Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107125, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432638

RESUMEN

Cyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of ß-turn nucleation on cyclotide oxidative folding. Two types of ß-turn mimics were grafted into kalata B1, individually replacing each of the four ß-turns in the folded cyclotide. Insertion of d-Pro-Gly into loop 5 was beneficial to the folding of both cyclic kB1 and a linear form of the peptide. The linear grafted analog folded four-times faster in aqueous conditions than cyclic kB1 in optimized conditions. Additionally, the cyclic analogue folded without the need for redox agents by transitioning through a native-like intermediate that was on-pathway to product formation. Kalata B1 is from the Möbius subfamily of cyclotides. Grafting d-Pro-Gly into loop 5 of cyclotides from two other subfamilies also had a beneficial effect on folding. Our findings demonstrate the importance of a ß-turn nucleation site for cyclotide oxidative folding, which could be adopted as a chemical strategy to improve the in vitro folding of diverse cystine-rich peptides.


Asunto(s)
Ciclotidas , Oxidación-Reducción , Pliegue de Proteína , Ciclotidas/química , Proteínas de Plantas/química , Secuencia de Aminoácidos
2.
J Biol Chem ; 300(6): 107330, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679329

RESUMEN

The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 µM and a potency (EC50) of 8 µM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.


Asunto(s)
Receptor Cannabinoide CB2 , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/química , Humanos , Ligandos , Ciclotidas/química , Ciclotidas/farmacología , Células HEK293 , Descubrimiento de Drogas
3.
J Biol Chem ; 300(3): 105682, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272233

RESUMEN

Cyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides. In this study, kalata B1 (kB1), the prototypical cyclotide, was engineered to improve its long-term stability and retain its insecticidal activity via point mutations. We found that substituting either Asn29 or Gly1 to lysine or leucine increased the stability of kB1 by twofold when incubated in an alkaline buffer (pH = 9.0) for 7 days, while retaining its insecticidal activity. In addition, when Gly1 was replaced with lysine or leucine, the mutants could be cyclized using an asparaginyl endopeptidase, in vitro with a yield of ∼90% within 5 min. These results demonstrate the potential to manufacture kB1 mutants with increased stability and insecticidal activity recombinantly or in planta. Overall, the discovery of mutants of kB1 that have enhanced stability could be useful in leading to longer term activity in the field as bioinsecticides.


Asunto(s)
Ciclotidas , Insecticidas , Oldenlandia , Ciclotidas/genética , Ciclotidas/farmacología , Ciclotidas/química , Insecticidas/química , Insecticidas/farmacología , Leucina , Lisina/genética , Mutagénesis , Proteínas de Plantas/metabolismo , Oldenlandia/química , Estabilidad Proteica , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos
4.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38317283

RESUMEN

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Asunto(s)
Agricultura , Ciclotidas , Ciclotidas/química , Agricultura/métodos , Agentes de Control Biológico/química , Plaguicidas/química , Humanos
5.
J Biol Chem ; 298(4): 101822, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35283188

RESUMEN

Cyclotides have a wide range of bioactivities relevant for agricultural and pharmaceutical applications. This large family of naturally occurring macrocyclic peptides is divided into three subfamilies, with the bracelet subfamily being the largest and comprising the most potent cyclotides reported to date. However, attempts to harness the natural bioactivities of bracelet cyclotides and engineer-optimized analogs have been hindered by a lack of understanding of the structural and functional role of their constituent residues, which has been challenging because bracelet cyclotides are difficult to produce synthetically. We recently established a facile strategy to make the I11L mutant of cyclotide hyen D that is as active as the parent peptide, enabling the subsequent production of a series of variants. In the current study, we report an alanine mutagenesis structure-activity study of [I11L] hyen D to probe the role of individual residues on peptide folding using analytical chromatography, on molecular function using surface plasmon resonance, and on therapeutic potential using cytotoxicity assays. We found that Glu-6 and Thr-15 are critical for maintaining the structure of bracelet cyclotides and that hydrophobic residues in loops 2 and 3 are essential for membrane binding and cytotoxic activity, findings that are distinct from the structural and functional characteristics determined for other cyclotide subfamilies. In conclusion, this is the first report of a mutagenesis scan conducted on a bracelet cyclotide, offering insights into their function and supporting future efforts to engineer bracelet cyclotides for biotechnological applications.


Asunto(s)
Ciclotidas , Ciclotidas/química , Ciclotidas/genética , Ciclotidas/toxicidad , Interacciones Hidrofóbicas e Hidrofílicas , Mutagénesis , Unión Proteica/genética
6.
J Biol Chem ; 298(10): 102413, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007611

RESUMEN

Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.


Asunto(s)
Ciclotidas , Drosophila melanogaster , Insecticidas , Proteínas de Plantas , Violaceae , Animales , Humanos , Secuencia de Aminoácidos , Ciclotidas/química , Ciclotidas/aislamiento & purificación , Ciclotidas/farmacología , Drosophila melanogaster/efectos de los fármacos , Insecticidas/química , Insecticidas/aislamiento & purificación , Insecticidas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Violaceae/química , Eritrocitos/efectos de los fármacos
7.
Proteins ; 91(2): 256-267, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36107799

RESUMEN

The archetypal Viola odorata cyclotide cycloviolacin-O1 and its seven analogs, created by partial or total reduction of the three native S-S linkages belonging to the "cyclic cystine knot" (CCK) motif are studied for their structural and dynamical diversities using molecular dynamics simulations. The results indicate interesting interplay between the constraints imposed by the S-S bonds on the dynamical modes and the corresponding structure of the model peptide. Principal component analysis brings out the variation in the extent of dynamical freedom along the peptide backbone for each model. The motions are characterized by low amplitude diffusive modes in the peptides retaining most of the native S-S linkages in contrast to the large amplitude discrete jumps where at least two or all of the three S-S linkages are reduced. Simulation results further indicate that the disulfide bond between Cys1-18 is formed at a much faster pace compared with its two other peers Cys5-20 and Cys10-25 as found in the native peptide. This gives insight as to why the S-S linkages appear in the native peptide in a particular combination. Model therapeutics and drug delivery engines can potentially utilize this information to customize the engineered S-S bonds and gauge its impact on the dynamic flexibility of a model macrocyclic peptide.


Asunto(s)
Ciclotidas , Ciclotidas/química , Cistina/química , Secuencia de Aminoácidos , Modelos Moleculares
8.
Transgenic Res ; 32(1-2): 121-133, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36930229

RESUMEN

Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.


Asunto(s)
Ciclotidas , Esclerosis Múltiple , Ratones , Humanos , Animales , Ciclotidas/genética , Ciclotidas/química , Ciclotidas/metabolismo , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/genética , Australia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
9.
Amino Acids ; 55(6): 713-729, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37142771

RESUMEN

Cyclotides are plant peptides characterized with a head-to-tail cyclized backbone and three interlocking disulfide bonds, known as a cyclic cysteine knot. Despite the variations in cyclotides peptide sequences, this core structure is conserved, underlying their most useful feature: stability against thermal and chemical breakdown. Cyclotides are the only natural peptides known to date that are orally bioavailable and able to cross cell membranes. Cyclotides also display bioactivities that have been exploited and expanded to develop as potential therapeutic reagents for a wide range of conditions (e.g., HIV, inflammatory conditions, multiple sclerosis, etc.). As such, in vitro production of cyclotides is of the utmost importance since it could assist further research on this peptide class, specifically the structure-activity relationship and its mechanism of action. The information obtained could be utilized to assist drug development and optimization. Here, we discuss several strategies for the synthesis of cyclotides using both chemical and biological routes.


Asunto(s)
Ciclotidas , Ciclotidas/farmacología , Ciclotidas/uso terapéutico , Ciclotidas/química , Secuencia de Aminoácidos , Plantas/metabolismo , Cisteína , Relación Estructura-Actividad
10.
Anal Bioanal Chem ; 415(27): 6873-6883, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792070

RESUMEN

Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.


Asunto(s)
Ciclotidas , Viola , Secuencia de Aminoácidos , Ciclotidas/análisis , Ciclotidas/química , Gel de Sílice , Microfluídica , Viola/química , Extractos Vegetales
11.
J Nat Prod ; 86(1): 52-65, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36525646

RESUMEN

Cyclotides are an intriguing class of structurally stable circular miniproteins of plant origin with numerous potential pharmaceutical and agricultural applications. To investigate the occurrence of cyclotides in Sri Lankan flora, 50 medicinal plants were screened, leading to the identification of a suite of new cyclotides from Geophila repens of the family Rubiaceae. Cycloviolacin O2-like (cyO2-like) gere 1 and the known cyclotide kalata B7 (kB7) were among the cyclotides characterized at the peptide and/or transcript level together with several putative enzymes, likely involved in cyclotide biosynthesis. Five of the most abundant cyclotides were isolated, sequenced, structurally characterized, and screened in antimicrobial and cytotoxicity assays. All gere cyclotides showed cytotoxicity (IC50 of 2.0-10.2 µM), but only gere 1 inhibited standard microbial strains at a minimum inhibitory concentration of 4-16 µM. As shown by immunohistochemistry, large quantities of the cyclotides were localized in the epidermis of the leaves and petioles of G. repens. Taken together with the cytotoxicity and membrane permeabilizing activities, this implicates gere cyclotides as potential plant defense molecules. The presence of cyO2-like gere 1 in a plant in the Rubiaceae supports the notion that phylogenetically distant plants may have coevolved to express similar cytotoxic cyclotides for a specific functional role, most likely involving host defense.


Asunto(s)
Ciclotidas , Plantas Medicinales , Rubiaceae , Secuencia de Aminoácidos , Ciclotidas/química , Proteínas de Plantas/química , Rubiaceae/química , Sri Lanka
12.
J Nat Prod ; 86(3): 566-573, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36917740

RESUMEN

The subtilisin-like macrocyclase PatGmac is produced by the marine cyanobacterium Prochloron didemni. This enzyme is involved in the last step of the biosynthesis of patellamides, a cyanobactin type of ribosomally expressed and post-translationally modified cyclic peptides. PatGmac recognizes, cleaves, and cyclizes precursor peptides after a specific recognition motif comprised of a C-terminal tail with the sequence motif -AYDG. The result is the native macrocyclic patellamide, which has eight amino acid residues. Macrocyclase activity can be exploited by incorporating that motif in other short linear peptide precursors, which then are formed into head-to-tail cyclized peptides. Here, we explore the possibility of using PatGmac in the cyclization of peptides larger than the patellamides, namely, the PawS-derived peptide sunflower trypsin inhibitor-1 (SFTI-1) and the cyclotide kalata B1. These peptides fall under two distinct families of disulfide constrained macrocyclic plant peptides. They are both implicated as scaffolds for drug design due to their structures and unusual stability. We show that PatGmac can be used to efficiently cyclize the 14 amino acid residue long SFTI-1, but less so the 29 amino acid residue long kalata B1.


Asunto(s)
Ciclotidas , Ciclotidas/química , Ciclización , Péptidos Cíclicos/química , Aminoácidos/metabolismo , Tripsina/química , Tripsina/metabolismo
13.
J Nat Prod ; 86(5): 1222-1229, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099442

RESUMEN

Cyclotides are a unique family of stable and cyclic mini-proteins found in plants that have nematicidal and anthelmintic activities. They are distributed across the Rubiaceae, Violaceae, Fabaceae, Cucurbitaceae, and Solanaceae plant families, where they are posited to act as protective agents against pests. In this study, we tested the nematicidal properties of extracts from four major cyclotide-producing plants, Oldenlandia affinis, Clitoria ternatea, Viola odorata, and Hybanthus enneaspermus, against the free-living model nematode Caenorhabditis elegans. We evaluated the nematicidal activity of the cyclotides kalata B1, cycloviolacin O2, and hyen D present in these extracts and found them to be active against the larvae of C. elegans. Both the plant extracts and isolated cyclotides exerted dose-dependent toxicity on the first-stage larvae of C. elegans. Isolated cyclotides caused death or damage upon interacting with the worms' mouth, pharynx, and midgut or membrane. Cycloviolacin O2 and hyen D produced bubble-like structures around the C. elegans membrane, termed blebs, implicating membrane disruption causing toxicity and death. All tested cyclotides lost their toxicity when the hydrophobic patches present on them were disrupted via a single-point mutation. The present results provide a facile assay design to measure and explore the nematicidal activities of plant extracts and purified cyclotides on C. elegans.


Asunto(s)
Ciclotidas , Fabaceae , Nematodos , Violaceae , Animales , Antinematodos/farmacología , Caenorhabditis elegans , Ciclotidas/farmacología , Ciclotidas/química , Fabaceae/química , Extractos Vegetales/química , Proteínas de Plantas/química
14.
Planta Med ; 89(15): 1493-1504, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748505

RESUMEN

Viola tricolor is a medicinal plant with documented application as an anti-inflammatory herb. The standard of care for the treatment of inflammatory bowel disease is immunosuppressive therapeutics or biologics, which often have undesired effects. We explored V. tricolor herbal preparations that are rich in an emerging class of phytochemicals with drug-like properties, so-called cyclotides. As an alternative to existing inflammatory bowel disease medications, cyclotides have immunomodulatory properties, and their intrinsic stability allows for application in the gastrointestinal tract, for instance, via oral administration. We optimized the isolation procedure to improve the yield of cyclotides and compared the cellular effects of violet-derived organic solvent-extracts, aqueous preparations, and an isolated cyclotide from this plant on primary human T lymphocytes and macrophages, i.e., cells that are crucial for the initiation and progression of inflammatory bowel disease. The hot water herbal decoctions have a stronger immunosuppressive activity towards proliferation, interferon-γ, and interleukin-21 secretion of primary human T cells than a DCM/MeOH cyclotide-enriched extract, and the isolated cyclotide kalata S appears as one of the active components responsible for the observed effects. This effect was increased by a longer boiling duration. In contrast, the DCM/MeOH cyclotide-enriched extract was more effective in reducing the levels of cytokines interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α, and C - X-C motif chemokine ligand 10, secreted by human monocyte-derived macrophages. Defined cyclotide preparations of V. tricolor have promising pharmacological effects in modulating immune cell responses at the cytokine levels. This is important towards understanding the role of cyclotide-containing herbal drug preparations for future applications in immune disorders, such as inflammatory bowel disease.


Asunto(s)
Ciclotidas , Enfermedades Inflamatorias del Intestino , Plantas Medicinales , Viola , Humanos , Ciclotidas/química , Viola/química , Linfocitos T , Extractos Vegetales/farmacología , Extractos Vegetales/química
15.
Molecules ; 28(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049950

RESUMEN

Bioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell permeability. In this review, we examine the utility of molecular engineering to insert bioactive sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or engineered), shown to be intrinsically stable and amenable to sequence modifications, and their utility as privileged frameworks in drug design.


Asunto(s)
Ciclotidas , Péptidos Cíclicos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Ciclotidas/química , Disulfuros/química , Diseño de Fármacos
16.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36044031

RESUMEN

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Asunto(s)
Productos Biológicos , Ciclotidas , Proteínas de Plantas , Violaceae , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Brasil , Línea Celular Tumoral , Ciclotidas/química , Ciclotidas/aislamiento & purificación , Ciclotidas/farmacología , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Espectrometría de Masas en Tándem , Violaceae/química
17.
Proc Natl Acad Sci U S A ; 116(16): 7831-7836, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30944220

RESUMEN

Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.


Asunto(s)
Ciclotidas , Proteasas de Cisteína , Papaína , Proteínas de Plantas , Ciclotidas/química , Ciclotidas/metabolismo , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Defensinas/química , Defensinas/metabolismo , Modelos Moleculares , Papaína/química , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
18.
J Biol Chem ; 295(32): 10911-10925, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414842

RESUMEN

Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Ciclotidas/farmacología , Descubrimiento de Drogas , Plantas Medicinales/química , Violaceae/química , Secuencia de Aminoácidos , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Ciclotidas/química , Ciclotidas/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Resonancia por Plasmón de Superficie , Espectrometría de Masas en Tándem
19.
J Am Chem Soc ; 143(44): 18481-18489, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723512

RESUMEN

Cyclotides are plant-derived peptides with complex structures shaped by their head-to-tail cyclic backbone and cystine knot core. These structural features underpin the native bioactivities of cyclotides, as well as their beneficial properties as pharmaceutical leads, including high proteolytic stability and cell permeability. However, their inherent structural complexity presents a challenge for cyclotide engineering, particularly for accessing libraries of sufficient chemical diversity to design potent and selective cyclotide variants. Here, we report a strategy using mRNA display enabling us to select potent cyclotide-based FXIIa inhibitors from a library comprising more than 1012 members based on the cyclotide scaffold of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II). The most potent and selective inhibitor, cMCoFx1, has a pM inhibitory constant toward FXIIa with greater than three orders of magnitude selectivity over related serine proteases, realizing specific inhibition of the intrinsic coagulation pathway. The cocrystal structure of cMCoFx1 and FXIIa revealed interactions at several positions across the contact interface that conveyed high affinity binding, highlighting that such cyclotides are attractive cystine knot scaffolds for therapeutic development.


Asunto(s)
Proteínas Sanguíneas/farmacología , Ciclotidas/farmacología , Factor XIIa/metabolismo , Proteínas Sanguíneas/química , Ciclotidas/química , Factor XIIa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos
20.
Chembiochem ; 22(6): 961-973, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33095969

RESUMEN

Cysteine-rich peptides (CRPs) are small proteins of less than 100 amino acids in length characterized by the presence of disulfide bridges and common end-to-end macrocyclization. These properties confer hyperstability against high temperatures, salt concentration, serum presence, and protease degradation to CRPs. Moreover, their intercysteine domains (loops) are susceptible to residue hypervariability. CRPs have been successfully applied as stable scaffolds for molecular grafting, a protein engineering process in which cysteine-rich structures provide higher thermodynamic and metabolic stability to an epitope and acquire new biological function(s). This review describes the successes and limitations of seven cysteine-rich scaffolds, their bioactive epitopes, and the resulting grafted peptides.


Asunto(s)
Cisteína/química , Péptidos/metabolismo , Ingeniería de Proteínas , Animales , Ciclotidas/química , Ciclotidas/genética , Ciclotidas/metabolismo , Defensinas/química , Defensinas/genética , Defensinas/metabolismo , Péptidos/química , Péptidos/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Péptidos Cíclicos/metabolismo , Estabilidad Proteica , Toxinas Biológicas/química , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA