26(21): 4244-4256, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973513

RESUMEN

Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Telómero/genética , Anomalías Múltiples/genética , Línea Celular , Centrómero/genética , Centrómero/fisiología , Aberraciones Cromosómicas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Cara/anomalías , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Masculino , Mutación , Linaje , Enfermedades de Inmunodeficiencia Primaria , Telómero/fisiología , Acortamiento del Telómero/genética , ADN Metiltransferasa 3B
12.
Development ; 143(8): 1400-12, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27095496

RESUMEN

The centromere-specific histone CENP-A is the key epigenetic determinant of centromere identity. Whereas most histones are removed from mature sperm, CENP-A is retained to mark paternal centromeres. In Drosophila males we show that the centromere assembly factors CAL1 and CENP-C are required for meiotic chromosome segregation, CENP-A assembly and maintenance on sperm, as well as fertility. In meiosis, CENP-A accumulates with CAL1 in nucleoli. Furthermore, we show that CENP-C normally limits the release of CAL1 and CENP-A from nucleoli for proper centromere assembly in meiotic prophase I. Finally, we show that RNA polymerase I transcription is required for efficient CENP-A assembly in meiosis, as well as centromere tethering to nucleoli.


Asunto(s)
Nucléolo Celular/fisiología , Centrómero/fisiología , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Histonas/fisiología , Meiosis , Animales , Proteína A Centromérica , Drosophila melanogaster , Fertilidad , Masculino , Profase Meiótica I , Mutación , ARN Polimerasa I/metabolismo , Espermatogénesis , Espermatozoides/citología , Transcripción Genética
13.
Genes Cells ; 23(10): 828-838, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30112853

RESUMEN

Histone H2A phosphorylation plays a role both in chromatin condensation during mitosis and in transcriptional activation during the G1/S transition. Bub1 and NHK1/VRK1 have been identified as histone H2A kinases. However, little is known about the importance of histone H2A phosphorylation in chromosome segregation. Here, we expressed recombinant hBUB1 and confirmed that it phosphorylates histone H2A T120 in the in vitro-assembled nucleosome. Knockdown (KD) of BUB1 decreases bulk H2A T120 phosphorylation in HeLa cells, whereas hBUB1 is upregulated during mitosis, which corresponds with H2A T120 phosphorylation. ChIP-qPCR of the DXZ1 centromeric and γ-ALR pericentromeric region showed that BUB1 localizes to this region and increases local H2A T120 phosphorylation during M phase. BUB1 KD did not induce apoptosis but increased the M phase cell population, as detected by flow cytometry. BUB1 KD also caused an abnormal metaphase and telophase, resulting in multinucleated cells and impaired cancer cell growth both in vitro and in vivo. Over-expression of the histone H2A T120D or T120E mutations, which mimic phosphorylated threonine, decreased the number of multinucleated cells caused by BUB1 KD. These results strengthen the apparent importance of BUB1-mediated H2A T120 phosphorylation in normal mitosis.


Asunto(s)
Segregación Cromosómica/fisiología , Histonas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrómero/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Técnicas de Silenciamiento del Gen/métodos , Células HeLa , Heterocromatina , Histonas/metabolismo , Humanos , Interfase , Cinetocoros/metabolismo , Mitosis , Fosforilación , Treonina
14.
Plant Cell ; 28(2): 521-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26813623

RESUMEN

Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes during mitosis and meiosis. Stable binding of cohesin with chromosomes is regulated in part by the opposing actions of CTF7 (CHROMOSOME TRANSMISSION FIDELITY7) and WAPL (WINGS APART-LIKE). In this study, we characterized the interaction between Arabidopsis thaliana CTF7 and WAPL by conducting a detailed analysis of wapl1-1 wapl2 ctf7 plants. ctf7 plants exhibit major defects in vegetative growth and development and are completely sterile. Inactivation of WAPL restores normal growth, mitosis, and some fertility to ctf7 plants. This shows that the CTF7/WAPL cohesin system is not essential for mitosis in vegetative cells and suggests that plants may contain a second mechanism to regulate mitotic cohesin. WAPL inactivation restores cohesin binding and suppresses ctf7-associated meiotic cohesion defects, demonstrating that WAPL and CTF7 function as antagonists to regulate meiotic sister chromatid cohesion. The ctf7 mutation only had a minor effect on wapl-associated defects in chromosome condensation and centromere association. These results demonstrate that WAPL has additional roles that are independent of its role in regulating chromatin-bound cohesin.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Acetiltransferasas/genética , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/fisiología , Centrómero/ultraestructura , Cromatina/genética , Segregación Cromosómica , Meiosis , Mitosis , Mutación , Cohesinas
15.
EMBO Rep ; 18(6): 894-905, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28377371

RESUMEN

The centromere, a chromosomal locus that acts as a microtubule attachment site, is epigenetically specified by the enrichment of CENP-A nucleosomes. Centromere maintenance during the cell cycle requires HJURP-mediated CENP-A deposition, a process regulated by the Mis18 complex (Mis18α/Mis18ß/Mis18BP1). Spatial and temporal regulation of Mis18 complex assembly is crucial for its centromere association and function. Here, we provide the molecular basis for the assembly and regulation of the Mis18 complex. We show that the N-terminal region of Mis18BP1 spanning amino acid residues 20-130 directly interacts with Mis18α/ß to form the Mis18 complex. Within Mis18α/ß, the Mis18α MeDiY domain can directly interact with Mis18BP1. Mis18α/ß forms a hetero-hexamer with 4 Mis18α and 2 Mis18ß. However, only two copies of Mis18BP1 interact with Mis18α/ß to form a hetero-octameric assembly, highlighting the role of Mis18 oligomerization in limiting the number of Mis18BP1 within the Mis18 complex. Furthermore, we demonstrate the involvement of consensus Cdk1 phosphorylation sites on Mis18 complex assembly and thus provide a rationale for cell cycle-regulated timing of Mis18 assembly and CENP-A deposition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/farmacocinética , Proteína A Centromérica/metabolismo , Regulación de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína Quinasa CDC2/genética , Ciclo Celular/genética , Centrómero/genética , Centrómero/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Nucleosomas , Fosforilación , Unión Proteica
16.
J Cell Physiol ; 233(2): 1468-1480, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28548701

RESUMEN

Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.


Asunto(s)
Colon/fisiología , Enterocitos/fisiología , Células Epiteliales/fisiología , Riñón/fisiología , Microtúbulos/fisiología , Microvellosidades/fisiología , Citoesqueleto de Actina/fisiología , Animales , Polaridad Celular , Centrómero/fisiología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/ultraestructura , Perros , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Enterocitos/ultraestructura , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Humanos , Riñón/efectos de los fármacos , Riñón/ultraestructura , Células de Riñón Canino Madin Darby , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microvellosidades/efectos de los fármacos , Microvellosidades/metabolismo , Nocodazol/farmacología , Factores de Tiempo , Moduladores de Tubulina/farmacología
17.
Chromosoma ; 126(5): 559-575, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688039

RESUMEN

Centromeres are the site of assembly of the kinetochore, which directs chromosome segregation during cell division. Active centromeres are characterized by the presence of nucleosomes containing CENP-A and a specific chromatin environment that resembles that of active genes. Recent work using human artificial chromosomes (HAC) sheds light on the fine balance of different histone post-translational modifications and transcription that exists at centromeres for kinetochore assembly and maintenance. Here, we review the use of HAC technology to understand centromere assembly and function. We put particular emphasis on studies using the alphoidtetO HAC, whose centromere can be specifically modified for epigenetic engineering studies.


Asunto(s)
Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Cromosomas Artificiales Humanos , Técnicas Genéticas , Centrómero/fisiología , Epigénesis Genética , Humanos
18.
Chromosoma ; 126(4): 519-529, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834006

RESUMEN

Cytogenetics has historically played a key role in research on squirrel monkey (genus Saimiri) evolutionary biology. Squirrel monkeys have a diploid number of 2n = 44, but vary in fundamental number (FN). Apparently, differences in FN have phylogenetic implications and are correlated with geographic regions. A number of hypothetical mechanisms were proposed to explain difference in FN: translocations, heterochromatin, or, most commonly, pericentric inversions. Recently, an additional mechanism, centromere repositioning, was discovered, which can alter chromosome morphology and FN. Here, we used chromosome banding, chromosome painting, and BAC-FISH to test these hypotheses. We demonstrate that centromere repositioning on chromosomes 5 and 15 is the mechanism that accounts for differences in FN. Current phylogenomic trees of platyrrhines provide a temporal framework for evolutionary new centromeres (ENC) in Saimiri. The X-chromosome ENC could be up to 15 million years (my) old that on chromosome 5 as recent as 0.3 my. The chromosome 15 ENC is intermediate, as young as 2.24 my. All ENC have abundant satellite DNAs indicating that the maturation process was fairly rapid. Callithrix jacchus was used as an outgroup for the BAC-FISH data analysis. Comparison with scaffolds from the S. boliviensis genome revealed an error in the last marmoset genome release. Future research including at the sequence level will provide better understanding of chromosome evolution in Saimiri and other platyrrhines. Probably other cases of differences in chromosome morphology and FN, both within and between taxa, will be shown to be due to centromere repositioning and not pericentric inversions.


Asunto(s)
Centrómero/genética , Cariotipo , Saimiri/genética , Animales , Centrómero/fisiología , Inversión Cromosómica , Pintura Cromosómica , Análisis Citogenético , Evolución Molecular , Filogenia , Translocación Genética
19.
Chromosoma ; 126(4): 443-455, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27858158

RESUMEN

The centromere is essential for the segregation of chromosomes, as it serves as attachment site for microtubules to mediate chromosome segregation during mitosis and meiosis. In most organisms, the centromere is restricted to one chromosomal region that appears as primary constriction on the condensed chromosome and is partitioned into two chromatin domains: The centromere core is characterized by the centromere-specific histone H3 variant CENP-A (also called cenH3) and is required for specifying the centromere and for building the kinetochore complex during mitosis. This core region is generally flanked by pericentric heterochromatin, characterized by nucleosomes containing H3 methylated on lysine 9 (H3K9me) that are bound by heterochromatin proteins. During mitosis, these two domains together form a three-dimensional structure that exposes CENP-A-containing chromatin to the surface for interaction with the kinetochore and microtubules. At the same time, this structure supports the tension generated during the segregation of sister chromatids to opposite poles. In this review, we discuss recent insight into the characteristics of the centromere, from the specialized chromatin structures at the centromere core and the pericentromere to the three-dimensional organization of these regions that make up the functional centromere.


Asunto(s)
Centrómero/química , Cromatina/química , Nucleosomas/química , Animales , Centrómero/fisiología , Cromatina/fisiología , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Nucleosomas/fisiología
20.
Mol Biol Evol ; 34(7): 1669-1681, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333343

RESUMEN

Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.


Asunto(s)
Centrómero/genética , Cromosomas Humanos Par 2 , Centrómero/fisiología , ADN Antiguo , Evolución Molecular , Humanos , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA