Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 263(2): 203-216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38551071

RESUMEN

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Cistitis Intersticial , Receptor Toll-Like 3 , Urotelio , Animales , Femenino , Humanos , Ratones , Diferenciación Celular , Proliferación Celular , Cistitis Intersticial/patología , Cistitis Intersticial/metabolismo , Cistitis Intersticial/genética , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 3/genética , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo , Urotelio/patología , Urotelio/metabolismo
2.
J Pathol ; 259(3): 276-290, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36441149

RESUMEN

Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both Epstein-Barr virus (EBV) latency infection genes EBNA-1 and LMP-1 and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating the coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and upregulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF to be EBV-infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. A chromatin immunoprecipitation study revealed BDNF transcription could be promoted by cooperation between EBV nuclear antigens, chromatin modifiers, and B-cell-specific transcription. Knockdown of BDNF in EBV-infected B cells resulted in the inhibition of cell proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV-infected B cells into rat bladder walls resulted in a higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV-infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV-infected B cells in HIC pathogenesis. © 2022 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Cistitis Intersticial , Cistitis , Infecciones por Virus de Epstein-Barr , Animales , Ratas , Cistitis Intersticial/genética , Cistitis Intersticial/complicaciones , Cistitis Intersticial/metabolismo , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Factor Neurotrófico Derivado del Encéfalo/genética , Hiperplasia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Cistitis/complicaciones , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/metabolismo , Inflamación/complicaciones
3.
Neurourol Urodyn ; 43(3): 754-766, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356381

RESUMEN

AIMS: To explore the effect of blocking galectin-3 in the bladder pain syndrome associated with interstitial cystitis. METHODS: A galectin-3 inhibitor was used to treat mice with cyclophosphamide-induced cystitis. The expression of galectin-3 in bladder tissues and urine was examined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. Suprapubic-pelvic pain, bladder voiding, bladder pain-like nociceptive behavior, and referred hyperalgesia were assessed. The weights of the bladders were also measured, and inflammatory cell infiltration and inflammatory cytokine levels were examined by histopathological evaluation. The inflammatory cytokines interleukin 1ß (IL-1ß), nerve growth factor (NGF), IL-6, and tumor necrosis factor α (TNF-α) were measured by ELISA. RESULTS: Increases in galectin-3 levels, inflammation, bladder weight, and bladder pain-related symptoms were observed in bladders with cyclophosphamide-induced cystitis. Administration of the galectin-3 inhibitor significantly mitigated bladder pain-related symptoms and inflammatory response. In response to the 500 µM dose of the galectin-3 inhibitor, nociceptive behaviors, nociceptive score, and bladder-to-body weight ratios were reduced by 65.1%, 65.3%, and 40.3%, respectively, while 500 µM Gal-3 inhibitor increased pelvic pain threshold by 86.7%. Moreover, galectin-3 inhibitor treatment inhibited the inflammation. Compared to untreated CYP-induced mice, there were significant changes in the levels of IL-1ß (41.72 ± 2.05 vs. 18.91 ± 2.26 pg/mg tissues), NGF (9.64 ± 0.38 vs. 1.88 ± 0.05 pg/mg tissues), IL-6 (42.67 + 1.51 vs. 21.26 + 2.78 pg/mg tissues, and TNF-α (22.02 ± 1.08 vs. 10.70 ± 0.80 pg/mg tissues) in response to the highest dose of the Gal-3 inhibitor subgroup (500 µM), and 500 µM Gal-3 inhibitor reduced mast cell infiltration ratios by 71.8%. CONCLUSIONS: The galectin-3 inhibitor relieved pelvic pain, urinary symptoms, and bladder inflammation in mice with cyclophosphamide-induced cystitis. Thus, galectin-3 inhibitors may be novel agents in interstitial cystitis treatment.


Asunto(s)
Cistitis Intersticial , Cistitis , Ratones , Animales , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/tratamiento farmacológico , Cistitis Intersticial/metabolismo , Galectina 3/efectos adversos , Factor de Necrosis Tumoral alfa , Interleucina-6 , Factor de Crecimiento Nervioso , Cistitis/inducido químicamente , Cistitis/complicaciones , Cistitis/tratamiento farmacológico , Inflamación/patología , Ciclofosfamida , Dolor Pélvico/inducido químicamente , Dolor Pélvico/tratamiento farmacológico , Citocinas/metabolismo
4.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674069

RESUMEN

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Proteómica , Receptores CXCR4 , Animales , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Femenino , Ratones , Proteómica/métodos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Hiperalgesia/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Cistitis Intersticial/metabolismo , Cistitis Intersticial/patología , Médula Espinal/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Modelos Animales de Enfermedad , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores
5.
Turk J Med Sci ; 54(1): 26-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812622

RESUMEN

Background/aim: To investigate the roles of vascular endothelial growth inhibitor (VEGI) and hypoxia-inducible factor-1α (HIF-1α) in the treatment of refractory interstitial cystitis/bladder pain syndrome (IC/BPS) with hyperbaric oxygen (HBO). Materials and methods: A total of 38 patients were included. They were assessed before and 6 months after HBO treatment. Three-day voiding diaries were recorded, and O'leary-Sant scores, visual analog scale (VAS) scores, quality of life (QoL) scores, pelvic pain, and urgency/frequency (PUF) scores were evaluated. Bladder capacity was assessed by cystoscopy. Bladder mucosa was collected for Western blot, qRT-PCR, and immunofluorescence staining to compare the expression of VEGI and HIF-1α before and after treatment. Results: Compared with before treatment, patients showed significant improvements in 24-h voiding frequency (15.32 ± 5.38 times), nocturia (3.71 ± 1.80 times), O'leary-Sant score (20.45 ± 5.62 points), VAS score (41.76 ± 17.88 points), QoL score (3.03 ± 1.44 points), and PUF score (19.95 ± 6.46 points) after treatment (p < 0.05). There was no significant difference in bladder capacity before and after treatment (p ≥ 0.05). The expression levels of VEGI and HIF-1α protein and mRNA were significantly decreased 6 months after treatment compared with before treatment. Immunofluorescence staining results showed that the double positive expression of VEGI and HIF-1α protein in bladder tissue of IC/BPS patients after HBO treatment quantitatively decreased significantly. Conclusion: This study identified a possible mechanism by which VEGI and HIF-1α expression decreased after HBO treatment due to hypoxia reversal, which improved symptoms in IC/BPS patients.


Asunto(s)
Cistitis Intersticial , Oxigenoterapia Hiperbárica , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Oxigenoterapia Hiperbárica/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Femenino , Persona de Mediana Edad , Masculino , Cistitis Intersticial/terapia , Cistitis Intersticial/metabolismo , Adulto , Calidad de Vida , Vejiga Urinaria/metabolismo , Anciano , Resultado del Tratamiento
6.
Int Urogynecol J ; 34(4): 843-851, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35689690

RESUMEN

INTRODUCTION AND HYPOTHESIS: Genome-wide association studies suggest that autophagy plays an important regulatory role in inflammatory and autoimmune diseases. Inflammation and immune regulation disorders are involved in the occurrence and development of interstitial cystitis/bladder pain syndrome (IC/BPS). However, the changes and roles of autophagy in IC/BPS have not been reported. Therefore, this study aimed to investigate bladder autophagy and inflammation changes in patients with IC/BPS. METHODS: Bladder specimens (n = 5) from patients with cystectomy due to end-stage IC/BPS were collected. The bladder samples of the control group (n = 5) were derived from the normal area bladder tissue after radical cystectomy. H&E and toluidine blue staining were used for histological evaluation. The co-location of LC3, alpha-smooth muscle actin (α-SMA), and autophagosome was investigated with double-labeled immunofluorescence and transmission electron microscopy (TEM). The expression of IL-6, TNF-α, Bax, caspase-3, and BCL-2 in the detrusor layer was analyzed using immunohistochemistry (IHC) and Western blot (WB). RESULTS: Compared with the control group, bladder tissue from IC/BPS patients revealed thinner and edematous epithelium with many mast cells (P < 0.05) infiltrating into the muscle layer. By using TEM (P < 0.05), double-labeled immunofluorescence (P < 0.05), and Western blot (P < 0.05) in IC/BPS patients, autophagy was also found and was significantly increased in detrusor myocytes. IHC and WB indicate the expression of BCL-2 (P < 0.05) was decreased, while IL-6, TNF-α, Bax, and caspase-3 expression was elevated (P < 0.05). CONCLUSIONS: The number of autophagosomes in detrusor cells was increased in IC/BPS. However, autophagy of detrusor muscle cells may not have sufficient phagocytic activity to effectively remove damaged proteins and mitochondria, which may lead to the continued deterioration of IC/BPS inflammation and apoptosis.


Asunto(s)
Cistitis Intersticial , Humanos , Cistitis Intersticial/metabolismo , Caspasa 3 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Proteína X Asociada a bcl-2 , Estudio de Asociación del Genoma Completo , Inflamación , Autofagia
7.
J Urol ; 207(3): 635-646, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694138

RESUMEN

PURPOSE: The aim of our study was to elucidate biological changes in Hunner lesions, which underlie the pathophysiology of Hunner-type interstitial cystitis, by characterizing their whole transcriptome and immunopathological profiles. MATERIALS AND METHODS: Paired bladder mucosal biopsies, 1 sample each from the Hunner lesion and nonlesion area, were obtained from 25 patients with Hunner-type interstitial cystitis. The samples were subjected to whole-transcriptome profiling; immunohistochemical quantification of CD3, CD4, CD8, CD20, CD138, mast cell tryptase, cytokeratin and HIF1α; and quantitative polymerase chain reaction for IFN-α, IFN-ß, IFN-γ, TNF, TGF-ß1, HIF1α, IL-2, IL-4, IL-6, IL-10 and IL-12A. The results were compared between the lesion and nonlesion areas. RESULTS: RNA sequencing identified 109 differentially expressed genes and 30 significantly enriched biological pathways in Hunner lesions. Up-regulated pathways (24) included HIF1α signaling pathway, PI3K-Akt signaling pathway, RAS signaling pathway and MAPK signaling pathway. By contrast, down-regulated pathways (6) included basal cell carcinoma and protein digestion and absorption. The mRNA levels of HIF1α, IFN-γ and IL-2, and the HIF1α protein level were significantly higher in lesion areas. Otherwise, there were no significant differences between the lesion and nonlesion samples in terms of mRNA levels of inflammatory cytokines or histological features such as lymphoplasmacytic and mast cell infiltration, epithelial denudation and CD4/CD8 T-lymphocyte ratio. CONCLUSIONS: Our findings demonstrate significant overexpression of HIF1α and up-regulation of its related biological pathways in Hunner lesions. The results indicate that ischemia, in conjunction with inflammation, plays a pathophysiological role in this subtype of interstitial cystitis/bladder pain syndrome, particularly in Hunner lesions.


Asunto(s)
Biomarcadores/metabolismo , Cistitis Intersticial/metabolismo , Cistitis Intersticial/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Anciano , Biopsia , Cistitis Intersticial/cirugía , Femenino , Humanos , Masculino , Calidad de Vida , Transducción de Señal , Regulación hacia Arriba
8.
Drug Dev Res ; 83(2): 351-361, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34368980

RESUMEN

Circular RNA (circRNA) have been found to play an important role in the progression of many diseases, including interstitial cystitis (IC). However, the role of circTHBS1 in IC progression is still unclear. Exploring the role and potential molecular mechanism of circTHBS1 in the development of IC. The enzyme-linked immunosorbent assay was used to assess the levels of inflammatory cytokines. The expression levels of circTHBS1, microRNA (miR)-139-5p, and mitofusin 2 (MFN2) were evaluated using quantitative real-time PCR. Cell proliferation and migration were determined using MTT assay, Edu staining, and transwell assay. The protein levels of epithelial-mesenchymal transition (EMT) markers and MFN2 were examined using western blot analysis. The relationship between miR-139-5p and circTHBS1 or MFN2 was confirmed using the dual-luciferase reporter assay and RIP assay. CircTHBS1 was highly repressed in IC tissues and cells, and its expression was positively correlated with the inflammatory response of IC patients. CircTHBS1 could promote the proliferation, migration, EMT process, and inflammation of IC cells, while its knockdown had an opposite effect. CircTHBS1 could serve as a sponge of miR-139-5p, and miR-139-5p could participate in the regulation of circTHBS1 on IC cell progression. In addition, miR-139-5p could target MFN2, and it could inhibit the progression of IC cells by targeting MFN2. Furthermore, circTHBS1 sponged miR-139-5p to positively regulate MFN2. CircTHBS1 promoted IC cell proliferation, migration, EMT process, and inflammation by regulating the miR-139-5p/MFN2 axis indicating that circTHBS1 might be a potential target for IC treatment.


Asunto(s)
Cistitis Intersticial , MicroARNs , Proliferación Celular/genética , Cistitis Intersticial/genética , Cistitis Intersticial/metabolismo , Femenino , GTP Fosfohidrolasas/genética , Humanos , Inflamación/genética , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/genética , ARN Circular/genética
9.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R396-R412, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34318715

RESUMEN

Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with comorbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in patients with IC/BPS. We identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of gastrointestinal (GI) microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Cohousing AOAH-deficient mice with wild-type mice resulted in converged microbiota and altered predicted metagenomes. Cohousing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild-type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cistitis Intersticial , Microbioma Gastrointestinal , Dolor Pélvico , Animales , Humanos , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Disbiosis/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Dolor Pélvico/metabolismo , Dolor Pélvico/fisiopatología , Vejiga Urinaria/metabolismo , Ratones
10.
BMC Urol ; 21(1): 156, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774029

RESUMEN

BACKGROUND: Interstitial cystitis/bladder pain syndrome (IC/BPS) categorized with and without Hunner lesions is a condition that displays chronic pelvic pain related to the bladder with no efficacious treatment options. There are strong associations suggested between Hunner-type IC and autoimmune diseases. Recently, we established an animal model of Hunner-type IC using a Toll-like receptor-7 (TLR7) agonist. Intravenous infusion of mesenchymal stem cells (MSCs) can be used to treat injury via multimodal and orchestrated therapeutic mechanisms including anti-inflammatory effects. Here, we investigated whether infused MSCs elicit therapeutic efficacy associated with the TLR7-related anti-inflammatory pathway in our Hunner-type IC model. METHODS: Voiding behaviors were monitored 24 h prior to the Loxoribine (LX), which is a TLR7 agonist instillation in order to establish a Hunner-type IC model (from - 24 to 0 h) in female Sprague-Dawley rats. LX was instilled transurethrally into the bladder. At 0 h, the initial freezing behavior test confirmed that no freezing behavior was observed in any of the animals. The LX-instilled animals were randomized. Randomized LX-instilled rats were intravenously infused with MSCs or with vehicle through the right external jugular vein. Sampling tissue for green fluorescent protein (GFP)-positive MSCs were carried out at 48 h. Second voiding behavior tests were monitored from 72 to 96 h. After the final evaluation of the freezing behavior test at 96 h after LX instillation (72 h after MSC or vehicle infusion), histological evaluation with H&E staining and quantitative real-time polymerase chain reaction (RT-PCR) to analyze the mRNA expression levels of inflammatory cytokines were performed. RESULTS: Freezing behavior was reduced in the MSC group, and voiding behavior in the MSC group did not deteriorate. Hematoxylin-eosin staining showed that mucosal edema, leukocyte infiltration, and hemorrhage were suppressed in the MSC group. The relative expression of interferon-ß mRNA in the bladder of the MSC group was inhibited. Numerous GFP-positive MSCs were distributed mainly in the submucosal and mucosal layers of the inflammatory bladder wall. CONCLUSION: Intravenous infusion of MSCs may have therapeutic efficacy in a LX-instilled Hunner-type IC rat model via a TLR7-related anti-inflammatory pathway.


Asunto(s)
Cistitis Intersticial/terapia , Interferón beta/metabolismo , Células Madre Mesenquimatosas , Receptor Toll-Like 7/agonistas , Animales , Conducta Animal , Cistitis Intersticial/inducido químicamente , Cistitis Intersticial/metabolismo , Cistitis Intersticial/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Infusiones Intravenosas , Dolor Pélvico/etiología , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/patología , Micción
11.
Am J Physiol Renal Physiol ; 318(2): F298-F314, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790304

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited "silent afferents" that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes (Hrh1-Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.


Asunto(s)
Cistitis Intersticial/metabolismo , Histamina/administración & dosificación , Hiperalgesia/metabolismo , Mecanorreceptores/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Receptores Histamínicos H1/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/inervación , Administración Intravesical , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Cistitis Intersticial/fisiopatología , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/fisiopatología , Masculino , Mecanorreceptores/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Umbral del Dolor/efectos de los fármacos , Presión , Receptores Histamínicos H1/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Urotelio/efectos de los fármacos , Urotelio/metabolismo
12.
J Neural Transm (Vienna) ; 127(4): 445-465, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31552496

RESUMEN

Among the various regulators of the nervous system, the gut microbiota has been recently described to have the potential to modulate neuronal cells activation. While bacteria-derived products can induce aversive responses and influence pain perception, recent work suggests that "abnormal" microbiota is associated with neurological diseases such as Alzheimer's, Parkinson's disease or autism spectrum disorder (ASD). Here we review how the gut microbiota modulates afferent sensory neurons function and pain, highlighting the role of the microbiota/gut/brain axis in the control of behaviors and neurological diseases. We outline the changes in gut microbiota, known as dysbiosis, and their influence on painful gastrointestinal disorders. Furthermore, both direct host/microbiota interaction that implicates activation of "pain-sensing" neurons by metabolites, or indirect communication via immune activation is discussed. Finally, treatment options targeting the gut microbiota, including pre- or probiotics, will be proposed. Further studies on microbiota/nervous system interaction should lead to the identification of novel microbial ligands and host receptor-targeted drugs, which could ultimately improve chronic pain management and well-being.


Asunto(s)
Trastorno del Espectro Autista , Dolor Crónico , Cistitis Intersticial , Disbiosis , Microbioma Gastrointestinal/fisiología , Enfermedades Inflamatorias del Intestino , Síndrome del Colon Irritable , Neuronas Aferentes , Nocicepción/fisiología , Dolor Visceral , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Dolor Crónico/etiología , Dolor Crónico/inmunología , Dolor Crónico/metabolismo , Dolor Crónico/fisiopatología , Cistitis Intersticial/etiología , Cistitis Intersticial/inmunología , Cistitis Intersticial/metabolismo , Cistitis Intersticial/fisiopatología , Disbiosis/complicaciones , Disbiosis/inmunología , Disbiosis/metabolismo , Disbiosis/fisiopatología , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/fisiopatología , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/inmunología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Neuronas Aferentes/inmunología , Neuronas Aferentes/metabolismo , Neuronas Aferentes/microbiología , Dolor Visceral/etiología , Dolor Visceral/inmunología , Dolor Visceral/metabolismo , Dolor Visceral/fisiopatología
13.
Neurourol Urodyn ; 39(1): 133-143, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31663162

RESUMEN

AIMS: This study aimed to identify suitable datasets for reanalysis and then explore potential key genes and related pathways of interstitial cystitis (IC). METHODS: We searched the Gene Expression Omnibus database and three expression profile datasets and included 23 lesions of IC and 9 normal tissues in the analysis. Eight urine specimens of patients with IC and five urine specimens of healthy controls were also included. Then, these datasets were reanalyzed to determine the differentially expressed genes (DEGs), which were used to perform Gene Ontology and pathway enrichment analyses. These identified candidate genes were also applied to generate a protein-protein interaction (PPI) network. RESULTS: Forty-two common DEGs were sorted and identified from two datasets, both of which included the samples of bladder lesions. Based on their functions and signaling pathways, these 42 DEGs are mainly classified as cell-surface proteins and are involved in the immune and inflammatory responses. The PPI network included 41 nodes. In this network, we identified 11 genes as central nodes that are involved in the immune system and the inflammatory response. Furthermore, IC with Hunner's lesions shared the same DEGs with IC without Hunner's lesions. In both subgroups (IC with and without Hunner's lesions), we identified some common DEGs shared between bladder lesions and urine samples. CONCLUSION: Using bioinformatics, we integrated different IC-related datasets and identified potential critical genes involved in IC that may contribute to future research on IC.


Asunto(s)
Cistitis Intersticial/genética , Perfilación de la Expresión Génica , Biología Computacional , Cistitis Intersticial/metabolismo , Bases de Datos Genéticas , Humanos , Transducción de Señal/genética
14.
J Cell Biochem ; 120(6): 9147-9158, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30582204

RESUMEN

Interstitial cystitis (IC) is a heterogeneous syndrome with unknown etiology, and microRNAs (miRs) were found to be involved in IC. In our study, we aim to explore the role of miR-132 in the inflammatory response and detrusor fibrosis in IC through the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway in rat models. A rat model of IC was established and treated with the miR-132 mimic, miR-132 inhibitor, and/or JAK-STAT signaling pathway inhibitor AG490. Enzyme-linked immunosorbent assay was applied to measure the expression of interleukin (IL)-6, IL-10, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1). The urodynamic test was performed to assess urodynamic parameters, and reverse transcription quantitative polymerase chain reaction and Western blot analysis for the expression of miR-132, STAT4, suppressors of cytokine signaling 3 (SOCS3), JAK2, vascular endothelial growth factor (VEGF), IFN-γ, and TNF-α. IC rats treated with miR-132 inhibitor and AG490 had decreased collagen fiber, inflammatory cell infiltration, and mast cells, lower expression of IL-6, IL-10, IFN-γ, TNF-α, ICAM-1, collagens I and III, and alleviated urodynamic parameters and decreased expression of STAT4, VEGF, JAK2, IFN-γ, TNF-α, and increased expression of SOCS3. Taken together, our data indicate that downregulation of miR-132 alleviates inflammatory response and detrusor fibrosis in IC via the inhibition of the JAK-STAT signaling pathway.


Asunto(s)
Cistitis Intersticial/metabolismo , Inflamación/metabolismo , Quinasas Janus/metabolismo , MicroARNs/metabolismo , Animales , Cistitis Intersticial/tratamiento farmacológico , Femenino , Humanos , Inmunohistoquímica , Técnicas In Vitro , Inflamación/tratamiento farmacológico , Janus Quinasa 2/metabolismo , MicroARNs/genética , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tirfostinos/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo
15.
Am J Physiol Renal Physiol ; 317(1): F90-F98, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091120

RESUMEN

Altered Toll-like receptor (TLR)4 activation has been identified in several chronic pain conditions but has not been well studied in interstitial cystitis/bladder pain syndrome (IC/BPS). Our previously published human studies indicated that patients with IC/BPS present altered systemic TLR4-mediated inflammatory responses, which were significantly correlated with reported pain severity. In the present study, we sought to determine whether altered TLR4 activation plays a role in pelvic/bladder pain seen in patients with IC/BPS using our validated IC/BPS-like transgenic autoimmune cystitis model (URO-OVA). URO-OVA mice developed responses consistent with pelvic and bladder pain after cystitis induction, which was associated with increased splenocyte production of TLR4-mediated proinflammatory cytokines IL-1ß, IL-6, and TNF-α. Increased spinal expression of mRNAs for proinflammatory cytokines IL-6 and TNF-α, glial activation markers CD11b and glial fibrillary acidic protein, and endogenous TLR4 ligand high mobility group box 1 was also observed after cystitis induction. Compared with URO-OVA mice, TLR4-deficient URO-OVA mice developed significantly reduced nociceptive responses, although similar bladder inflammation and voiding dysfunction, after cystitis induction. Intravenous administration of TAK-242 (a TLR4-selective antagonist) significantly attenuated nociceptive responses in cystitis-induced URO-OVA mice, which was associated with reduced splenocyte production of TLR4-mediated IL-1ß, IL-6, and TNF-α as well as reduced spinal expression of mRNAs for IL-6, TNF-α, CD11b, glial fibrillary acidic protein, and high mobility group box 1. Our results indicate that altered TLR4 activation plays a critical role in bladder nociception independent of inflammation and voiding dysfunction in the URO-OVA model, providing a potential mechanistic insight and therapeutic target for IC/BPS pain.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Cistitis Intersticial/metabolismo , Dolor Nociceptivo/metabolismo , Umbral del Dolor , Receptor Toll-Like 4/metabolismo , Vejiga Urinaria/metabolismo , Analgésicos/farmacología , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/fisiopatología , Células Cultivadas , Cistitis Intersticial/genética , Cistitis Intersticial/inmunología , Cistitis Intersticial/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor Nociceptivo/genética , Dolor Nociceptivo/inmunología , Dolor Nociceptivo/fisiopatología , Ovalbúmina/genética , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Umbral del Dolor/efectos de los fármacos , Transducción de Señal , Columna Vertebral/inmunología , Columna Vertebral/metabolismo , Bazo/inmunología , Bazo/metabolismo , Sulfonamidas/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/inmunología , Vejiga Urinaria/fisiopatología , Urodinámica
16.
Neurourol Urodyn ; 38(7): 1818-1827, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301091

RESUMEN

AIMS: To explore caveolae- and clathrin-mediated internalization of muscarinic M2 and M3 receptors, recycling and degradation in formalin-fixed paraffin-embedded detrusor sections; to study alterations possibly involved in the pathophysiology of the bladder functional disorder, interstitial cystitis/bladder pain syndrome (IC/BPS). MATERIALS AND METHODS: Samples of IC/BPS (n = 11) and cystectomy patients (n = 11) were analyzed. Proximity ligation assay (PLA) was used to detect interactions of M2 and M3 with endocytotic regulators (Cav-1, clathrin, Rab7, and Rab11) by Cy3 labeling. Analyses of three-dimensional (3D)-reconstructed z-stacks (63 × Oil 1.4) were done with Huygens software. We determined the object density for quantification and assessed membrane localization. RESULTS: Receptor/protein complexes were detected as well-demarcated 3D objects. Interactions of M2 with Cav-1, clathrin, Rab11, and Rab7 were significantly increased in IC/BPS. M3/clathrin and M3/Rab11 complexes were higher in IC/BPS, while M3/Cav-1 and M3/Rab7 were not. A significant shift of complexes from the membrane to cytoplasm was observed in conjunction with increased internalization via clathrin vesicles or caveolae in IC/BPS. CONCLUSIONS: High numbers of M3/clathrin and M3/Rab11 complexes reflect the well-documented clathrin-mediated desensitization of M3 and speak in favor with enhanced receptor protein expression in IC/BPS. Increased amounts of M2/Cav-1, M2/clathrin, and M2/Rab11 complexes represent altered M2 internalization and recycling leading to high abundance in IC/BPS. In this regard, caveolae-localized M2 could be possibly associated with the activation of nitric oxide (NO) synthase and NO production.


Asunto(s)
Cistitis Intersticial/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo , Vejiga Urinaria/metabolismo , Anciano , Femenino , Humanos , Persona de Mediana Edad , Transporte de Proteínas/fisiología
17.
Neurourol Urodyn ; 38(2): 572-581, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575113

RESUMEN

AIM: Chronic stress exacerbates the symptoms of most pain disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). Abnormalities in urothelial cells (UTC) occur in this debilitating bladder condition. The sequence of events that might link stress (presumably through increased sympathetic nervous system-SNS activity) to urothelial dysfunction are unknown. Since autonomic dysregulation, mitochondrial dysfunction, and oxidative stress all occur in chronic pain, we investigated whether chronic psychological stress initiated a cascade linking these three dysfunctions. METHODS: Adult female Wistar Kyoto rats were exposed to 10 days of water avoidance stress (WAS). Bladders were then harvested for Western blot and single cell imaging in UTC cultures. RESULTS: UTC from WAS rats exhibited depolarized mitochondria membrane potential (Ψm ∼30% more depolarized compared to control), activated AMPK and altered UT mitochondria bioenergetics. Expression of the fusion protein mitofusion-2 (MFN-2) was upregulated in the mucosa, suggesting mitochondrial structural changes consistent with altered cellular metabolism. Intracellular calcium levels were elevated in cultured WAS UTC, consistent with impaired cellular function. Stimulation of cultured UTC with alpha-adrenergic (α-AR) receptor agonists increased reactive oxidative species (ROS) production, suggesting a direct action of SNS activity on UTC. Treatment of rats with guanethidine to block SNS activity prevented most of WAS-induced changes. CONCLUSIONS: Chronic stress results in persistent sympathetically mediated effects that alter UTC mitochondrial function. This may impact the urothelial barrier and signaling, which contributes to bladder dysfunction and pain. This is the first demonstration, to our knowledge, of a potential autonomic mechanism directly linking stress to mitochondrial dysfunction.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Cistitis Intersticial/fisiopatología , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Urotelio/fisiopatología , Animales , Sistema Nervioso Autónomo/metabolismo , Cistitis Intersticial/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Endogámicas WKY , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Urotelio/metabolismo
18.
Int Urogynecol J ; 30(3): 363-370, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30293165

RESUMEN

The topic of interstitial cystitis (IC), also known as painful bladder syndrome (PBS), and folate/one carbon metabolism has previously been unaddressed in research. This narrative review highlights a potential connection for those with mast cell-related IC and histamine-mediated pain that is explored through four conceptual sections. The first section focuses on the nature of mast cell involvement and histamine-mediated pain in some interstitial cystitis patients. The second section reviews the literature on folate status in wider allergic conditions. The third section addresses the role of folate and methylation in general in histamine excretion. Finally, folate metabolism and vascular function are addressed because of the vascular abnormalities present in some IC bladders.


Asunto(s)
Cistitis Intersticial/metabolismo , Ácido Fólico/metabolismo , Hipersensibilidad/metabolismo , Endotelio/fisiopatología , Femenino , Histamina/metabolismo , Humanos , Mastocitos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Microvasos , Embarazo
19.
BMC Urol ; 19(1): 115, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718622

RESUMEN

BACKGROUND: Activation of mast cells plays an important role in the pathogenesis of bladder pain syndrome/interstitial cystitis (BPS/IC). Histamine, a mast cell-derived mediators, induced inflammation and hypersensitivity of the bladder. The present study investigated the expressions of histamine receptors in the bladder wall tissues of patients with BPS/IC, and its association with the effectiveness of antihistamine therapy and disease symptoms. METHODS: Bladder tissues were collected from 69 BPS/IC patients and 10 control female patients. The expression of H3R in BPS/IC was further examined in an independent cohort of 10 female patients with BPS/IC and another 10 age-matched female patients. Immunohistochemistry, Western blotting, and quantitative RT-PCR were performed to quantify the expressions of histamine receptors. Statistical analyses of the correlation of histamine receptor expression with antihistamine therapy outcome and severity of disease symptoms were also performed. RESULTS: The expression of four histamine receptors was significantly elevated in BPS/IC (H1R, P < 0.001; H2R, P = 0.031; H3R, P = 0.008; H4R, P = 0.048). Western blotting revealed that H3R were significantly reduced in the patients, whereas the mRNA levels of H3R were significantly increased. The patients were further divided into antihistamine responders (n = 38) and nonresponders (n = 22). No significant correlation was found in the expression of histamine receptors between responder and nonresponder groups. However, significant correlations between OLS and H1R (P = 0.003) and H3R (P = 0.045) were found. CONCLUSION: The present study showed that expression of all the 4 histamine receptors were elevated in BPS/IC. There were no statistical significant correlations between the expression levels of the four different histamine receptors and the treatment outcome of antihistamine therapy (amtitriptyline or cimetidine).


Asunto(s)
Cistitis Intersticial/tratamiento farmacológico , Cistitis Intersticial/metabolismo , Antagonistas de los Receptores Histamínicos/uso terapéutico , Receptores Histamínicos/biosíntesis , Vejiga Urinaria/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Cistitis Intersticial/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores Histamínicos/análisis , Vejiga Urinaria/química , Adulto Joven
20.
Pharmacology ; 103(3-4): 159-162, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30695781

RESUMEN

Interstitial cystitis (IC) is a highly prevalent debilitating disease, with its cardinal symptoms being severe pain, urinary urgency and frequency. The associated pain may eventually lead as a last resort to removal of the bladder. Though the initial trigger for IC remains largely unknown, we propose novel iron chelators as a possible new treatment for this disease. Iron is a mandatory component for the generation of reactive oxygen species (ROS). A substantial decrease in ROS production and thus inflammation can be achieved by effectively sequestering host iron, which we believe may improve outcome and quality of life in IC patients. Novel iron chelators could be used via the intravesical route to reduce or attenuate inflammation by effectively sequestering host iron, thus preventing the production of ROS via the Fenton and Haber-Weiss reactions.


Asunto(s)
Cistitis Intersticial/tratamiento farmacológico , Quelantes del Hierro/administración & dosificación , Vejiga Urinaria/efectos de los fármacos , Administración Intravesical , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Cistitis Intersticial/metabolismo , Cistitis Intersticial/fisiopatología , Humanos , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA