Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.056
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744280

RESUMEN

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Asunto(s)
Centrómero , Cohesinas , Cinetocoros , Mitosis , Animales , Humanos , Ratones , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Pollos , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/química , Segregación Cromosómica , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
2.
Cell ; 187(13): 3262-3283.e23, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38815580

RESUMEN

In eukaryotes, the Suv39 family of proteins tri-methylate lysine 9 of histone H3 (H3K9me) to form constitutive heterochromatin. However, how Suv39 proteins are nucleated at heterochromatin is not fully described. In the fission yeast, current models posit that Argonaute1-associated small RNAs (sRNAs) nucleate the sole H3K9 methyltransferase, Clr4/SUV39H, to centromeres. Here, we show that in the absence of all sRNAs and H3K9me, the Mtl1 and Red1 core (MTREC)/PAXT complex nucleates Clr4/SUV39H at a heterochromatic long noncoding RNA (lncRNA) at which the two H3K9 deacetylases, Sir2 and Clr3, also accumulate by distinct mechanisms. Iterative cycles of H3K9 deacetylation and methylation spread Clr4/SUV39H from the nucleation center in an sRNA-independent manner, generating a basal H3K9me state. This is acted upon by the RNAi machinery to augment and amplify the Clr4/H3K9me signal at centromeres to establish heterochromatin. Overall, our data reveal that lncRNAs and RNA quality control factors can nucleate heterochromatin and function as epigenetic silencers in eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular , Heterocromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Metiltransferasas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ARN de Hongos/genética , ARN Interferente Pequeño/genética
3.
Cell ; 184(19): 4904-4918.e11, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34433012

RESUMEN

Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.


Asunto(s)
Proteína B del Centrómero/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Evolución Biológica , Sistemas CRISPR-Cas/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/química , Cromosomas de los Mamíferos/metabolismo , Femenino , Heterocromatina/metabolismo , Cinetocoros/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Oocitos/metabolismo , Dominios Proteicos
4.
Cell ; 178(3): 624-639.e19, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348889

RESUMEN

Recent breakthroughs with synthetic budding yeast chromosomes expedite the creation of synthetic mammalian chromosomes and genomes. Mammals, unlike budding yeast, depend on the histone H3 variant, CENP-A, to epigenetically specify the location of the centromere-the locus essential for chromosome segregation. Prior human artificial chromosomes (HACs) required large arrays of centromeric α-satellite repeats harboring binding sites for the DNA sequence-specific binding protein, CENP-B. We report the development of a type of HAC that functions independently of these constraints. Formed by an initial CENP-A nucleosome seeding strategy, a construct lacking repetitive centromeric DNA formed several self-sufficient HACs that showed no uptake of genomic DNA. In contrast to traditional α-satellite HAC formation, the non-repetitive construct can form functional HACs without CENP-B or initial CENP-A nucleosome seeding, revealing distinct paths to centromere formation for different DNA sequence types. Our developments streamline the construction and characterization of HACs to facilitate mammalian synthetic genome efforts.


Asunto(s)
Centrómero/metabolismo , Cromosomas Artificiales Humanos/metabolismo , ADN Satélite/metabolismo , Sitios de Unión , Línea Celular Tumoral , Centrómero/genética , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteína B del Centrómero/deficiencia , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , Epigénesis Genética , Humanos , Nucleosomas/química , Nucleosomas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
5.
Cell ; 173(4): 839-850.e18, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628142

RESUMEN

Maize abnormal chromosome 10 (Ab10) encodes a classic example of true meiotic drive that converts heterochromatic regions called knobs into motile neocentromeres that are preferentially transmitted to egg cells. Here, we identify a cluster of eight genes on Ab10, called the Kinesin driver (Kindr) complex, that are required for both neocentromere motility and preferential transmission. Two meiotic drive mutants that lack neocentromere activity proved to be kindr epimutants with increased DNA methylation across the entire gene cluster. RNAi of Kindr induced a third epimutant and corresponding loss of meiotic drive. Kinesin gliding assays and immunolocalization revealed that KINDR is a functional minus-end-directed kinesin that localizes specifically to knobs containing 180 bp repeats. Sequence comparisons suggest that Kindr diverged from a Kinesin-14A ancestor ∼12 mya and has driven the accumulation of > 500 Mb of knob repeats and affected the segregation of thousands of genes linked to knobs on all 10 chromosomes.


Asunto(s)
Centrómero/metabolismo , Cinesinas/metabolismo , Meiosis , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Centrómero/genética , Cromosomas de las Plantas , Evolución Molecular , Haplotipos , Hibridación Fluorescente in Situ , Cinesinas/antagonistas & inhibidores , Cinesinas/clasificación , Cinesinas/genética , Modelos Genéticos , Mutagénesis , Filogenia , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del Genoma , Zea mays/genética
6.
Cell ; 171(1): 72-84.e13, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28938124

RESUMEN

The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives the recruitment of high levels of cohesin to link sister chromatids together. We have exploited this system to determine the mechanism of specific cohesin recruitment. We show that phosphorylation of the Ctf19 kinetochore protein by a conserved kinase, DDK, provides a binding site for the Scc2/4 cohesin loading complex, thereby directing cohesin loading to centromeres. A similar mechanism targets cohesin to chromosomes in vertebrates. These findings represent a complete molecular description of targeted cohesin loading, a phenomenon with wide-ranging importance in chromosome segregation and, in multicellular organisms, transcription regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrómero/metabolismo , Proteínas del Citoesqueleto/metabolismo , Complejos Multiproteicos/metabolismo , Fosforilación , Filogenia , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Difracción de Rayos X , Cohesinas
7.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38614097

RESUMEN

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Asunto(s)
Centrómero , Centrómero/metabolismo , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Humanos , Separación de Fases
8.
Mol Cell ; 84(11): 2017-2035.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38795706

RESUMEN

Whether and how histone post-translational modifications and the proteins that bind them drive 3D genome organization remains unanswered. Here, we evaluate the contribution of H3K9-methylated constitutive heterochromatin to 3D genome organization in Drosophila tissues. We find that the predominant organizational feature of wild-type tissues is the segregation of euchromatic chromosome arms from heterochromatic pericentromeres. Reciprocal perturbation of HP1a⋅H3K9me binding, using a point mutation in the HP1a chromodomain or replacement of the replication-dependent histone H3 with H3K9R mutant histones, revealed that HP1a binding to methylated H3K9 in constitutive heterochromatin is required to limit contact frequency between pericentromeres and chromosome arms and regulate the distance between arm and pericentromeric regions. Surprisingly, the self-association of pericentromeric regions is largely preserved despite the loss of H3K9 methylation and HP1a occupancy. Thus, the HP1a⋅H3K9 interaction contributes to but does not solely drive the segregation of euchromatin and heterochromatin inside the nucleus.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Proteínas de Drosophila , Drosophila melanogaster , Heterocromatina , Histonas , Heterocromatina/metabolismo , Heterocromatina/genética , Animales , Histonas/metabolismo , Histonas/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metilación , Eucromatina/metabolismo , Eucromatina/genética , Centrómero/metabolismo , Centrómero/genética , Unión Proteica , Genoma de los Insectos , Segregación Cromosómica , Procesamiento Proteico-Postraduccional
9.
Mol Cell ; 83(3): 352-372, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640769

RESUMEN

Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.


Asunto(s)
Centrómero , Replicación del ADN , Origen de Réplica , Centrómero/metabolismo , Complejo de Reconocimiento del Origen/genética , Origen de Réplica/genética , Saccharomyces cerevisiae/genética
10.
Mol Cell ; 83(4): 523-538.e7, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36702125

RESUMEN

Centromeres are essential for chromosome segregation in most animals and plants yet are among the most rapidly evolving genome elements. The mechanisms underlying this paradoxical phenomenon remain enigmatic. Here, we report that human centromeres innately harbor a striking enrichment of DNA breaks within functionally active centromere regions. Establishing a single-cell imaging strategy that enables comparative assessment of DNA breaks at repetitive regions, we show that centromeric DNA breaks are induced not only during active cellular proliferation but also de novo during quiescence. Markedly, centromere DNA breaks in quiescent cells are resolved enzymatically by the evolutionarily conserved RAD51 recombinase, which in turn safeguards the specification of functional centromeres. This study highlights the innate fragility of centromeres, which may have been co-opted over time to reinforce centromere specification while driving rapid evolution. The findings also provide insights into how fragile centromeres are likely to contribute to human disease.


Asunto(s)
Centrómero , ADN , Animales , Humanos , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Recombinación Genética
11.
Mol Cell ; 83(13): 2188-2205.e13, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37295434

RESUMEN

Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.


Asunto(s)
Centrómero , Cinetocoros , Humanos , Cinetocoros/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromatina , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo
12.
Cell ; 160(1-2): 204-18, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25533783

RESUMEN

We characterize the Polycomb system that assembles repressive subtelomeric domains of H3K27 methylation (H3K27me) in the yeast Cryptococcus neoformans. Purification of this PRC2-like protein complex reveals orthologs of animal PRC2 components as well as a chromodomain-containing subunit, Ccc1, which recognizes H3K27me. Whereas removal of either the EZH or EED ortholog eliminates H3K27me, disruption of mark recognition by Ccc1 causes H3K27me to redistribute. Strikingly, the resulting pattern of H3K27me coincides with domains of heterochromatin marked by H3K9me. Indeed, additional removal of the C. neoformans H3K9 methyltransferase Clr4 results in loss of both H3K9me and the redistributed H3K27me marks. These findings indicate that the anchoring of a chromatin-modifying complex to its product suppresses its attraction to a different chromatin type, explaining how enzymes that act on histones, which often harbor product recognition modules, may deposit distinct chromatin domains despite sharing a highly abundant and largely identical substrate-the nucleosome.


Asunto(s)
Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Secuencia de Aminoácidos , Centrómero/metabolismo , Cryptococcus neoformans/genética , Heterocromatina/metabolismo , Código de Histonas , N-Metiltransferasa de Histona-Lisina/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
13.
Nature ; 629(8010): 136-145, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570684

RESUMEN

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Asunto(s)
Centrómero , Evolución Molecular , Variación Genética , Animales , Humanos , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Metilación de ADN/genética , ADN Satélite/genética , Cinetocoros/metabolismo , Macaca/genética , Pan troglodytes/genética , Polimorfismo de Nucleótido Simple/genética , Pongo/genética , Masculino , Femenino , Estándares de Referencia , Inmunoprecipitación de Cromatina , Haplotipos , Mutación , Amplificación de Genes , Alineación de Secuencia , Cromatina/genética , Cromatina/metabolismo , Especificidad de la Especie
14.
Mol Cell ; 82(11): 2113-2131.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35525244

RESUMEN

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.


Asunto(s)
Cinetocoros , Nucleosomas , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Microscopía por Crioelectrón , Humanos , Cinetocoros/metabolismo , Nucleosomas/genética
15.
Mol Cell ; 82(9): 1751-1767.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35320753

RESUMEN

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , Autoantígenos/genética , Autoantígenos/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Humanos
16.
Annu Rev Genet ; 55: 331-348, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34496611

RESUMEN

Centromeres are essential to genome inheritance, serving as the site of kinetochore assembly and coordinating chromosome segregation during cell division. Abnormal centromere function is associated with birth defects, infertility, and cancer. Normally, centromeres are assembled and maintained at the same chromosomal location. However, ectopic centromeres form spontaneously at new genomic locations and contribute to genome instability and developmental defects as well as to acquired and congenital human disease. Studies in model organisms have suggested that certain regions of the genome, including pericentromeres, heterochromatin, and regions of open chromatin or active transcription, support neocentromere activation. However, there is no universal mechanism that explains neocentromere formation. This review focuses on recent technological and intellectual advances in neocentromere research and proposes future areas of study. Understanding neocentromere biology will provide a better perspective on chromosome and genome organization and functional context for information generated from the Human Genome Project, ENCODE, and other large genomics consortia.


Asunto(s)
Centrómero , Cromatina , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina/genética , Epigénesis Genética , Epigenómica , Humanos
17.
Cell ; 158(2): 397-411, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25036634

RESUMEN

To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ciclo Celular , Línea Celular , Proteína A Centromérica , Quinasas Ciclina-Dependientes/metabolismo , Inestabilidad Genómica , Células HeLa , Humanos , Quinasa Tipo Polo 1
18.
Nature ; 618(7965): 557-565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198485

RESUMEN

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Asunto(s)
Arabidopsis , Centrómero , Elementos Transponibles de ADN , ADN Satélite , Evolución Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrómero/genética , Centrómero/metabolismo , Elementos Transponibles de ADN/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , ADN Satélite/genética , Conversión Génica
19.
Nature ; 623(7986): 347-355, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914934

RESUMEN

Reproductive isolation occurs when the genomes of two populations accumulate genetic incompatibilities that prevent interbreeding1,2. Understanding of hybrid incompatibility at the cell biology level is limited, particularly in the case of hybrid female sterility3. Here we find that species divergence in condensin regulation and centromere organization between two mouse species, Mus musculus domesticus and Mus spretus, drives chromosome decondensation and mis-segregation in their F1 hybrid oocytes, reducing female fertility. The decondensation in hybrid oocytes was especially prominent at pericentromeric major satellites, which are highly abundant at M. m. domesticus centromeres4-6, leading to species-specific chromosome mis-segregation and egg aneuploidy. Consistent with the condensation defects, a chromosome structure protein complex, condensin II7,8, was reduced on hybrid oocyte chromosomes. We find that the condensin II subunit NCAPG2 was specifically reduced in the nucleus in prophase and that overexpressing NCAPG2 rescued both the decondensation and egg aneuploidy phenotypes. In addition to the overall reduction in condensin II on chromosomes, major satellites further reduced condensin II levels locally, explaining why this region is particularly prone to decondensation. Together, this study provides cell biological insights into hybrid incompatibility in female meiosis and demonstrates that condensin misregulation and pericentromeric satellite expansion can establish a reproductive isolating barrier in mammals.


Asunto(s)
Adenosina Trifosfatasas , Centrómero , Proteínas de Unión al ADN , Complejos Multiproteicos , Animales , Femenino , Ratones/clasificación , Ratones/genética , Adenosina Trifosfatasas/metabolismo , Aneuploidia , Centrómero/genética , Centrómero/metabolismo , Segregación Cromosómica , Cromosomas de los Mamíferos/genética , Cromosomas de los Mamíferos/metabolismo , Proteínas de Unión al ADN/metabolismo , Hibridación Genética , Infertilidad Femenina/genética , Meiosis/genética , Complejos Multiproteicos/metabolismo , Oocitos/metabolismo , Profase/genética , Núcleo Celular/genética
20.
EMBO J ; 43(12): 2424-2452, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714893

RESUMEN

The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Cromátides , Proteínas Cromosómicas no Histona , Cinetocoros , Cinetocoros/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromátides/metabolismo , Cromátides/genética , Centrómero/metabolismo , Cohesinas , Células HeLa , Unión Proteica , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA