Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.201
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 579(7797): 111-117, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103177

RESUMEN

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Asunto(s)
Huesos/citología , Microambiente Celular , Condrogénesis , Metabolismo de los Lípidos , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Huesos/irrigación sanguínea , Condrocitos/citología , Condrocitos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Privación de Alimentos , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Oxidación-Reducción , Factor de Transcripción SOX9/genética , Transducción de Señal , Cicatrización de Heridas
2.
Dev Biol ; 512: 1-10, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657748

RESUMEN

Precise regulation of gene expression is of utmost importance during cell fate specification. DNA methylation is a key epigenetic mechanism that plays a significant role in the regulation of cell fate by recruiting repression proteins or inhibiting the binding of transcription factors to DNA to regulate gene expression. Limb development is a well-established model for understanding cell fate decisions, and the formation of skeletal elements is coordinated through a sequence of events that control chondrogenesis spatiotemporally. It has been established that epigenetic control participates in cartilage maturation. However, further investigation is required to determine its role in the earliest stages of chondrocyte differentiation. This study investigates how the DNA methylation environment affects cell fate divergence during the early chondrogenic events. Our research has shown for the first time that inhibiting DNA methylation in interdigital tissue with 5-azacytidine results in the formation of an ectopic digit. This discovery suggested that DNA methylation dynamics could regulate the fate of cells between chondrogenesis and cell death during autopod development. Our in vitro findings indicate that DNA methylation at the early stages of chondrogenesis is integral in regulating condensation by controlling cell adhesion and proapoptotic genes. As a result, the dynamics of methylation and demethylation are crucial in governing chondrogenesis and cell death during different stages of limb chondrogenesis.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Metilación de ADN , Extremidades , Metilación de ADN/genética , Condrogénesis/genética , Animales , Extremidades/embriología , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/citología , Azacitidina/farmacología , Regulación del Desarrollo de la Expresión Génica , Embrión de Pollo , Epigénesis Genética , Apoptosis/genética
3.
J Biol Chem ; 300(4): 107158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479598

RESUMEN

Single-cell RNA-seq has led to novel designations for mesenchymal cells associated with bone as well as multiple designations for what appear to be the same cell type. The main goals of this study were to increase the amount of single-cell RNA sequence data for osteoblasts and osteocytes, to compare cells from the periosteum to those inside bone, and to clarify the major categories of cell types associated with murine bone. We created an atlas of murine bone-associated cells by harmonizing published datasets with in-house data from cells targeted by Osx1-Cre and Dmp1-Cre driver strains. Cells from periosteal bone were analyzed separately from those isolated from the endosteum and trabecular bone. Over 100,000 mesenchymal cells were mapped to reveal 11 major clusters designated fibro-1, fibro-2, chondrocytes, articular chondrocytes, tenocytes, adipo-Cxcl12 abundant reticular (CAR), osteo-CAR, preosteoblasts, osteoblasts, osteocytes, and osteo-X, the latter defined in part by periostin expression. Osteo-X, osteo-CAR, and preosteoblasts were closely associated with osteoblasts at the trabecular bone surface. Wnt16 was expressed in multiple cell types from the periosteum but not in cells from endocortical or cancellous bone. Fibro-2 cells, which express markers of stem cells, localized to the periosteum but not trabecular bone in adult mice. Suppressing bone remodeling eliminated osteoblasts and altered gene expression in preosteoblasts but did not change the abundance or location of osteo-X or osteo-CAR cells. These results provide a framework for identifying bone cell types in murine single-cell RNA-seq datasets and suggest that osteoblast progenitors reside near the surface of remodeling bone.


Asunto(s)
Células Madre Mesenquimatosas , Osteoblastos , Osteocitos , Periostio , Animales , Ratones , Condrocitos/metabolismo , Condrocitos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/metabolismo , Osteoblastos/citología , Osteocitos/metabolismo , Osteocitos/citología , Periostio/citología , Periostio/metabolismo , Análisis de la Célula Individual , Ratones Endogámicos C57BL
4.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451016

RESUMEN

It has been established in the mouse model that during embryogenesis joint cartilage is generated from a specialized progenitor cell type, distinct from that responsible for the formation of growth plate cartilage. We recently found that mesodermal progeny of human pluripotent stem cells gave rise to two types of chondrogenic mesenchymal cells in culture: SOX9+ and GDF5+ cells. The fast-growing SOX9+ cells formed in vitro cartilage that expressed chondrocyte hypertrophy markers and readily underwent mineralization after ectopic transplantation. In contrast, the slowly growing GDF5+ cells derived from SOX9+ cells formed cartilage that tended to express low to undetectable levels of chondrocyte hypertrophy markers, but expressed PRG4, a marker of embryonic articular chondrocytes. The GDF5+-derived cartilage remained largely unmineralized in vivo. Interestingly, chondrocytes derived from the GDF5+ cells seemed to elicit these activities via non-cell-autonomous mechanisms. Genome-wide transcriptomic analyses suggested that GDF5+ cells might contain a teno/ligamento-genic potential, whereas SOX9+ cells resembled neural crest-like progeny-derived chondroprogenitors. Thus, human pluripotent stem cell-derived GDF5+ cells specified to generate permanent-like cartilage seem to emerge coincidentally with the commitment of the SOX9+ progeny to the tendon/ligament lineage.


Asunto(s)
Cartílago Articular , Condrocitos , Células Madre Pluripotentes , Animales , Cartílago Articular/citología , Cartílago Articular/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Hipertrofia , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
5.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35005773

RESUMEN

Amputation injuries in mammals are typically non-regenerative; however, joint regeneration is stimulated by BMP9 treatment, indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9-treated cells results in differentiation of hyaline cartilage, and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9-responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype, but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples, indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establish a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , Cartílago Hialino/citología , Regeneración , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrogénesis , Fibroblastos/efectos de los fármacos , Factor 2 de Diferenciación de Crecimiento/farmacología , Cartílago Hialino/metabolismo , Cartílago Hialino/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID
6.
Development ; 149(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34919126

RESUMEN

Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.


Asunto(s)
Osteogénesis , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Cráneo/metabolismo , Animales , Condrocitos/citología , Condrocitos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/genética , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Transducción de Señal , Cráneo/embriología , Estrés Mecánico , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35132438

RESUMEN

Cranial neural crest cell (NCC)-derived chondrocyte precursors undergo a dynamic differentiation and maturation process to establish a scaffold for subsequent bone formation, alterations in which contribute to congenital birth defects. Here, we demonstrate that transcription factor and histone methyltransferase proteins Prdm3 and Prdm16 control the differentiation switch of cranial NCCs to craniofacial cartilage. Loss of either paralog results in hypoplastic and disorganized chondrocytes due to impaired cellular orientation and polarity. We show that these proteins regulate cartilage differentiation by controlling the timing of Wnt/ß-catenin activity in strikingly different ways: Prdm3 represses whereas Prdm16 activates global gene expression, although both act by regulating Wnt enhanceosome activity and chromatin accessibility. Finally, we show that manipulating Wnt/ß-catenin signaling pharmacologically or generating prdm3-/-;prdm16-/- double mutants rescues craniofacial cartilage defects. Our findings reveal upstream regulatory roles for Prdm3 and Prdm16 in cranial NCCs to control Wnt/ß-catenin transcriptional activity during chondrocyte differentiation to ensure proper development of the craniofacial skeleton.


Asunto(s)
Diferenciación Celular , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/metabolismo , Animales , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína del Locus del Complejo MDS1 y EV11/deficiencia , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Ratones Noqueados , Cresta Neural/citología , Cresta Neural/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Cráneo/citología , Cráneo/metabolismo , Proteínas Wnt/metabolismo , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , beta Catenina/metabolismo
8.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38613477

RESUMEN

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Asunto(s)
Condrocitos , Técnicas de Cocultivo , Microtia Congénita , Ingeniería de Tejidos , Proteína de Unión al GTP rhoA , Condrocitos/metabolismo , Condrocitos/citología , Humanos , Ingeniería de Tejidos/métodos , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Microtia Congénita/metabolismo , Microtia Congénita/genética , Cartílago Auricular/citología , Cartílago Auricular/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Condrogénesis/genética , Masculino , Andamios del Tejido/química , Femenino
9.
Nature ; 567(7747): 234-238, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30814736

RESUMEN

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Asunto(s)
Condrocitos/citología , Células Clonales/citología , Placa de Crecimiento/citología , Nicho de Células Madre/fisiología , Envejecimiento , Animales , Cartílago/citología , Autorrenovación de las Células , Células Clonales/metabolismo , Femenino , Placa de Crecimiento/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones
10.
J Cell Mol Med ; 28(11): e18443, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837873

RESUMEN

The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.


Asunto(s)
Movimiento Celular , Condrocitos , Microtia Congénita , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP rac1 , Animales , Femenino , Humanos , Masculino , Ratones , Condrocitos/metabolismo , Condrocitos/citología , Microtia Congénita/metabolismo , Microtia Congénita/genética , Microtia Congénita/patología , Modelos Animales de Enfermedad , Proteína de Unión al GTP rac1/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
11.
J Biol Chem ; 299(6): 104805, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172728

RESUMEN

Bone development starts with condensations of undifferentiated mesenchymal cells that set a framework for future bones within the primordium. In the endochondral pathway, mesenchymal cells inside the condensation differentiate into chondrocytes and perichondrial cells in a SOX9-dependent mechanism. However, the identity of mesenchymal cells outside the condensation and how they participate in developing bones remain undefined. Here we show that mesenchymal cells surrounding the condensation contribute to both cartilage and perichondrium, robustly generating chondrocytes, osteoblasts, and marrow stromal cells in developing bones. Single-cell RNA-seq analysis of Prrx1-cre-marked limb bud mesenchymal cells at E11.5 reveals that Notch effector Hes1 is expressed in a mutually exclusive manner with Sox9 that is expressed in pre-cartilaginous condensations. Analysis of a Notch signaling reporter CBF1:H2B-Venus reveals that peri-condensation mesenchymal cells are active for Notch signaling. In vivo lineage-tracing analysis using Hes1-creER identifies that Hes1+ early mesenchymal cells surrounding the SOX9+ condensation at E10.5 contribute to both cartilage and perichondrium at E13.5, subsequently becoming growth plate chondrocytes, osteoblasts of trabecular and cortical bones, and marrow stromal cells in postnatal bones. In contrast, Hes1+ cells in the perichondrium at E12.5 or E14.5 do not generate chondrocytes within cartilage, contributing to osteoblasts and marrow stromal cells only through the perichondrial route. Therefore, Hes1+ peri-condensation mesenchymal cells give rise to cells of the skeletal lineage through cartilage-dependent and independent pathways, supporting the theory that early mesenchymal cells outside the condensation also play important roles in early bone development.


Asunto(s)
Desarrollo Óseo , Huesos , Cartílago , Diferenciación Celular , Linaje de la Célula , Condrocitos , Células Madre Mesenquimatosas , Factor de Transcripción HES-1 , Animales , Ratones , Huesos/citología , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Factor de Transcripción HES-1/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Receptores Notch/metabolismo
12.
J Biol Chem ; 299(12): 105372, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865314

RESUMEN

Notch regulates the immune and inflammatory response and has been associated with the pathogenesis of osteoarthritis in humans and preclinical models of the disease. Notch2tm1.1Ecan mice harbor a NOTCH2 gain-of-function and are sensitized to osteoarthritis, but the mechanisms have not been explored. We examined the effects of tumor necrosis factor α (TNFα) in chondrocytes from Notch2tm1.1Ecan mice and found that NOTCH2 enhanced the effect of TNFα on Il6 and Il1b expression. Similar results were obtained in cells from a conditional model of NOTCH2 gain-of-function, Notch22.1Ecan mice, and following the expression of the NOTCH2 intracellular domain in vitro. Recombination signal-binding protein for immunoglobulin Kappa J region partners with the NOTCH2 intracellular domain to activate transcription; in the absence of Notch signaling it inhibits transcription, and Rbpj inactivation in chondrocytes resulted in Il6 induction. Although TNFα induced IL6 to a greater extent in the context of NOTCH2 activation, there was a concomitant inhibition of Notch target genes Hes1, Hey1, Hey2, and Heyl. Electrophoretic mobility shift assay demonstrated displacement of recombination signal-binding protein for immunoglobulin Kappa J region from DNA binding sites by TNFα explaining the increased Il6 expression and the concomitant decrease in Notch target genes. NOTCH2 enhanced the effect of TNFα on NF-κB signaling, and RNA-Seq revealed increased expression of pathways associated with inflammation and the phagosome in NOTCH2 overexpressing cells in the absence and presence of TNFα. Collectively, NOTCH2 has important interactions with TNFα resulting in the enhanced expression of Il6 and inflammatory pathways in chondrocytes.


Asunto(s)
Condrocitos , Osteoartritis , Receptor Notch2 , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Inmunoglobulinas , Interleucina-6/genética , Interleucina-6/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Inflamación , Modelos Animales de Enfermedad , Condrogénesis , Transducción de Señal/efectos de los fármacos , Dominios Proteicos/inmunología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica/efectos de los fármacos
13.
Development ; 148(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423345

RESUMEN

We dissect genetically a gene regulatory network that involves the transcription factors Tbx4, Pitx1 and Isl1 acting cooperatively to establish the hindlimb bud, and identify key differences in the pathways that initiate formation of the hindlimb and forelimb. Using live image analysis of murine limb mesenchyme cells undergoing chondrogenesis in micromass culture, we distinguish a series of changes in cellular behaviours and cohesiveness that are required for chondrogenic precursors to undergo differentiation. Furthermore, we provide evidence that the proximal hindlimb defects observed in Tbx4 mutant mice result from a failure in the early differentiation step of chondroprogenitors into chondrocytes, providing an explanation for the origins of proximally biased limb defects.


Asunto(s)
Miembro Posterior/anomalías , Esbozos de los Miembros/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Esbozos de los Miembros/citología , Esbozos de los Miembros/crecimiento & desarrollo , Células Madre Mesenquimatosas/metabolismo , Ratones , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
BMC Biotechnol ; 24(1): 25, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689309

RESUMEN

The reconstruction of a stable, nipple-shaped cartilage graft that precisely matches the natural nipple in shape and size on the contralateral side is a clinical challenge. While 3D printing technology can efficiently and accurately manufacture customized complex structures, it faces limitations due to inadequate blood supply, which hampers the stability of nipple-shaped cartilage grafts produced using this technology. To address this issue, we employed a biodegradable biomaterial, Poly(lactic-co-glycolic acid) (PLGA), loaded with Cell-Free Fat Extract (Ceffe). Ceffe has demonstrated the ability to promote angiogenesis and cell proliferation, making it an ideal bio-ink for bioprinting precise nipple-shaped cartilage grafts. We utilized the Ceffe/PLGA scaffold to create a porous structure with a precise nipple shape. This scaffold exhibited favorable porosity and pore size, ensuring stable shape maintenance and satisfactory biomechanical properties. Importantly, it could release Ceffe in a sustained manner. Our in vitro results confirmed the scaffold's good biocompatibility and its ability to promote angiogenesis, as evidenced by supporting chondrocyte proliferation and endothelial cell migration and tube formation. Furthermore, after 8 weeks of in vivo culture, the Ceffe/PLGA scaffold seeded with chondrocytes regenerated into a cartilage support structure with a precise nipple shape. Compared to the pure PLGA group, the Ceffe/PLGA scaffold showed remarkable vascular formation, highlighting the beneficial effects of Ceffe. These findings suggest that our designed Ceffe/PLGA scaffold with a nipple shape represents a promising strategy for precise nipple-shaped cartilage regeneration, laying a foundation for subsequent nipple reconstruction.


Asunto(s)
Cartílago , Condrocitos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Condrocitos/citología , Cartílago/citología , Cartílago/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Materiales Biocompatibles/química , Conejos , Porosidad , Ácido Poliglicólico/química , Neovascularización Fisiológica/efectos de los fármacos
15.
Cell Commun Signal ; 22(1): 342, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907358

RESUMEN

BACKGROUND: Mechanical unloading of the knee articular cartilage results in cartilage matrix atrophy, signifying the osteoarthritic-inductive potential of mechanical unloading. In contrast, mechanical loading stimulates cartilage matrix production. However, little is known about the response of meniscal fibrocartilage, a major mechanical load-bearing tissue of the knee joint, and its functional matrix-forming fibrochondrocytes to mechanical unloading events. METHODS: In this study, primary meniscus fibrochondrocytes isolated from the inner avascular region of human menisci from both male and female donors were seeded into porous collagen scaffolds to generate 3D meniscus models. These models were subjected to both normal gravity and mechanical unloading via simulated microgravity (SMG) for 7 days, with samples collected at various time points during the culture. RESULTS: RNA sequencing unveiled significant transcriptome changes during the 7-day SMG culture, including the notable upregulation of key osteoarthritis markers such as COL10A1, MMP13, and SPP1, along with pathways related to inflammation and calcification. Crucially, sex-specific variations in transcriptional responses were observed. Meniscus models derived from female donors exhibited heightened cell proliferation activities, with the JUN protein involved in several potentially osteoarthritis-related signaling pathways. In contrast, meniscus models from male donors primarily regulated extracellular matrix components and matrix remodeling enzymes. CONCLUSION: These findings advance our understanding of sex disparities in knee osteoarthritis by developing a novel in vitro model using cell-seeded meniscus constructs and simulated microgravity, revealing significant sex-specific molecular mechanisms and therapeutic targets.


Asunto(s)
Menisco , Simulación de Ingravidez , Humanos , Menisco/citología , Masculino , Femenino , Células Cultivadas , Persona de Mediana Edad , Proliferación Celular , Condrocitos/metabolismo , Condrocitos/citología , Adulto , Transcriptoma/genética
16.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739041

RESUMEN

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Vía de Señalización Wnt , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/citología , Diferenciación Celular/efectos de los fármacos , Animales , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Condrogénesis/efectos de los fármacos , Línea Celular , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo
17.
Nature ; 563(7730): 254-258, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401834

RESUMEN

Skeletal stem cells regulate bone growth and homeostasis by generating diverse cell types, including chondrocytes, osteoblasts and marrow stromal cells. The emerging concept postulates that there exists a distinct type of skeletal stem cell that is closely associated with the growth plate1-4, which is a type of cartilaginous tissue that has critical roles in bone elongation5. The resting zone maintains the growth plate by expressing parathyroid hormone-related protein (PTHrP), which interacts with Indian hedgehog (Ihh) that is released from the hypertrophic zone6-10, and provides a source of other chondrocytes11. However, the identity of skeletal stem cells and how they are maintained in the growth plate are unknown. Here we show, in a mouse model, that skeletal stem cells are formed among PTHrP-positive chondrocytes within the resting zone of the postnatal growth plate. PTHrP-positive chondrocytes expressed a panel of markers for skeletal stem and progenitor cells, and uniquely possessed the properties of skeletal stem cells in cultured conditions. Cell-lineage analysis revealed that PTHrP-positive chondrocytes in the resting zone continued to form columnar chondrocytes in the long term; these chondrocytes underwent hypertrophy, and became osteoblasts and marrow stromal cells beneath the growth plate. Transit-amplifying chondrocytes in the proliferating zone-which was concertedly maintained by a forward signal from undifferentiated cells (PTHrP) and a reverse signal from hypertrophic cells (Ihh)-provided instructive cues to maintain the cell fates of PTHrP-positive chondrocytes in the resting zone. Our findings unravel a type of somatic stem cell that is initially unipotent and acquires multipotency at the post-mitotic stage, underscoring the malleable nature of the skeletal cell lineage. This system provides a model in which functionally dedicated stem cells and their niches are specified postnatally, and maintained throughout tissue growth by a tight feedback regulation system.


Asunto(s)
Placa de Crecimiento/citología , Células Madre/citología , Animales , Linaje de la Célula , Condrocitos/citología , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Técnicas In Vitro , Ratones , Osteoblastos/citología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Células del Estroma/citología
18.
J Nanobiotechnology ; 22(1): 300, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816719

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) derived from human adipose-derived mesenchymal stem cells (hADSCs) have shown great therapeutic potential in plastic and reconstructive surgery. However, the limited production and functional molecule loading of EVs hinder their clinical translation. Traditional two-dimensional culture of hADSCs results in stemness loss and cellular senescence, which is unfavorable for the production and functional molecule loading of EVs. Recent advances in regenerative medicine advocate for the use of three-dimensional culture of hADSCs to produce EVs, as it more accurately simulates their physiological state. Moreover, the successful application of EVs in tissue engineering relies on the targeted delivery of EVs to cells within biomaterial scaffolds. METHODS AND RESULTS: The hADSCs spheroids and hADSCs gelatin methacrylate (GelMA) microspheres are utilized to produce three-dimensional cultured EVs, corresponding to hADSCs spheroids-EVs and hADSCs microspheres-EVs respectively. hADSCs spheroids-EVs demonstrate excellent production and functional molecule loading compared with hADSCs microspheres-EVs. The upregulation of eight miRNAs (i.e. hsa-miR-486-5p, hsa-miR-423-5p, hsa-miR-92a-3p, hsa-miR-122-5p, hsa-miR-223-3p, hsa-miR-320a, hsa-miR-126-3p, and hsa-miR-25-3p) and the downregulation of hsa-miR-146b-5p within hADSCs spheroids-EVs show the potential of improving the fate of remaining ear chondrocytes and promoting cartilage formation probably through integrated regulatory mechanisms. Additionally, a quick and innovative pipeline is developed for isolating chondrocyte homing peptide-modified EVs (CHP-EVs) from three-dimensional dynamic cultures of hADSCs spheroids. CHP-EVs are produced by genetically fusing a CHP at the N-terminus of the exosomal surface protein LAMP2B. The CHP + LAMP2B-transfected hADSCs spheroids were cultured with wave motion to promote the secretion of CHP-EVs. A harvesting method is used to enable the time-dependent collection of CHP-EVs. The pipeline is easy to set up and quick to use for the isolation of CHP-EVs. Compared with nontagged EVs, CHP-EVs penetrate the biomaterial scaffolds and specifically deliver the therapeutic miRNAs to the remaining ear chondrocytes. Functionally, CHP-EVs show a major effect on promoting cell proliferation, reducing cell apoptosis and enhancing cartilage formation in remaining ear chondrocytes in the M1 macrophage-infiltrated microenvironment. CONCLUSIONS: In summary, an innovative pipeline is developed to obtain CHP-EVs from three-dimensional dynamic culture of hADSCs spheroids. This pipeline can be customized to increase EVs production and functional molecule loading, which meets the requirements for regulating remaining ear chondrocyte fate in the M1 macrophage-infiltrated microenvironment.


Asunto(s)
Condrocitos , Vesículas Extracelulares , Células Madre Mesenquimatosas , Péptidos , Esferoides Celulares , Humanos , Condrocitos/metabolismo , Condrocitos/citología , Vesículas Extracelulares/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Péptidos/química , Péptidos/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Macrófagos/metabolismo , Macrófagos/citología , Células Cultivadas , Microesferas , Ingeniería de Tejidos/métodos , Técnicas de Cultivo Tridimensional de Células/métodos , Microambiente Celular , Cartílago Auricular/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Diferenciación Celular
19.
Bioelectromagnetics ; 45(5): 226-234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546158

RESUMEN

Pulsed electromagnetic field (PEMF) stimulation has been widely applied clinically to promote bone healing; however, its detailed mechanism of action, particularly in endochondral ossification, remains elusive, and long-term stimulation is required for its satisfactory effect. The aim of this study was to investigate the involvement of the mammalian target of rapamycin (mTOR) pathway in chondrocyte differentiation and proliferation using a mouse prechondroblast cell line (ATDC5), and establish an efficient PEMF stimulation strategy for endochondral ossification. The changes in cell differentiation (gene expression levels of aggrecan, type II collagen, and type X collagen) and proliferation (cellular uptake of bromodeoxyuridine [BrdU]) in ATDC5 cells in the presence or absence of rapamycin, an mTOR inhibitor, was measured. The effects of continuous and intermittent PEMF stimulation on changes in cell differentiation and proliferation were compared. Rapamycin significantly suppressed the induction of cell differentiation markers and the cell proliferation activity. Furthermore, only intermittent PEMF stimulation continuously activated the mTOR pathway in ATDC5 cells, significantly promoting cell proliferation. These results demonstrate the involvement of the mTOR pathway in chondrocyte differentiation and proliferation and suggest that intermittent PEMF stimulation could be effective as a stimulus for endochondral ossification during fracture healing process, thereby reducing stimulation time.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Condrocitos , Campos Electromagnéticos , Osteogénesis , Serina-Treonina Quinasas TOR , Animales , Ratones , Osteogénesis/efectos de la radiación , Condrocitos/citología , Condrocitos/metabolismo , Condrocitos/fisiología , Línea Celular , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Cartílago/metabolismo , Cartílago/citología , Cartílago/fisiología , Transducción de Señal , Regulación de la Expresión Génica/efectos de la radiación
20.
Biotechnol Lett ; 46(3): 483-495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523201

RESUMEN

OBJECTIVES: We genetically modified dedifferentiated chondrocytes (DCs) using lentiviral vectors and adenoviral vectors encoding TGF-ß3 (referred to as transgenic groups below) and encapsulated these DCs in the microcavitary hydrogel and investigated the combinational effect on redifferentiation of the genetically manipulated DCs. RESULTS: The Cell Counting Kit-8 data indicated that both transgenic groups exhibited significantly higher cell viability in the first week but inferior cell viability in the subsequent timepoints compared with those of the control group. Real-time polymerase chain reaction and western blot analysis results demonstrated that both transgenic groups had a better effect on redifferentiation to some extent, as evidenced by higher expression levels of chondrogenic genes, suggesting the validity of combination with transgenic DCs and the microcavitary hydrogel on redifferentiation. Although transgenic DCs with adenoviral vectors presented a superior extent of redifferentiation, they also expressed greater levels of the hypertrophic gene type X collagen. It is still worth further exploring how to deliver TGF-ß3 more efficiently and optimizing the appropriate parameters, including concentration and duration. CONCLUSIONS: The results demonstrated the better redifferentiation effect of DCs with the combinational use of transgenic TGF-ß3 and a microcavitary alginate hydrogel and implied that DCs would be alternative seed cells for cartilage tissue engineering due to their easily achieved sufficient cell amounts through multiple passages and great potential to redifferentiate to produce cartilaginous extracellular matrix.


Asunto(s)
Diferenciación Celular , Condrocitos , Factor de Crecimiento Transformador beta3 , Condrocitos/citología , Condrocitos/metabolismo , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/farmacología , Vectores Genéticos/genética , Hidrogeles/química , Animales , Supervivencia Celular , Células Cultivadas , Adenoviridae/genética , Lentivirus/genética , Desdiferenciación Celular/genética , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA