Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 777
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Acc Chem Res ; 56(11): 1256-1262, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36696370

RESUMEN

The study discussed herein describes the synthesis of halogenated chalcones as potential chemotherapeutics. The synthesis work was conducted by undergraduate students participating in an Organic Chemistry II laboratory course at Tuskegee University, while the biological assays were conducted by students enrolled in a Molecular Biology I laboratory course. Chalcones were synthesized via aldol condensation and purified from hot ethanol. The impetus for the work was the fact that Tuskegee University sits positioned within the Black Belt of Alabama which, in addition to being an area of fertile soil and excellent farmland, is also an area rife with health disparities that particularly affect African-Americans. Breast cancer, specifically triple-negative breast cancer, affects African-American women at a higher rate than any other ethnic group. The work described herein addresses a practical problem [teaching undergraduate students about the interface of synthetic techniques, synthesis of specific classes of compounds, functional groups, and their relation to biological activity], as well an existential problem [the prevalence of breast cancer among African-American women, and the need to develop targeted treatments]. One of the chief aims of this approach of integrating these ideas into our laboratory courses was to facilitate the understanding of translational science, i.e. taking chalcones from benchtop to potential therapies for breast cancer. Another aim of the current approach was to, in essence, create a research problem based course and concomitantly use the results of the experiments performed in the course as a way to address the dearth of research funding that HBCUs typically receive. The pharmacological activities of chalcones and their derivatives are well documented. They are an important class of natural products that occur in edible plant derivatives such as spices, teas, fruits and various vegetables. In vitro studies have shown that chalcones inhibit proliferation of breast cancer cells by inducing apoptosis and blocking cell progression. The synthesis of chalcones with aromatic substituents has been investigated, and electron rich chalcones, i.e., chalcones with donors attached to the aromatic rings, have been studied extensively. The effect that adding electron withdrawing groups to the chalcone structural motif has on the antiproliferation ability of chalcones had been only minimally investigated at the time that our studies were being conducted. We examined the introduction of chlorine to the aromatic system of the chalcone and how these electron withdrawing substituents affect the chalcone's antiproliferative ability. It was discovered that (E)-3-(4-chlorophenyl)-1-phenylprop-2-en-1-one inhibited MDA-MB-231 cell progression in a dose dependent manner and outperformed the unsubstituted (E)-1,3-diphenyl-2-propen-1-one (1) at concentrations ranging from 0 µg/mL to 20 µg/mL. Cell death was determined by MTT assay.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Chalcona , Chalconas , Femenino , Humanos , Chalconas/farmacología , Chalconas/química , Chalcona/química , Chalcona/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Relación Estructura-Actividad
2.
J Biol Inorg Chem ; 29(2): 187-199, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38607392

RESUMEN

Aß42 plaque formation is one of the preliminary pathologic events that occur post traumatic brain injury (TBI) which is also among the most noteworthy hallmarks of AD. Their pre symptomatic detection is therefore vital for better disease management. Chalcone-picolinic acid chelator derivative, 6-({[(6-carboxypyridin-2-yl)methyl](2-{4-[(2E)-3-[4-(dimethyl amino)phenyl]prop-2-enoyl]phenoxy}ethyl)amino}methyl)pyridine-2-carboxylic acid, Py-chal was synthesized to selectively identify amyloid plaques formed post head trauma using SPECT imaging by stable complexation to 99mTc with > 97% efficiency without compromising amyloid specificity. The binding potential of the Py-chal ligand to amyloid plaques remained high as confirmed by in vitro binding assay and photophysical spectra. Further, the Py-chal complex stained amyloid aggregates in the brain sections of rmTBI mice model. In vivo scintigraphy in TBI mice model displayed high uptake followed by high retention while the healthy rabbits displayed higher brain uptake followed by a rapid washout attributed to absence of amyloid plaques. Higher uptake in brain of TBI model was also confirmed by ex vivo biodistribution analysis wherein brain uptake of 3.38 ± 0.2% ID/g at 2 min p.i. was observed for TBI mice model. This was followed by prolonged retention and more than twofold higher activity as compared to sham mice brain. This preliminary data suggests the specificity of the radiotracer for amyloid detection post head trauma and applicability of 99mTc labeled Py-chal complex for TBI-induced ß-amyloid SPECT imaging.


Asunto(s)
Péptidos beta-Amiloides , Tomografía Computarizada de Emisión de Fotón Único , Animales , Péptidos beta-Amiloides/metabolismo , Ratones , Tecnecio/química , Distribución Tisular , Chalcona/química , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/farmacocinética , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Traumatismos Craneocerebrales/diagnóstico por imagen , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
3.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875185

RESUMEN

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Chalcona/química , Chalcona/farmacología , Chalcona/análogos & derivados , Chalconas/química , Chalconas/farmacología , Chalconas/administración & dosificación , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Memoria/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Piridinas/química , Piridinas/farmacología , Piridinas/administración & dosificación
4.
Analyst ; 149(12): 3372-3379, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38712551

RESUMEN

A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.


Asunto(s)
Colorantes Fluorescentes , Glutatión , Imagen Óptica , Xantenos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/síntesis química , Xantenos/química , Humanos , Glutatión/química , Imagen Óptica/métodos , Chalconas/química , Células HeLa , Lisosomas/química , Lisosomas/metabolismo , Rayos Infrarrojos , Chalcona/química
5.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750906

RESUMEN

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Asunto(s)
Acetamidas , Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Acetamidas/farmacología , Acetamidas/síntesis química , Acetamidas/química , Apoptosis/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Relación Dosis-Respuesta a Droga , Chalcona/farmacología , Chalcona/química , Chalcona/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos
6.
Bioorg Chem ; 149: 107498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805911

RESUMEN

Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 µΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 µΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias del Cuello Uterino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Animales , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Células HeLa , Apoptosis/efectos de los fármacos , Ratones
7.
Bioorg Chem ; 147: 107310, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583249

RESUMEN

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Asunto(s)
Antineoplásicos , Proliferación Celular , Cisplatino , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Imidazoles , Neoplasias del Cuello Uterino , Humanos , Cisplatino/farmacología , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/química , Imidazoles/síntesis química , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Estructura Molecular , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Polimerizacion/efectos de los fármacos , Apoptosis/efectos de los fármacos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/metabolismo , Línea Celular Tumoral , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo
8.
Curr Microbiol ; 81(8): 258, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960917

RESUMEN

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 µg/mL and 125 µg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.


Asunto(s)
Sinergismo Farmacológico , Imidazoles , Pruebas de Sensibilidad Microbiana , Probióticos , Probióticos/farmacología , Imidazoles/farmacología , Imidazoles/química , Chalcona/farmacología , Chalcona/química , Chalcona/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Chalconas/farmacología , Chalconas/química , Tracto Gastrointestinal/microbiología , Humanos , Bacterias/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química
9.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865941

RESUMEN

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Asunto(s)
Incrustaciones Biológicas , Larva , Mytilus , Animales , Incrustaciones Biológicas/prevención & control , Larva/efectos de los fármacos , Mytilus/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Relación Estructura-Actividad , Chalcona/farmacología , Chalcona/análogos & derivados , Chalcona/química , Desinfectantes/toxicidad , Desinfectantes/farmacología
10.
Luminescence ; 39(7): e4823, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38965884

RESUMEN

A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.


Asunto(s)
Espectrometría de Fluorescencia , Tiofenos , Tiofenos/química , Hierro/análisis , Hierro/química , Estructura Molecular , Compuestos Férricos/química , Compuestos Férricos/análisis , Chalconas/química , Chalconas/análisis , Chalcona/química , Colorantes Fluorescentes/química
11.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38407541

RESUMEN

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Asunto(s)
Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Pruebas de Sensibilidad Microbiana , Streptococcus mutans , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/enzimología , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Estructura-Actividad , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Estructura Molecular , Modelos Moleculares , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Relación Dosis-Respuesta a Droga
12.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457745

RESUMEN

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Asunto(s)
Antituberculosos , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Triazoles , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Relación Estructura-Actividad , Enterococcus faecalis/efectos de los fármacos , Estructura Molecular , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química
13.
Arch Pharm (Weinheim) ; 357(5): e2300640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227398

RESUMEN

Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Chalconas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Relación Estructura-Actividad , Chalconas/farmacología , Chalconas/química , Chalcona/farmacología , Chalcona/química , Animales , Proliferación Celular/efectos de los fármacos , Estructura Molecular
14.
Arch Pharm (Weinheim) ; 357(7): e2300627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38593298

RESUMEN

Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 µM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 µM) was near that of the reference drug erlotinib (IC50 = 0.052 µM) whereas compound 9b (IC50 = 0.045 µM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas , Quinazolinas , Triazoles , Humanos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Triazoles/farmacología , Triazoles/química , Triazoles/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Línea Celular Tumoral , Estructura Molecular , Relación Dosis-Respuesta a Droga , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Células HCT116 , Acetamidas/farmacología , Acetamidas/química , Acetamidas/síntesis química , Células MCF-7 , Chalcona/farmacología , Chalcona/química , Chalcona/síntesis química
15.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38297894

RESUMEN

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Chalconas , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Inhibidores de Histona Desacetilasas , Quinazolinas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinazolinas/farmacología , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Histona Desacetilasas/metabolismo , Chalcona/farmacología , Chalcona/química , Chalcona/síntesis química
16.
J Org Chem ; 88(21): 15318-15325, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37851925

RESUMEN

Four novel compounds, conarubins A-D (1-4), were isolated from the whole plants of Conamomum rubidum collected in Vietnam. Their structures were elucidated by extensive spectroscopic analyses and by quantum chemical calculations of NMR and ECD. Compounds 1 and 2 were the first examples of monoterpene-monoterpene-chalcone conjugates in nature, whereas compound 4 was an unprecedented monoterpene-substituted chalcone containing a 3,4,5-trioxygenated cyclohexa-2,5-diene-1-one ring. The anti-inflammatory and cytotoxic activities of all isolates were investigated.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Chalcona/farmacología , Chalcona/química , Monoterpenos/farmacología , Monoterpenos/química , Chalconas/química , Antiinflamatorios/farmacología , Espectroscopía de Resonancia Magnética , Estructura Molecular
17.
Bioorg Med Chem Lett ; 95: 129467, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666364

RESUMEN

Chalcones and their derivatives are a privileged scaffold in medicinal chemistry, demonstrating numerous biological activities. These molecules have shown significant potential toward the development of novel cancer therapies. While much is known about modification to the chalcone aryl rings, little is known about conformations of the bridge between the aryl rings. Here we report the synthesis and biological evaluation of a series of molecules with flexible and rigid bridge conformations. Crystal structures of a select group of molecules were determined. Flexibility in the chalcone bridge containing the enone moiety was determined to be important for activity. Screening in three distinct cancer cell lines showed significant differences in the activity between the flexible and rigid conformations. Crystal structures suggest an increase in bond rotation and weakened π-bonding in the flexible chalcone bridge, which may contribute to the stronger anti-proliferative activity.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Chalcona/farmacología , Chalcona/química , Chalconas/química , Relación Estructura-Actividad , Antineoplásicos/química
18.
Bioorg Med Chem Lett ; 85: 129239, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36924947

RESUMEN

A series of 5' monosubstituted chalcone derivatives were synthesized to explore their antitumor activity and mechanism of action in vitro. The structures of 5' monosubstituted chalcone derivatives synthesized by reactions such as Suzuki coupling were confirmed by 1H NMR, 13C NMR and MS, and the target compounds were not reported in the literature. The antitumor activity of the aimed compounds was tested by MTT colorimetric method in vitro. Compound 5c has an IC50 value of 1.97 µM for K562 and a value of 2.23 µM for HepG2. Further investigation of the mechanism of action of compound 5c was found to have effects on K562 cell morphology, proliferation, apoptosis, cell cycle, and wound healing of HepG2 cells. The results showed that compound 5c has research value in antitumor activity and mechanism of action in vitro.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Chalcona/química , Chalconas/química , Relación Estructura-Actividad , Proliferación Celular , Antineoplásicos/química , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
19.
Bioorg Med Chem ; 96: 117516, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944413

RESUMEN

Cancer still represents a serious public health problem and one of the main problems related to the worsening of this disease is the ability of some tumors to develop metastasis. In this work, we synthesized a new series of chalcones and isoxazoles derived from eugenol and analogues as molecular hybrids and these compounds were evaluated against different tumor cell lines. This structural pattern was designed considering the cytotoxic potential already known for eugenol, chalcones and isoxazoles. Notably, chalcones 7, 9, 10, and 11 displayed significant activity (4.2-14.5 µM) against two cancer cell lines, surpassing the potency of the control drug doxorubicin. The reaction of chalcones with hydroxylamine hydrochloride provided the corresponding isoxazoles that were inactive against these cancer cells. The dihydroeugenol chalcone 7 showed the most promising results, demonstrating higher potency against HepG2 (CC50: 4.2 µM) and TOV-21G (CC50: 7.2 µM). Chalcone 7 was also three times less toxic than doxorubicin considering HepG2 cells, with a selectivity index greater than 11. Further investigations including clonogenic survival, cell cycle progression and cell migration assays confirmed the compelling antitumoral potential of chalcone 7, as it reduced long-term survival due to DNA fragmentation, inducing cell death and inhibiting HepG2 cells migration. Moreover, in silico studies involving docking and molecular dynamics revealed a consistent binding mode of chalcone 7 with metalloproteinases, particularly MMP-9, shedding light on its potential mechanism of action related to anti-migratory effects. These significant findings suggest the inclusion of compound 7 as a promising candidate for future studies in the field of cancer therapeutics.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Neoplasias , Chalcona/farmacología , Chalcona/química , Chalconas/farmacología , Chalconas/química , Eugenol/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Doxorrubicina/farmacología , Isoxazoles/farmacología , Proliferación Celular , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
20.
Bioorg Chem ; 134: 106444, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893547

RESUMEN

The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/ß-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and ß-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Humanos , Simulación del Acoplamiento Molecular , Chalcona/química , Chalconas/farmacología , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Oxiquinolina/farmacología , Estaurosporina/farmacología , Apoptosis , Moduladores de Tubulina , Antineoplásicos/química , Receptores ErbB , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA