RESUMEN
Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.
Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Lluvia , Árboles , Clima Tropical , Congo , Conservación de los Recursos Naturales/tendencias , Ciclo HidrológicoRESUMEN
The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.
Asunto(s)
Medio Ambiente Extraterrestre , Marte , Ciclo Hidrológico , Agua , Arcilla/química , Medio Ambiente Extraterrestre/química , Minerales/análisis , Minerales/química , Sulfatos/análisis , Sulfatos/química , Humedad , Agua/análisis , Origen de la Vida , ExobiologíaRESUMEN
Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle.
Asunto(s)
Cambio Climático , Modelos Climáticos , Sequías , Lluvia , Temperatura , Ciclo Hidrológico , Agua , Atmósfera/química , Dióxido de Carbono/análisis , Cambio Climático/historia , Sequías/estadística & datos numéricos , Sedimentos Geológicos/química , Historia Antigua , Humedad , Kenia , Lagos/química , Tanzanía , Termodinámica , Clima Tropical , Volatilización , Agua/análisisRESUMEN
The Devonian-Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean-atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.
Asunto(s)
Extinción Biológica , Sulfuro de Hidrógeno , Océanos y Mares , Oxígeno , Análisis Espacio-Temporal , Biodiversidad , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/envenenamiento , Atmósfera/química , Ciclo Hidrológico , Eutrofización , Conjuntos de Datos como Asunto , Oxígeno/análisis , Oxígeno/metabolismo , Oxidación-Reducción , Plantas/metabolismo , América del Norte , Historia Antigua , Sedimentos Geológicos/química , AnimalesRESUMEN
Warming-induced global water cycle changes pose a significant challenge to global ecosystems and human society. However, quantifying historical water cycle change is difficult owing to a dearth of direct observations, particularly over the ocean, where 77% and 85% of global precipitation and evaporation occur, respectively1-3. Air-sea fluxes of freshwater imprint on ocean salinity such that mean salinity is lowest in the warmest and coldest parts of the ocean, and is highest at intermediate temperatures4. Here we track salinity trends in the warm, salty fraction of the ocean, and quantify the observed net poleward transport of freshwater in the Earth system from 1970 to 2014. Over this period, poleward freshwater transport from warm to cold ocean regions has occurred at a rate of 34-62 milli-sverdrups (mSv = 103 m3 s-1), a rate that is not replicated in the current generation of climate models (the Climate Model Intercomparison Project Phase 6 (CMIP6)). In CMIP6 models, surface freshwater flux intensification in warm ocean regions leads to an approximately equivalent change in ocean freshwater content, with little impact from ocean mixing and circulation. Should this partition of processes hold for the real world, the implication is that the historical surface flux amplification is weaker (0.3-4.6%) in CMIP6 compared with observations (3.0-7.4%). These results establish a historical constraint on poleward freshwater transport that will assist in addressing biases in climate models.
Asunto(s)
Agua Dulce , Océanos y Mares , Agua de Mar , Ciclo Hidrológico , Movimientos del Agua , Modelos Climáticos , Agua Dulce/análisis , Calentamiento Global/estadística & datos numéricos , Salinidad , Agua de Mar/análisis , Agua de Mar/química , Temperatura , Factores de TiempoRESUMEN
Knowing the extent of human influence on the global hydrological cycle is essential for the sustainability of freshwater resources on Earth1,2. However, a lack of water level observations for the world's ponds, lakes and reservoirs has limited the quantification of human-managed (reservoir) changes in surface water storage compared to its natural variability3. The global storage variability in surface water bodies and the extent to which it is altered by humans therefore remain unknown. Here we show that 57 per cent of the Earth's seasonal surface water storage variability occurs in human-managed reservoirs. Using measurements from NASA's ICESat-2 satellite laser altimeter, which was launched in late 2018, we assemble an extensive global water level dataset that quantifies water level variability for 227,386 water bodies from October 2018 to July 2020. We find that seasonal variability in human-managed reservoirs averages 0.86 metres, whereas natural water bodies vary by only 0.22 metres. Natural variability in surface water storage is greatest in tropical basins, whereas human-managed variability is greatest in the Middle East, southern Africa and the western USA. Strong regional patterns are also found, with human influence driving 67 per cent of surface water storage variability south of 45 degrees north and nearly 100 per cent in certain arid and semi-arid regions. As economic development, population growth and climate change continue to pressure global water resources4, our approach provides a useful baseline from which ICESat-2 and future satellite missions will be able to track human modifications to the global hydrologic cycle.
Asunto(s)
Actividades Humanas , Internacionalidad , Ciclo Hidrológico , Agua/análisis , Agua Subterránea/análisis , Humanos , Hidrología , Imágenes Satelitales , Estaciones del AñoRESUMEN
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems7,8.
Asunto(s)
Ciclo del Carbono , Ecosistema , Plantas/metabolismo , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Clima , Conjuntos de Datos como Asunto , Humedad , Plantas/clasificación , Análisis de Componente PrincipalRESUMEN
To bridge the knowledge gap between (a) our (instantaneous-to-seasonal-scale) process understanding of plants and water and (b) our projections of long-term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models-two-dimensional linear models-and observation-based data from satellites, eddy covariance towers, weather stations, and machine-learning-derived products to determine the dominant sub-annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal-scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics-positively sloped tangent lines to a convex long-term mean-state curve-is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean-state pattern, and hypothesize that this may be due to lack of water-carbon feedbacks at daily scales.
Asunto(s)
Ciclo del Carbono , Estaciones del Año , Estados Unidos , Agua/metabolismo , Modelos Teóricos , Ecosistema , Fotosíntesis , Ciclo Hidrológico , Plantas/metabolismo , Carbono/análisis , Carbono/metabolismoRESUMEN
Soil macroporosity affects field-scale water-cycle processes, such as infiltration, nutrient transport and runoff1,2, that are important for the development of successful global strategies that address challenges of food security, water scarcity, human health and loss of biodiversity3. Macropores-large pores that freely drain water under the influence of gravity-often represent less than 1 per cent of the soil volume, but can contribute more than 70 per cent of the total soil water infiltration4, which greatly magnifies their influence on the regional and global water cycle. Although climate influences the development of macropores through soil-forming processes, the extent and rate of such development and its effect on the water cycle are currently unknown. Here we show that drier climates induce the formation of greater soil macroporosity than do more humid ones, and that such climate-induced changes occur over shorter timescales than have previously been considered-probably years to decades. Furthermore, we find that changes in the effective porosity, a proxy for macroporosity, predicted from mean annual precipitation at the end of the century would result in changes in saturated soil hydraulic conductivity ranging from -55 to 34 per cent for five physiographic regions in the USA. Our results indicate that soil macroporosity may be altered rapidly in response to climate change and that associated continental-scale changes in soil hydraulic properties may set up unexplored feedbacks between climate and the land surface and thus intensify the water cycle.
Asunto(s)
Cambio Climático , Porosidad , Suelo/química , Ciclo Hidrológico , Retroalimentación , Lluvia , Estados UnidosRESUMEN
Land ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO2) emissions, thereby slowing the increase of CO2 concentration in the atmosphere1. Year-to-year variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon uptake by land ecosystems1. The sensitivity of these fluctuations to changes in tropical temperature has been well documented2-6, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices3-5, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry7 to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles.
Asunto(s)
Atmósfera/química , Ciclo del Carbono , Dióxido de Carbono/análisis , Ciclo Hidrológico , Secuestro de Carbono , TemperaturaRESUMEN
The history of the growth of continental crust is uncertain, and several different models that involve a gradual, decelerating, or stepwise process have been proposed1-4. Even more uncertain is the timing and the secular trend of the emergence of most landmasses above the sea (subaerial landmasses), with estimates ranging from about one billion to three billion years ago5-7. The area of emerged crust influences global climate feedbacks and the supply of nutrients to the oceans 8 , and therefore connects Earth's crustal evolution to surface environmental conditions9-11. Here we use the triple-oxygen-isotope composition of shales from all continents, spanning 3.7 billion years, to provide constraints on the emergence of continents over time. Our measurements show a stepwise total decrease of 0.08 per mille in the average triple-oxygen-isotope value of shales across the Archaean-Proterozoic boundary. We suggest that our data are best explained by a shift in the nature of water-rock interactions, from near-coastal in the Archaean era to predominantly continental in the Proterozoic, accompanied by a decrease in average surface temperatures. We propose that this shift may have coincided with the onset of a modern hydrological cycle owing to the rapid emergence of continental crust with near-modern average elevation and aerial extent roughly 2.5 billion years ago.
Asunto(s)
Planeta Tierra , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Ciclo Hidrológico , Agua/química , Historia Antigua , Minerales/análisis , Minerales/química , Isótopos de Oxígeno/análisis , Agua de Mar/química , TemperaturaRESUMEN
The past two million years of eastern African climate variability is currently poorly constrained, despite interest in understanding its assumed role in early human evolution1-4. Rare palaeoclimate records from northeastern Africa suggest progressively drier conditions2,5 or a stable hydroclimate6. By contrast, records from Lake Malawi in tropical southeastern Africa reveal a trend of a progressively wetter climate over the past 1.3 million years7,8. The climatic forcings that controlled these past hydrological changes are also a matter of debate. Some studies suggest a dominant local insolation forcing on hydrological changes9-11, whereas others infer a potential influence of sea surface temperature changes in the Indian Ocean8,12,13. Here we show that the hydroclimate in southeastern Africa (20-25° S) is controlled by interplay between low-latitude insolation forcing (precession and eccentricity) and changes in ice volume at high latitudes. Our results are based on a multiple-proxy reconstruction of hydrological changes in the Limpopo River catchment, combined with a reconstruction of sea surface temperature in the southwestern Indian Ocean for the past 2.14 million years. We find a long-term aridification in the Limpopo catchment between around 1 and 0.6 million years ago, opposite to the hydroclimatic evolution suggested by records from Lake Malawi. Our results, together with evidence of wetting at Lake Malawi, imply that the rainbelt contracted toward the Equator in response to increased ice volume at high latitudes. By reducing the extent of woodland or wetlands in terrestrial ecosystems, the observed changes in the hydroclimate of southeastern Africa-both in terms of its long-term state and marked precessional variability-could have had a role in the evolution of early hominins, particularly in the extinction of Paranthropus robustus.
Asunto(s)
Evolución Biológica , Clima , Hominidae , Lluvia , Alcanos/análisis , Alcanos/química , Animales , Extinción Biológica , Foraminíferos/química , Bosques , Historia Antigua , Hidrología , Océano Índico , Lagos , Malaui , Plantas/química , Ríos , Ciclo Hidrológico , Ceras/química , HumedalesRESUMEN
Mountain ranges generate clouds, precipitation, and perennial streamflow for water supplies, but the role of forest cover in mountain hydrometeorology and cloud formation is not well understood. In the Luquillo Experimental Forest of Puerto Rico, mountains are immersed in clouds nightly, providing a steady precipitation source to support the tropical forest ecosystems and human uses. A severe drought in 2015 and the removal of forest canopy (defoliation) by Hurricane Maria in 2017 created natural experiments to examine interactions between the living forest and hydroclimatic processes. These unprecedented land-based observations over 4.5 y revealed that the orographic cloud system was highly responsive to local land-surface moisture and energy balances moderated by the forest. Cloud layer thickness and immersion frequency on the mountain slope correlated with antecedent rainfall, linking recycled terrestrial moisture to the formation of mountain clouds; and cloud-base altitude rose during drought stress and posthurricane defoliation. Changes in diurnal cycles of temperature and vapor-pressure deficit and an increase in sensible versus latent heat flux quantified local meteorological response to forest disturbances. Temperature and water vapor anomalies along the mountain slope persisted for at least 12 mo posthurricane, showing that understory recovery did not replace intact forest canopy function. In many similar settings around the world, prolonged drought, increasing temperatures, and deforestation could affect orographic cloud precipitation and the humans and ecosystems that depend on it.
Asunto(s)
Procesos Climáticos , Bosques , Hojas de la Planta/fisiología , Estrés Fisiológico , Ciclo Hidrológico , Altitud , Clima TropicalRESUMEN
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.
Asunto(s)
Cambio Climático , Sequías , Ecosistema , Bosques , Ciclo Hidrológico , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Árboles/metabolismo , Agua/metabolismoRESUMEN
Azole fungicides (AFs) play an important role in the prevention and treatment of fungal diseases in agricultural crops. However, limited studies are addressing the fate and ecological risk of AFs in the urban water cycle at a large watershed scale. To address this gap, we investigated the spatiotemporal distribution and ecological risk of twenty AFs in the lower reaches of the Yangtze River across four seasons. Carbendazim (CBA), tebuconazole (TBA), tricyclazole (TCA), and propiconazole (PPA) were found to be the dominant compounds. Their highest concentrations were measured in January (188.3 ng/L), and November (2197.1 ng/L), July (162.0 ng/L), and November (1801.9 ng/L), respectively. The comparison between wastewater treatment plants (WWTPs) effluents and surface water suggested that industrial WWTPs are major sources of AFs in the Yangtze River. In particular, TBA and PPA were found to be the most recalcitrant AFs in industrial WWTPs, while difenoconazole (DFA) was found to be the most potent pollutant in municipal WWTPs, with an average removal rate of less than 60%. The average risk quotient (RQ) for the entire AFs was 6.45 in the fall, which was higher than in January (0.98), April (0.61), and July (0.40). This indicates that AFs in surface water posed higher environmental risks during the dry season. Additionally, the exposure risk of AFs via drinking water for sensitive populations deserves more attention. This study provides benchmark data on the occurrence of AFs in the lower reaches of the Yangtze River, and offers suggestions for better reduction of AFs.
Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Ríos , Azoles , Monitoreo del Ambiente , Ciclo Hidrológico , Agua , China , Medición de Riesgo , Contaminantes Químicos del Agua/análisisRESUMEN
The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms-mesoscale convective systems (MCSs)-poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in 'extreme' daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models.
Asunto(s)
Inundaciones/estadística & datos numéricos , Lluvia , Imágenes Satelitales , África del Sur del Sahara , África del Norte , Convección , Calentamiento Global/estadística & datos numéricos , Modelos Teóricos , Estaciones del Año , Temperatura , Ciclo Hidrológico , VientoRESUMEN
The hydrodynamic conditions of ponds are generally poor, which seriously affects the long-term water quality guarantee. In this research, the numerical simulation method was used to establish an integrated model of hydrodynamics and water quality for the simulation of the plant purification effect in ponds. Based on the flushing time using the tracer method, the purification rate of plants was introduced to consider the purification effect of plants on water quality. In-situ monitoring was carried out at the Luxihe pond in Chengdu, and the model parameters such as the purification rate of typical plants were calibrated. The degradation coefficient of NH3-N in the non-vegetated area was 0.014 d-1 in August and 0.010 d-1 in November. In areas with vegetation, the purification rate of NH3-N was 0.10-0.20 g/(m2·d) in August and 0.06-0.12 g/(m2·d) in November. The comparison of the results in August and November showed that due to the higher temperature in August, the plant growth effect was better, and the degradation rate of pollutants and the purification rate of pollutants by plants were higher. The flushing time distribution of the proposed Baihedao pond under the conditions of terrain reconstruction, water replenishment, and plant layout was simulated, and the frequency distribution curve of flushing time was used to evaluate the results. Terrain reconstruction and water replenishment can significantly improve the water exchange capacity of ponds. The reasonable planting of plants can reduce the variability of the water exchange capacity. Based on this combined with the purification effect of plants on NH3-N, the layout plan of Canna, Cattails, and Thalia in ponds was proposed.
Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Estanques , Ciclo Hidrológico , PlantasRESUMEN
Precipitation is one of the most significant components for the basin's hydrological cycle. Numerous features of a basin's water circulation may be affected by the chronological, geographical, and seasonal fluctuation of precipitation. It could be an important factor that influences hydrometeorological phenomena including floods and droughts. In this research, the innovative trend risk analysis (ITRA), innovative trend pivot analysis (ITPAM), and trend polygon star (TPS) methodologies of visualizing precipitation data are used to detect precipitation changes at six stations in Algeria's Wadi Ouahrane basin from 1972 to 2018. ITRA graphs show the direction of the precipitation trend (increasing-decreasing) and the trend risk class. Disparities in the polygons generated by the arithmetic mean and standard deviation ITPAM graphs demonstrate variations in precipitation seasonally and in the seasonal precipitation trends (increasing or decreasing) between sites. The TPS maps depict monthly variations in precipitation and highlight the autumn and spring transitions between the dry and wet seasons.
Asunto(s)
Sequías , Monitoreo del Ambiente , Argelia , Estaciones del Año , Ciclo HidrológicoRESUMEN
Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modeling for the period 2041-2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < .05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China, and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience nonsignificant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation.
Asunto(s)
Sequías , Agua , China , Suelo , Ciclo HidrológicoRESUMEN
Drought, as a natural disaster, has widespread consequences and is notoriously difficult to manage. Critical to developing a drought management strategy is the identification and assessment of drought. To that end, this study developed a new composite index, called the standardized water cycle index (SWCI) based on the water cycle and water balance. The SWCI couplesd the key elements of the water cycle, including precipitation, evapotranspiration, leaf area index, surface runoff, and subsurface runoff, and requires the joint distribution of these elements which was determined using the D-vine copula. The Kendall transform was used to reduce the dimensionality of the five-element joint probability density function, which was then inversed to obtain the SWCI which was then evaluated with the data from the Pearl River basin obtained using the CMIP6. Results showed that the SWCI satisfactorily evaluated drought conditions, while reflecting the drought-mitigating effect of vegetation and subsurface runoff. The SWCI was also able to evaluate drought in areas with a high level of human activity.