Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.661
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031742

RESUMEN

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Asunto(s)
Endocannabinoides/metabolismo , Enterobacteriaceae/patogenicidad , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Citrobacter rodentium/patogenicidad , Colon/microbiología , Colon/patología , Endocannabinoides/química , Infecciones por Enterobacteriaceae/microbiología , Femenino , Microbioma Gastrointestinal , Glicéridos/química , Glicéridos/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Salmonella/patogenicidad , Virulencia
2.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32758418

RESUMEN

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Asunto(s)
Colitis/patología , Enterobacter/fisiología , Microbioma Gastrointestinal , Klebsiella/fisiología , Boca/microbiología , Animales , Colitis/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Enterobacter/aislamiento & purificación , Femenino , Inflamasomas/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/aislamiento & purificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodontitis/microbiología , Periodontitis/patología , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
3.
Cell ; 177(5): 1217-1231.e18, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31006530

RESUMEN

The intestinal microbiota produces tens of thousands of metabolites. Here, we used host sensing of small molecules by G-protein coupled receptors (GPCRs) as a lens to illuminate bioactive microbial metabolites that impact host physiology. We screened 144 human gut bacteria against the non-olfactory GPCRome and identified dozens of bacteria that activated both well-characterized and orphan GPCRs, including strains that converted dietary histidine into histamine and shaped colonic motility; a prolific producer of the essential amino acid L-Phe, which we identified as an agonist for GPR56 and GPR97; and a species that converted L-Phe into the potent psychoactive trace amine phenethylamine, which crosses the blood-brain barrier and triggers lethal phenethylamine poisoning after monoamine oxidase inhibitor administration. These studies establish an orthogonal approach for parsing the microbiota metabolome and uncover multiple biologically relevant host-microbiota metabolome interactions.


Asunto(s)
Bacterias/crecimiento & desarrollo , Colon/microbiología , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células HEK293 , Humanos , Ratones
4.
Nat Immunol ; 22(2): 216-228, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33462454

RESUMEN

CD4+ effector lymphocytes (Teff) are traditionally classified by the cytokines they produce. To determine the states that Teff cells actually adopt in frontline tissues in vivo, we applied single-cell transcriptome and chromatin analyses to colonic Teff cells in germ-free or conventional mice or in mice after challenge with a range of phenotypically biasing microbes. Unexpected subsets were marked by the expression of the interferon (IFN) signature or myeloid-specific transcripts, but transcriptome or chromatin structure could not resolve discrete clusters fitting classic helper T cell (TH) subsets. At baseline or at different times of infection, transcripts encoding cytokines or proteins commonly used as TH markers were distributed in a polarized continuum, which was functionally validated. Clones derived from single progenitors gave rise to both IFN-γ- and interleukin (IL)-17-producing cells. Most of the transcriptional variance was tied to the infecting agent, independent of the cytokines produced, and chromatin variance primarily reflected activities of activator protein (AP)-1 and IFN-regulatory factor (IRF) transcription factor (TF) families, not the canonical subset master regulators T-bet, GATA3 or RORγ.


Asunto(s)
Bacterias/patogenicidad , Infecciones Bacterianas/microbiología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/parasitología , Colon/microbiología , Colon/parasitología , Microbioma Gastrointestinal , Heligmosomatoidea/patogenicidad , Parasitosis Intestinales/parasitología , Animales , Bacterias/inmunología , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Citrobacter rodentium/inmunología , Citrobacter rodentium/patogenicidad , Colon/inmunología , Colon/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Heligmosomatoidea/inmunología , Interacciones Huésped-Patógeno , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Parasitosis Intestinales/genética , Parasitosis Intestinales/inmunología , Parasitosis Intestinales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Nematospiroides dubius/inmunología , Nematospiroides dubius/patogenicidad , Nippostrongylus/inmunología , Nippostrongylus/patogenicidad , Fenotipo , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad , Análisis de la Célula Individual , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Transcriptoma
5.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30100182

RESUMEN

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Hierro/metabolismo , Virulencia/fisiología , Animales , Infecciones Asintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidad , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/microbiología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Femenino , Resistencia a la Insulina/fisiología , Intestino Delgado/microbiología , Hierro/farmacología , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos DBA
6.
Cell ; 173(7): 1742-1754.e17, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906449

RESUMEN

Osmotic diarrhea is a prevalent condition in humans caused by food intolerance, malabsorption, and widespread laxative use. Here, we assess the resilience of the gut ecosystem to osmotic perturbation at multiple length and timescales using mice as model hosts. Osmotic stress caused reproducible extinction of highly abundant taxa and expansion of less prevalent members in human and mouse microbiotas. Quantitative imaging revealed decimation of the mucus barrier during osmotic perturbation, followed by recovery. The immune system exhibited temporary changes in cytokine levels and a lasting IgG response against commensal bacteria. Increased osmolality prevented growth of commensal strains in vitro, revealing one mechanism contributing to extinction. Environmental availability of microbiota members mitigated extinction events, demonstrating how species reintroduction can affect community resilience. Our findings (1) demonstrate that even mild osmotic diarrhea can cause lasting changes to the microbiota and host and (2) lay the foundation for interventions that increase system-wide resilience.


Asunto(s)
Diarrea/patología , Microbioma Gastrointestinal/efectos de los fármacos , Polietilenglicoles/farmacología , Animales , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Ciego/química , Ciego/metabolismo , Ciego/microbiología , Ciego/patología , Colon/química , Colon/microbiología , Colon/patología , Citocinas/metabolismo , Diarrea/inmunología , Diarrea/microbiología , Diarrea/veterinaria , Heces/microbiología , Glicósido Hidrolasas/metabolismo , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Metagenómica , Ratones , Concentración Osmolar , Polietilenglicoles/metabolismo , Proteoma/análisis , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Verrucomicrobia/efectos de los fármacos , Verrucomicrobia/genética , Verrucomicrobia/aislamiento & purificación
7.
Nat Immunol ; 21(3): 343-353, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066951

RESUMEN

Gastrointestinal microbiota and immune cells interact closely and display regional specificity; however, little is known about how these communities differ with location. Here, we simultaneously assess microbiota and single immune cells across the healthy, adult human colon, with paired characterization of immune cells in the mesenteric lymph nodes, to delineate colonic immune niches at steady state. We describe distinct helper T cell activation and migration profiles along the colon and characterize the transcriptional adaptation trajectory of regulatory T cells between lymphoid tissue and colon. Finally, we show increasing B cell accumulation, clonal expansion and mutational frequency from the cecum to the sigmoid colon and link this to the increasing number of reactive bacterial species.


Asunto(s)
Colon/inmunología , Colon/microbiología , Microbioma Gastrointestinal/inmunología , Adulto , Linfocitos B/inmunología , Colon/citología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Activación de Linfocitos , Especificidad de Órganos , RNA-Seq , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología , Transcriptoma
8.
Cell ; 164(3): 337-40, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824647

RESUMEN

It is often presented as common knowledge that, in the human body, bacteria outnumber human cells by a ratio of at least 10:1. Revisiting the question, we find that the ratio is much closer to 1:1.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Microbiota , Adulto , Bacterias/citología , Peso Corporal , Recuento de Células , Colon/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Simbiosis
9.
Cell ; 167(6): 1495-1510.e12, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912059

RESUMEN

The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs.


Asunto(s)
Ritmo Circadiano , Colon/microbiología , Microbioma Gastrointestinal , Transcriptoma , Animales , Cromatina/metabolismo , Colon/metabolismo , Vida Libre de Gérmenes , Hígado/metabolismo , Ratones , Microscopía Electrónica de Rastreo
10.
Cell ; 167(5): 1339-1353.e21, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863247

RESUMEN

Despite the accepted health benefits of consuming dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic mouse model, in which animals were colonized with a synthetic human gut microbiota composed of fully sequenced commensal bacteria, we elucidated the functional interactions between dietary fiber, the gut microbiota, and the colonic mucus barrier, which serves as a primary defense against enteric pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation, together with a fiber-deprived, mucus-eroding microbiota, promotes greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium. Our work reveals intricate pathways linking diet, the gut microbiome, and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.


Asunto(s)
Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal , Mucosa Intestinal/microbiología , Animales , Citrobacter rodentium/fisiología , Colitis/microbiología , Colon/microbiología , Susceptibilidad a Enfermedades , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli , Femenino , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Mucina 2/genética
11.
Cell ; 165(7): 1708-1720, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27264604

RESUMEN

In the mammalian intestine, crypts of Leiberkühn house intestinal epithelial stem/progenitor cells at their base. The mammalian intestine also harbors a diverse array of microbial metabolite compounds that potentially modulate stem/progenitor cell activity. Unbiased screening identified butyrate, a prominent bacterial metabolite, as a potent inhibitor of intestinal stem/progenitor proliferation at physiologic concentrations. During homeostasis, differentiated colonocytes metabolized butyrate likely preventing it from reaching proliferating epithelial stem/progenitor cells within the crypt. Exposure of stem/progenitor cells in vivo to butyrate through either mucosal injury or application to a naturally crypt-less host organism led to inhibition of proliferation and delayed wound repair. The mechanism of butyrate action depended on the transcription factor Foxo3. Our findings indicate that mammalian crypt architecture protects stem/progenitor cell proliferation in part through a metabolic barrier formed by differentiated colonocytes that consume butyrate and stimulate future studies on the interplay of host anatomy and microbiome metabolism.


Asunto(s)
Bacterias/metabolismo , Butiratos/metabolismo , Colon/citología , Colon/microbiología , Microbioma Gastrointestinal , Células Madre/metabolismo , Acil-CoA Deshidrogenasa/deficiencia , Acil-CoA Deshidrogenasa/genética , Animales , Proliferación Celular , Intestino Delgado/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxidación-Reducción , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Células Madre/citología , Pez Cebra
12.
Cell ; 163(6): 1310-2, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638066

RESUMEN

The fidelity of the intestinal barrier is critical to maintaining a healthy relationship between the immune system and the microbiota. Levy et al. and Nowarski et al. reveal how microbiota-derived metabolites modulate the activation of the inflammasome to influence the expression of the cytokine IL-18, intestinal barrier function, and intestinal inflammation.


Asunto(s)
Colitis Ulcerosa/patología , Colitis Ulcerosa/fisiopatología , Colon/inmunología , Colon/microbiología , Inflamasomas/inmunología , Interleucina-18/inmunología , Microbiota , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Femenino , Masculino
13.
Cell ; 163(6): 1428-43, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26638072

RESUMEN

Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.


Asunto(s)
Colon/inmunología , Colon/microbiología , Inflamasomas/inmunología , Microbiota , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Péptidos Catiónicos Antimicrobianos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon/metabolismo , Disbiosis/metabolismo , Vida Libre de Gérmenes , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-18/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Superficie Celular/genética , Taurina/administración & dosificación
14.
Nature ; 629(8012): 669-678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600382

RESUMEN

Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.


Asunto(s)
Citrobacter rodentium , Colon , Células Epiteliales , Mucosa Intestinal , Linfocitos T , Animales , Femenino , Masculino , Ratones , Citrobacter rodentium/inmunología , Colon/citología , Colon/inmunología , Colon/microbiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Interleucina-22/inmunología , Interleucina-22/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/citología , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
15.
Nat Immunol ; 18(5): 541-551, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28288099

RESUMEN

Inflammatory bowel diseases involve the dynamic interaction of host genetics, the microbiome and inflammatory responses. Here we found lower expression of NLRP12 (which encodes a negative regulator of innate immunity) in human ulcerative colitis, by comparing monozygotic twins and other patient cohorts. In parallel, Nlrp12 deficiency in mice caused increased basal colonic inflammation, which led to a less-diverse microbiome and loss of protective gut commensal strains (of the family Lachnospiraceae) and a greater abundance of colitogenic strains (of the family Erysipelotrichaceae). Dysbiosis and susceptibility to colitis associated with Nlrp12 deficency were reversed equally by treatment with antibodies targeting inflammatory cytokines and by the administration of beneficial commensal Lachnospiraceae isolates. Fecal transplants from mice reared in specific-pathogen-free conditions into germ-free Nlrp12-deficient mice showed that NLRP12 and the microbiome each contributed to immunological signaling that culminated in colon inflammation. These findings reveal a feed-forward loop in which NLRP12 promotes specific commensals that can reverse gut inflammation, while cytokine blockade during NLRP12 deficiency can reverse dysbiosis.


Asunto(s)
Clostridiales/fisiología , Colitis Ulcerosa/inmunología , Colon/fisiología , Firmicutes/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microbiota , ARN Ribosómico 16S/análisis , Animales , Biodiversidad , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/microbiología , Colon/microbiología , Sulfato de Dextran , Heces/microbiología , Interacción Gen-Ambiente , Humanos , Inmunidad Innata/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/genética , Microbiota/inmunología , Simbiosis , Gemelos Monocigóticos
16.
Cell ; 156(1-2): 123-33, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439373

RESUMEN

Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development. Consequently, total colonic iNKT cell numbers are restricted into adulthood, and hosts are protected against experimental iNKT cell-mediated, oxazolone-induced colitis. In studies with neonatal mice lacking access to bacterial sphingolipids, we found that treatment with B. fragilis glycosphingolipids-exemplified by an isolated peak (MW = 717.6) called GSL-Bf717-reduces colonic iNKT cell numbers and confers protection against oxazolone-induced colitis in adulthood. Our results suggest that the distinctive inhibitory capacity of GSL-Bf717 and similar molecules may prove useful in the treatment of autoimmune and allergic disorders in which iNKT cell activation is destructive.


Asunto(s)
Bacteroides fragilis/metabolismo , Colitis/inmunología , Glicoesfingolípidos/metabolismo , Células T Asesinas Naturales/inmunología , Animales , Animales Recién Nacidos , Proliferación Celular , Colitis/inducido químicamente , Colitis/prevención & control , Colon/crecimiento & desarrollo , Colon/microbiología , Ratones , Ratones Endogámicos C57BL , Células T Asesinas Naturales/citología , Oxazolona
17.
Cell ; 156(5): 1045-59, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581500

RESUMEN

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:


Asunto(s)
Colon/inmunología , Células Caliciformes/inmunología , Inflamasomas/inmunología , Mucosa Intestinal/inmunología , Receptores de Superficie Celular/inmunología , Animales , Autofagia , Colitis/inmunología , Colitis/microbiología , Colon/microbiología , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Caliciformes/citología , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Moco/metabolismo
18.
Immunity ; 50(2): 432-445.e7, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30683619

RESUMEN

Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.


Asunto(s)
Antiinfecciosos/farmacología , Butiratos/farmacología , Diferenciación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Animales , Diferenciación Celular/genética , Células Cultivadas , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Citocinas/genética , Citocinas/metabolismo , Disbiosis/microbiología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Intestinos/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Microbiota/fisiología , Monocitos/metabolismo , Monocitos/microbiología
19.
Nature ; 598(7880): 332-337, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616040

RESUMEN

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Asunto(s)
Bacteroides/enzimología , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatasas/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Colon/química , Cristalografía por Rayos X , Femenino , Galactosa/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Especificidad por Sustrato , Sulfatasas/química
20.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905308

RESUMEN

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Asunto(s)
Citrobacter rodentium , Colon , Infecciones por Enterobacteriaceae , Interleucina-17 , Histona Demetilasas con Dominio de Jumonji , Ratones Noqueados , Regulación hacia Arriba , beta-Defensinas , Animales , Ratones , beta-Defensinas/metabolismo , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/inmunología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Interleucina-17/metabolismo , Colon/metabolismo , Colon/microbiología , Colon/patología , Ratones Endogámicos C57BL , Colitis/metabolismo , Colitis/microbiología , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA