Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79.476
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36206754

RESUMEN

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Asunto(s)
Cobre , Mucinas , Mucinas/metabolismo , Mucina 2 , Cobre/análisis , Cobre/metabolismo , Intestinos , Moco/metabolismo , Mucosa Intestinal/metabolismo
2.
Annu Rev Biochem ; 87: 645-676, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29668305

RESUMEN

Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quelantes/metabolismo , Cobre/metabolismo , Imidazoles/metabolismo , Oligopéptidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fenómenos Biofísicos , Quelantes/química , Genoma Bacteriano , Homeostasis , Imidazoles/química , Methylosinus trichosporium/genética , Methylosinus trichosporium/metabolismo , Modelos Biológicos , Estructura Molecular , Oligopéptidos/química , Oligopéptidos/genética , Operón , Transporte de Proteínas
3.
Nature ; 630(8015): 91-95, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778107

RESUMEN

The strength of materials depends on the rate at which they are tested, as defects, for example dislocations, that move in response to applied strains have intrinsic kinetic limitations1-4. As the deformation strain rate increases, more strengthening mechanisms become active and increase the strength4-7. However, the regime in which this transition happens has been difficult to access with traditional micromechanical strength measurements. Here, with microballistic impact testing at strain rates greater than 106 s-1, and without shock conflation, we show that the strength of copper increases by about 30% for a 157 °C increase in temperature, an effect also observed in pure titanium and gold. This effect is counterintuitive, as almost all materials soften when heated under normal conditions. This anomalous thermal strengthening across several pure metals is the result of a change in the controlling deformation mechanism from thermally activated strengthening to ballistic transport of dislocations, which experience drag through phonon interactions1,8-10. These results point to a pathway to better model and predict materials properties under various extreme strain rate conditions, from high-speed manufacturing operations11 to hypersonic transport12.


Asunto(s)
Cobre , Oro , Temperatura , Titanio , Oro/química , Titanio/química , Estrés Mecánico , Ensayo de Materiales , Fonones , Metales/química , Calor
4.
Nature ; 629(8011): 363-369, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547926

RESUMEN

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.


Asunto(s)
Carbono , Cobre , Hidrógeno , Lactonas , Amidas/química , Amidas/metabolismo , Carbono/química , Catálisis , Cobre/química , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/química , Hidrógeno/química , Hidrogenación , Lactonas/química , Metanol/química , Oxidantes/química , Oxidantes/metabolismo , Oxidación-Reducción
5.
Nature ; 631(8020): 350-359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38926577

RESUMEN

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Asunto(s)
Catecol Oxidasa , Proteínas de Drosophila , Drosophila melanogaster , Precursores Enzimáticos , Hemocitos , Oxígeno , Transición de Fase , Respiración , Animales , Femenino , Masculino , Transporte Biológico , Anhidrasas Carbónicas/metabolismo , Catecol Oxidasa/metabolismo , Cobre/metabolismo , Cristalización , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Precursores Enzimáticos/metabolismo , Hemocianinas/metabolismo , Hemocitos/inmunología , Hemocitos/metabolismo , Homeostasis , Concentración de Iones de Hidrógeno , Hiperoxia/metabolismo , Hipoxia/metabolismo , Larva/anatomía & histología , Larva/citología , Larva/inmunología , Larva/metabolismo , Oxígeno/metabolismo
6.
Mol Cell ; 82(10): 1786-1787, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35594843

RESUMEN

Tsvetkov et al. (2022) discovered a new form of cell death triggered by targeted accumulation of Cu in mitochondria that drives lipoylated TCA cycle enzyme aggregation via direct Cu binding.


Asunto(s)
Apoptosis , Cobre , Mitocondrias , Muerte Celular , Cobre/metabolismo , Lipoilación , Mitocondrias/metabolismo
7.
Nature ; 618(7964): 301-307, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36996870

RESUMEN

Carbon-oxygen bonds are commonplace in organic molecules, including chiral bioactive compounds; therefore, the development of methods for their construction with simultaneous control of stereoselectivity is an important objective in synthesis. The Williamson ether synthesis, first reported in 18501, is the most widely used approach to the alkylation of an oxygen nucleophile, but it has significant limitations (scope and stereochemistry) owing to its reaction mechanism (SN2 pathway). Transition-metal catalysis of the coupling of an oxygen nucleophile with an alkyl electrophile has the potential to address these limitations, but progress so far has been limited2-7, especially with regard to controlling enantioselectivity. Here we establish that a readily available copper catalyst can achieve an array of enantioconvergent substitution reactions of α-haloamides, a useful family of electrophiles, by oxygen nucleophiles; the reaction proceeds under mild conditions in the presence of a wide variety of functional groups. The catalyst is uniquely effective in being able to achieve enantioconvergent alkylations of not only oxygen nucleophiles but also nitrogen nucleophiles, giving support for the potential of transition-metal catalysts to provide a solution to the pivotal challenge of achieving enantioselective alkylations of heteroatom nucleophiles.


Asunto(s)
Alquilación , Catálisis , Cobre , Oxígeno , Carbono/química , Cobre/química , Oxígeno/química
8.
Nature ; 618(7964): 294-300, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36940729

RESUMEN

Chiral amines are commonly used in the pharmaceutical and agrochemical industries1. The strong demand for unnatural chiral amines has driven the development of catalytic asymmetric methods1,2. Although the N-alkylation of aliphatic amines with alkyl halides has been widely adopted for over 100 years, catalyst poisoning and unfettered reactivity have been preventing the development of a catalyst-controlled enantioselective version3-5. Here we report the use of chiral tridentate anionic ligands to enable the copper-catalysed chemoselective and enantioconvergent N-alkylation of aliphatic amines with α-carbonyl alkyl chlorides. This method can directly convert feedstock chemicals, including ammonia and pharmaceutically relevant amines, into unnatural chiral α-amino amides under mild and robust conditions. Excellent enantioselectivity and functional-group tolerance were observed. The power of the method is demonstrated in a number of complex settings, including late-stage functionalization and in the expedited synthesis of diverse amine drug molecules. The current method indicates that multidentate anionic ligands are a general solution for overcoming transition-metal-catalyst poisoning.


Asunto(s)
Alquilación , Aminas , Catálisis , Cobre , Amidas/química , Aminas/química , Cobre/química , Ligandos , Preparaciones Farmacéuticas/química
9.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
10.
Trends Biochem Sci ; 49(8): 729-744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714376

RESUMEN

Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.


Asunto(s)
Cobre , Lipoilación , Mitocondrias , Humanos , Mitocondrias/metabolismo , Cobre/metabolismo , Animales , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Metabolismo Energético
11.
Nature ; 604(7905): 280-286, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418631

RESUMEN

Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures1. Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported2-5. Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells6,7. Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (Voc) of wide-gap perovskite cells8 and losses introduced by the interconnect between the subcells9,10. Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high Voc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high Voc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells11, show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions12 and are on a par with perovskite-CIGS and all-perovskite multijunctions13.


Asunto(s)
Compuestos de Calcio , Indio , Cobre , Óxidos , Titanio
12.
Nature ; 608(7923): 626-631, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896743

RESUMEN

Emissions of the critical ozone-depleting and greenhouse gas nitrous oxide (N2O) from soils and industrial processes have increased considerably over the last decades1-3. As the final step of bacterial denitrification, N2O is reduced to chemically inert N2 (refs. 1,4) in a reaction that is catalysed by the copper-dependent nitrous oxide reductase (N2OR) (ref. 5). The assembly of its unique [4Cu:2S] active site cluster CuZ requires both the ATP-binding-cassette (ABC) complex NosDFY and the membrane-anchored copper chaperone NosL (refs. 4,6). Here we report cryo-electron microscopy structures of Pseudomonas stutzeri NosDFY and its complexes with NosL and N2OR, respectively. We find that the periplasmic NosD protein contains a binding site for a Cu+ ion and interacts specifically with NosL in its nucleotide-free state, whereas its binding to N2OR requires a conformational change that is triggered by ATP binding. Mutually exclusive structures of NosDFY in complex with NosL and with N2OR reveal a sequential metal-trafficking and assembly pathway for a highly complex copper site. Within this pathway, NosDFY acts as a mechanical energy transducer rather than as a transporter. It links ATP hydrolysis in the cytoplasm to a conformational transition of the NosD subunit in the periplasm, which is required for NosDFY to switch its interaction partner so that copper ions are handed over from the chaperone NosL to the enzyme N2OR.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Óxido Nitroso , Oxidorreductasas , Pseudomonas stutzeri , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Cobre/química , Cobre/metabolismo , Citoplasma/enzimología , Chaperonas Moleculares/metabolismo , Óxido Nitroso/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxidorreductasas/ultraestructura , Periplasma/enzimología , Unión Proteica , Conformación Proteica , Pseudomonas stutzeri/citología , Pseudomonas stutzeri/enzimología
13.
Immunol Rev ; 321(1): 211-227, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715546

RESUMEN

Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/terapia , Inmunoterapia , Muerte Celular , Homeostasis , Apoptosis , Microambiente Tumoral
14.
Nature ; 596(7871): 250-256, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182570

RESUMEN

The substitution of an alkyl electrophile by a nucleophile is a foundational reaction in organic chemistry that enables the efficient and convergent synthesis of organic molecules. Although there has been substantial recent progress in exploiting transition-metal catalysis to expand the scope of nucleophilic substitution reactions to include carbon nucleophiles1-4, there has been limited progress in corresponding reactions with nitrogen nucleophiles5-8. For many substitution reactions, the bond construction itself is not the only challenge, as there is a need to control stereochemistry at the same time. Here we describe a method for the enantioconvergent substitution of unactivated racemic alkyl electrophiles by a ubiquitous nitrogen-containing functional group, an amide. Our method uses a photoinduced catalyst system based on copper, an Earth-abundant metal. This process for asymmetric N-alkylation relies on three distinct ligands-a bisphosphine, a phenoxide and a chiral diamine. The ligands assemble in situ to form two distinct catalysts that act cooperatively: a copper/bisphosphine/phenoxide complex that serves as a photocatalyst, and a chiral copper/diamine complex that catalyses enantioselective C-N bond formation. Our study thus expands enantioselective N-substitution by alkyl electrophiles beyond activated electrophiles (those bearing at least one sp- or sp2-hybridized substituent on the carbon undergoing substitution)8-13 to include unactivated electrophiles.


Asunto(s)
Amidas/química , Cobre/química , Fotoquímica , Bromuros/química , Carbono/química , Catálisis , Ciclización , Diaminas/química , Ligandos , Nitrógeno/química , Fosfinas/química
15.
Proc Natl Acad Sci U S A ; 121(4): e2311630121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232278

RESUMEN

Copper is an essential trace element for the human body, and its requirement for optimistic immune functions has been recognized for decades. How copper is involved in the innate immune pathway, however, remains to be clarified. Here, we report that copper serves as a signal molecule to regulate the kinase activity of alpha-kinase 1 (ALPK1), a cytosolic pattern-recognition receptor (PRR), and therefore promotes host cell defense against bacterial infection. We show that in response to infection, host cells actively accumulate copper in the cytosol, and the accumulated cytosolic copper enhances host cell defense against evading pathogens, including intracellular and, unexpectedly, extracellular bacteria. Subsequently, we demonstrate that copper activates the innate immune pathway of host cells in an ALPK1-dependent manner. Further mechanistic studies reveal that copper binds to ALPK1 directly and is essential for the kinase activity of this cytosolic PRR. Moreover, the binding of copper to ALPK1 enhances the sensitivity of ALPK1 to the bacterial metabolite ADP-heptose and eventually prompts host cells to elicit an enhanced immune response during bacterial infection. Finally, using a zebrafish in vivo model, we show that a copper-treated host shows an increased production of proinflammatory cytokines, enhanced recruitment of phagosome cells, and promoted bacterial clearance. Our findings uncover a previously unrecognized role of copper in the modulation of host innate immune response against bacterial pathogens and advance our knowledge on the cross talk between cytosolic copper homeostasis and immune system.


Asunto(s)
Infecciones Bacterianas , Cobre , Animales , Humanos , Pez Cebra , Inmunidad Innata , Citocinas , Receptores de Reconocimiento de Patrones
16.
PLoS Genet ; 20(6): e1011325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861577

RESUMEN

Bacteria use diverse strategies and molecular machinery to maintain copper homeostasis and to cope with its toxic effects. Some genetic elements providing copper resistance are acquired by horizontal gene transfer; however, little is known about how they are controlled and integrated into the central regulatory network. Here, we studied two copper-responsive systems in a clinical isolate of Pseudomonas paraeruginosa and deciphered the regulatory and cross-regulation mechanisms. To do so, we combined mutagenesis, transcriptional fusion analyses and copper sensitivity phenotypes. Our results showed that the accessory CusRS two-component system (TCS) responds to copper and activates both its own expression and that of the adjacent nine-gene operon (the pcoA2 operon) to provide resistance to elevated levels of extracellular copper. The same locus was also found to be regulated by two core-genome-encoded TCSs-the copper-responsive CopRS and the zinc-responsive CzcRS. Although the target palindromic sequence-ATTCATnnATGTAAT-is the same for the three response regulators, transcriptional outcomes differ. Thus, depending on the operon/regulator pair, binding can result in different activation levels (from none to high), with the systems demonstrating considerable plasticity. Unexpectedly, although the classical CusRS and the noncanonical CopRS TCSs rely on distinct signaling mechanisms (kinase-based vs. phosphatase-based), we discovered cross-talk in the absence of the cognate sensory kinases. This cross-talk occurred between the proteins of these two otherwise independent systems. The cusRS-pcoA2 locus is part of an Integrative and Conjugative Element and was found in other Pseudomonas strains where its expression could provide copper resistance under appropriate conditions. The results presented here illustrate how acquired genetic elements can become part of endogenous regulatory networks, providing a physiological advantage. They also highlight the potential for broader effects of accessory regulatory proteins through interference with core regulatory proteins.


Asunto(s)
Proteínas Bacterianas , Cobre , Regulación Bacteriana de la Expresión Génica , Operón , Pseudomonas , Cobre/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Operón/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Transducción de Señal/genética
17.
Proc Natl Acad Sci U S A ; 121(42): e2402862121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378088

RESUMEN

Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.


Asunto(s)
Cobre , Proteínas de Escherichia coli , Escherichia coli , Metionina , Cobre/metabolismo , Cobre/química , Metionina/metabolismo , Metionina/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Sitios de Unión , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidación-Reducción , Dominios Proteicos
18.
Proc Natl Acad Sci U S A ; 121(28): e2408092121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968106

RESUMEN

The multinuclear nonheme iron-dependent oxidases (MNIOs) are a rapidly growing family of enzymes involved in the biosynthesis of ribosomally synthesized, posttranslationally modified peptide natural products (RiPPs). Recently, a secreted virulence factor from nontypeable Haemophilus influenzae (NTHi) was found to be expressed from an operon, which we designate the hvf operon, that also encodes an MNIO. Here, we show by Mössbauer spectroscopy that the MNIO HvfB contains a triiron cofactor. We demonstrate that HvfB works together with HvfC [a RiPP recognition element (RRE)-containing partner protein] to perform six posttranslational modifications of cysteine residues on the virulence factor precursor peptide HvfA. Structural characterization by tandem mass spectrometry and NMR shows that these six cysteine residues are converted to oxazolone and thioamide pairs, similar to those found in the RiPP methanobactin. Like methanobactin, the mature virulence factor, which we name oxazolin, uses these modified residues to coordinate Cu(I) ions. Considering the necessity of oxazolin for host cell invasion by NTHi, these findings point to a key role for copper during NTHi infection. Furthermore, oxazolin and its biosynthetic pathway represent a potential therapeutic target for NTHi.


Asunto(s)
Proteínas Bacterianas , Cobre , Haemophilus influenzae , Oxazolona , Factores de Virulencia , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimología , Haemophilus influenzae/genética , Haemophilus influenzae/patogenicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Cobre/metabolismo , Cobre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Oxazolona/metabolismo , Tioamidas/metabolismo , Tioamidas/química , Hierro/metabolismo , Procesamiento Proteico-Postraduccional , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Operón , Cisteína/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(20): e2402653121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38722808

RESUMEN

The intrinsically disordered C-terminal peptide region of severe acute respiratory syndrome coronavirus 2 nonstructural protein-1 (Nsp1-CT) inhibits host protein synthesis by blocking messenger RNA (mRNA) access to the 40S ribosome entrance tunnel. Aqueous copper(II) ions bind to the disordered peptide with micromolar affinity, creating a possible strategy to restore protein synthesis during host infection. Electron paramagnetic resonance (EPR) and tryptophan fluorescence measurements on a 10-residue model of the disordered protein region (Nsp1-CT10), combined with advanced quantum mechanics calculations, suggest that the peptide binds to copper(II) as a multidentate ligand. Two optimized computational models of the copper(II)-peptide complexes were derived: One corresponding to pH 6.5 and the other describing the complex at pH 7.5 to 8.5. Simulated EPR spectra based on the calculated model structures are in good agreement with experimental spectra.


Asunto(s)
Cobre , Proteínas Intrínsecamente Desordenadas , SARS-CoV-2 , Proteínas no Estructurales Virales , Cobre/química , Cobre/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Unión Proteica , Modelos Moleculares , COVID-19/virología
20.
Proc Natl Acad Sci U S A ; 121(39): e2320611121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288174

RESUMEN

Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cobre , Homeostasis , Mitocondrias , Neuroglía , Estrés Oxidativo , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Mitocondrias/metabolismo , Cobre/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/metabolismo , Neuronas Dopaminérgicas/metabolismo , Supervivencia Celular , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA