Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.751
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 239(8): e31285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38860464

RESUMEN

The mechanistic relationships between the progression of growth chondrocyte differentiation, matrix mineralization, oxidative metabolism, and mitochondria content and structure were examined in the ATDC5 murine chondroprogenitor cell line. The progression of chondrocyte differentiation was associated with a statistically significant (p ≤ 0.05) ~2-fold increase in oxidative phosphorylation. However, as matrix mineralization progressed, oxidative metabolism decreased. In the absence of mineralization, cartilage extracellular matrix mRNA expression for Col2a1, Aggrecan, and Col10a1 were statistically (p ≤ 0.05) ~2-3-fold greater than observed in mineralizing cultures. In contrast, BSP and Phex that are associated with promoting matrix mineralization showed statistically (p ≤ 0.05) higher ~2-4 expression, while FGF23 phosphate regulatory factor was significantly lower (~50%) in mineralizing cultures. Cultures induced to differentiate under both nonmineralizing and mineralizing media conditions showed statistically greater basal oxidative metabolism and ATP production. Maximal respiration and spare oxidative capacity were significantly elevated (p ≤ 0.05) in differentiated nonmineralizing cultures compared to those that mineralized. Increased oxidative metabolism was associated with both an increase in mitochondria volume per cell and mitochondria fusion, while mineralization diminished mitochondrial volume and appeared to be associated with fission. Undifferentiated and mineralized cells showed increased mitochondrial co-localization with the actin cytoskeletal. Examination of proteins associated with mitochondria fission and apoptosis and mitophagy, respectively, showed levels of immunological expression consistent with the increasing fission and apoptosis in mineralizing cultures. These results suggest that chondrocyte differentiation is associated with intracellular structural reorganization, promoting increased mitochondria content and fusion that enables increased oxidative metabolism. Mineralization, however, does not need energy derived from oxidative metabolism; rather, during mineralization, mitochondria appear to undergo fission and mitophagy. In summary, these studies show that as chondrocytes underwent hypertrophic differentiation, they increased oxidative metabolism, but as mineralization proceeds, metabolism decreased. Mitochondria structure also underwent a structural reorganization that was further supportive of their oxidative capacity as the chondrocytes progressed through their differentiation. Thus, the mitochondria first underwent fusion to support increased oxidative metabolism, then underwent fission during mineralization, facilitating their programed death.


Asunto(s)
Diferenciación Celular , Condrocitos , Matriz Extracelular , Mitocondrias , Animales , Ratones , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Mitocondrias/metabolismo , Matriz Extracelular/metabolismo , Línea Celular , Calcificación Fisiológica , Fosforilación Oxidativa , Condrogénesis/fisiología , Dinámicas Mitocondriales/fisiología , Adenosina Trifosfato/metabolismo
2.
Osteoarthritis Cartilage ; 32(11): 1419-1432, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38925474

RESUMEN

OBJECTIVE: Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN: The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS: We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS: This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.


Asunto(s)
Diferenciación Celular , Condrocitos , Células Madre Pluripotentes Inducidas , Factor de Transcripción SOX9 , Humanos , Condrocitos/metabolismo , Condrocitos/citología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Condrogénesis/fisiología , Condrogénesis/genética , Cartílago Articular/citología , Reprogramación Celular/fisiología , Reprogramación Celular/genética , Transcriptoma , Perfilación de la Expresión Génica , Células Cultivadas , Análisis de la Célula Individual
3.
Ann Plast Surg ; 93(5): 631-636, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39445882

RESUMEN

OBJECTIVE: Utilizing biological scaffolds for cartilage tissue engineering is a promising tool for improving auricular reconstruction. Decellularized auricular scaffolds provide a means of regenerating cartilage for in vivo implantation, but identifying the ideal regenerative mix remains challenging. METHODS: Human cadaver auricular cartilage was decellularized and recellularized with either auricular chondrocytes alone, auricular chondrocytes with adipose-derived stem cells, or both cells with platelet-rich plasma. Confirmation of decellularization and recellularization was done by hematoxylin and eosin staining. Extracellular matrix preservation and production were determined by Masson's trichrome, Alcian blue, and Verhoeff-van Gieson staining. Collagen II assessments were made using immunohistochemistry. RESULTS: Decellularization of cadaver auricular cartilage was confirmed by the absence of cells, reduction in glycosaminoglycans, and the preservation of collagen and elastin. Recellularization was more efficient when chondrocytes were seeded with adipose-derived stem cells, which was enhanced by adding platelet-rich plasma. Coculture with platelet-rich plasma yielded better total collagen (56% increase) and glycosaminoglycan (47% increase) induction. Moreover, when platelet-rich plasma was added, collagen II induction was significantly increased (42%; P < 0.05). CONCLUSION: We identified a regenerative protocol that included auricular chondrocytes, adipose-derived stem cells, and platelet-rich plasma, which stimulated chondrogenesis on decellularized auricular cartilage. This finding provides a model to explore cartilage formation and the potential for improving auricular and cartilage-based reconstruction.


Asunto(s)
Cadáver , Condrocitos , Cartílago Auricular , Ingeniería de Tejidos , Andamios del Tejido , Humanos , Cartílago Auricular/citología , Ingeniería de Tejidos/métodos , Plasma Rico en Plaquetas , Regeneración/fisiología , Células Madre/citología , Células Madre/fisiología , Tejido Adiposo/citología , Condrogénesis/fisiología
4.
J Oral Rehabil ; 51(8): 1507-1520, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38717032

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) derived from the synovium, known as synovium mesenchymal stem cells (SMSCs), exhibit significant potential for articular cartilage regeneration owing to their capacity for chondrogenic differentiation. However, the microRNAs (miRNAs) governing this process and the associated mechanisms remain unclear. While mechanical stress positively influences chondrogenesis in MSCs, the miRNA-mediated response of SMSCs to mechanical stimuli is not well understood. OBJECTIVE: This study explores the miRNA-driven mechano-transduction in SMSCs chondrogenesis under mechanical stress. METHODS: The surface phenotype of SMSCs was analysed by flow cytometry. Chondrogenesis capacities of SMSCs were examined by Alcian blue staining. High throughput sequencing was used to screen mechano-sensitive miRNAs of SMSCs. The RNA expression level of COL2A1, ACAN, SOX9, BMPR2 and miR-143-3p of SMSCs were tested by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-143-3p and TLR4 was confirmed by luciferase reporter assays. The protein expression levels of related genes were assessed by western blot. RESULTS: High-throughput sequencing revealed a notable reduction in miR-143-3p levels in mechanically stressed SMSCs. Gain- or loss-of-function strategies introduced by lentivirus demonstrated that miR-143-3p overexpression hindered chondrogenic differentiation, whereas its knockdown promoted this process. Bioinformatics scrutiny and luciferase reporter assays pinpointed a potential binding site for miR-143-3p within the 3'-UTR of bone morphogenetic protein receptor type 2 (BMPR2). MiR-143-3p overexpression decreased BMPR2 expression and phosphorylated Smad1, 5 and 8 levels, while its inhibition activated BMPR2-Smad pathway. CONCLUSION: This study elucidated that miR-143-3p negatively regulates SMSCs chondrogenic differentiation through the BMPR2-Smad pathway under mechanical tensile stress. The direct targeting of BMPR2 by miR-143-3p established a novel dimension to our understanding of mechano-transduction mechanism during SMSC chondrogenesis. This understanding is crucial for advancing strategies in articular cartilage regeneration.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II , Diferenciación Celular , Condrogénesis , Células Madre Mesenquimatosas , MicroARNs , Transducción de Señal , Estrés Mecánico , Membrana Sinovial , Humanos , Agrecanos/metabolismo , Agrecanos/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Membrana Sinovial/citología , Membrana Sinovial/metabolismo
5.
Dev Biol ; 482: 91-100, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929174

RESUMEN

Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.


Asunto(s)
Proteínas Portadoras/genética , Condrogénesis/genética , Cilios/genética , Deformidades Congénitas de las Extremidades/genética , Osteogénesis/genética , Animales , Huesos/embriología , Cartílago/embriología , Diferenciación Celular/genética , Condrocitos/fisiología , Condrogénesis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones , Ratones Noqueados , Osteogénesis/fisiología , Factor de Transcripción SOX9/biosíntesis , Transducción de Señal/fisiología
6.
Calcif Tissue Int ; 112(3): 363-376, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566445

RESUMEN

Osteoarthritis (OA) is a major health problem, characterized by progressive cartilage degeneration. Previous works have shown that mechanical loading can alleviate OA symptoms by suppressing catabolic activities. This study evaluated whether mechanical loading can enhance anabolic activities by facilitating the recruitment of stem cells for chondrogenesis. We evaluated cartilage degradation in a mouse model of OA through histology with H&E and safranin O staining. We also evaluated the migration and chondrogenic ability of stem cells using in vitro assays, including immunohistochemistry, immunofluorescence, and Western blot analysis. The result showed that the OA mice that received mechanical loading exhibited resilience to cartilage damage. Compared to the OA group, mechanical loading promoted the expression of Piezo1 and the migration of stem cells was promoted via the SDF-1/CXCR4 axis. Also, the chondrogenic differentiation was enhanced by the upregulation of SOX9, a transcription factor important for chondrogenesis. Collectively, the results revealed that mechanical loading facilitated cartilage repair by promoting the migration and chondrogenic differentiation of endogenous stem cells. This study provided new insights into the loading-driven engagement of endogenous stem cells and the enhancement of anabolic responses for the treatment of OA.


Asunto(s)
Condrogénesis , Osteoartritis , Ratones , Animales , Condrogénesis/fisiología , Cartílago/patología , Células Madre/metabolismo , Diferenciación Celular , Osteoartritis/metabolismo , Condrocitos/metabolismo , Células Cultivadas , Canales Iónicos/metabolismo
7.
Biomacromolecules ; 24(8): 3858-3871, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37523499

RESUMEN

The investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased articular cartilage, which has limited regenerative capacity. Studies have shown that electrical stimulation (ES) promotes mesenchymal stem cell (MSC) chondrogenesis, while mechanical stimulation (MS) enhances the chondrogenic differentiation capacity of MSCs. Therefore, understanding the impact of these stimuli on chondrogenesis is crucial for researchers to develop more effective tissue engineering strategies for cartilage repair and regeneration. This study focuses on the preparation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conductive polymer (CP) scaffolds using the freeze-drying method. The scaffolds were fabricated with varying concentrations (0, 1, 3, and 10 wt %) of (3-glycidyloxypropyl) trimethoxysilane (GOPS) as a crosslinker and an additive to tailor the scaffold properties. To gain a comprehensive understanding of the material characteristics and the phase aggregation phenomenon of PEDOT:PSS scaffolds, the researchers performed theoretical calculations of solubility parameters and surface energies of PSS, PSS-GOPS, and PEDOT polymers, as well as conducted material analyses. Additionally, the study investigated the potential of promoting chondrogenic differentiation of human adipose stem cells by applying external ES or MS on a PEDOT:PSS CP scaffold. Compared to the group without stimulation, the group that underwent stimulation exhibited significantly up-regulated expression levels of chondrogenic characteristic genes, such as SOX9 and COL2A1. Moreover, the immunofluorescence staining images exhibited a more vigorous fluorescence intensity of SOX9 and COL II proteins that was consistent with the trend of the gene expression results. In the MS experiment, the strain excitation exerted on the scaffold was simulated and transformed into stress. The simulated stress response showed that the peak gradually decreased with time and approached a constant value, with the negative value of stress representing the generation of tensile stress. This stress response quantification could aid researchers in determining specific MS conditions for various materials in tissue engineering, and the applied stress conditions could be further optimized. Overall, these findings are significant contributions to future research on cartilage repair and biophysical ES/MS in tissue engineering.


Asunto(s)
Condrogénesis , Andamios del Tejido , Humanos , Condrogénesis/fisiología , Ingeniería de Tejidos/métodos , Polímeros/farmacología , Células Madre , Diferenciación Celular
8.
BMC Cardiovasc Disord ; 23(1): 566, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980508

RESUMEN

BACKGROUND: Induction of chondrogenesis is associated with progressive atherosclerosis. Deficiency of the ADCYAP1 gene encoding pituitary adenylate cyclase-activating peptide (PACAP) aggravates atherosclerosis in ApoE deficient (ApoE-/-) mice. PACAP signaling regulates chondrogenesis and osteogenesis during cartilage and bone development. Therefore, this study aimed to decipher whether PACAP signaling is related to atherogenesis-related chondrogenesis in the ApoE-/- mouse model of atherosclerosis and under the influence of a high-fat diet. METHODS: For this purpose, PACAP-/-/ApoE-/-, PAC1-/-/ApoE-/-, and ApoE-/- mice, as well as wildtype (WT) mice, were studied under standard chow (SC) or cholesterol-enriched diet (CED) for 20 weeks. The amount of cartilage matrix in atherosclerotic lesions of the brachiocephalic trunk (BT) with maximal lumen stenosis was monitored by alcian blue and collagen II staining on deparaffinized cross sections. The chondrogenic RUNX family transcription factor 2 (RUNX2), macrophages [(MΦ), Iba1+], and smooth muscle cells (SMC, sm-α-actin) were immunohistochemically analyzed and quantified. RESULTS: ApoE-/- mice fed either SC or CED revealed an increase of alcian blue-positive areas within the media compared to WT mice. PAC1-/-/ApoE-/- mice under CED showed a reduction in the alcian blue-positive plaque area in the BT compared to ApoE-/- mice. In contrast, PACAP deficiency in ApoE-/- mice did not affect the chondrogenic signature under either diet. CONCLUSIONS: Our data show that PAC1 deficiency reduces chondrogenesis in atherosclerotic plaques exclusively under conditions of CED-induced hypercholesterolemia. We conclude that CED-related chondrogenesis occurs in atherosclerotic plaques via transdifferentiation of SMCs and MΦ, partly depending on PACAP signaling through PAC1. Thus, PAC1 antagonists or PACAP agonists may offer therapeutic potential against pathological chondrogenesis in atherosclerotic lesions generated under hypercholesterolemic conditions, especially in familial hypercholesterolemia. This discovery opens therapeutic perspectives to be used in the treatment against the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Placa Aterosclerótica/patología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Condrogénesis/fisiología , Azul Alcián , Aterosclerosis/genética , Aterosclerosis/patología , Colesterol , Dieta Alta en Grasa , Apolipoproteínas E/genética , Ratones Noqueados , Ratones Endogámicos C57BL
9.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834690

RESUMEN

Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.


Asunto(s)
Campos Electromagnéticos , Osteogénesis , Osteogénesis/fisiología , Condrogénesis/fisiología , Huesos , Matriz Extracelular
10.
Dev Biol ; 477: 49-63, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34010606

RESUMEN

Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development. Here we asked where these master regulators are expressed in developing limb joints and whether they are maintained during postnatal zeugopod joint morphogenesis. We found that Hoxa11 was predominantly expressed and restricted to incipient wrist and ankle joints in E13.5 mouse embryos, and became apparent in medial and central regions of knees by E14.5, though remaining continuously dormant in elbow joints. Closer examination revealed that Hoxa11 initially characterized interzone and neighboring cells and was then restricted to nascent articular cartilage, intra joint ligaments and structures such as meniscal horns over prenatal time. Postnatally, articular cartilage progresses from a nondescript cell-rich, matrix-poor tissue to a highly structured, thick, zonal and mechanically competent tissue with chondrocyte columns over time, most evident at sites such as the tibial plateau. Indeed, Hox11 expression (primarily Hoxa11) was intimately coupled to such morphogenetic processes and, in particular, to the topographical rearrangement of chondrocytes into columns within the intermediate and deep zones of tibial plateau that normally endures maximal mechanical loads. Revealingly, these expression patterns were maintained even at 6 months of age. In sum, our data indicate that Hox11 genes remain engaged well beyond embryonic synovial joint patterning and are specifically tied to postnatal articular cartilage morphogenesis into a zonal and resilient tissue. The data demonstrate that Hox11 genes characterize adult, terminally differentiated, articular chondrocytes and maintain region-specificity established in the embryo.


Asunto(s)
Cartílago Articular/embriología , Condrogénesis/genética , Genes Homeobox , Membrana Sinovial/embriología , Animales , Condrogénesis/fisiología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Ratones
11.
Histochem Cell Biol ; 157(4): 403-413, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34999953

RESUMEN

Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.


Asunto(s)
Condrocitos , Condrogénesis , Animales , Caspasa 9/genética , Caspasa 9/metabolismo , Inhibidores de Caspasas/metabolismo , Inhibidores de Caspasas/farmacología , Diferenciación Celular , Células Cultivadas , Condrogénesis/fisiología , Ratones , Osteogénesis
12.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 164-173, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35818257

RESUMEN

This study aimed to explore the mechanism of Danzikang Knee Joint Granules in regulating the differentiation of mesenchymal stem cells into cartilage to cartilage repair of knee osteoarthritis based on the TGF-ß signaling pathway. For this purpose, 60 SD rats were divided into four groups; the control group and treated groups with low, medium, and high concentrations of Danzikang. The histopathology of rats was analyzed and TGF-ß signaling pathway-related proteins were determined. Results showed that the average optical density in serum of the Danzikang Granule intervention group was significantly higher than the control group (P<0.05), and the average optical density increased with drug concentration increasing (P<0.05). Compared with the control group, Danzikang knee granule cell survival in the intervention group was elevated the serum and reduced cell apoptosis rate (P < 0.05). Danzikang knee infusion concentrations were positively correlated with bone marrow mesenchymal stem cell survival rates (P < 0.05), and negatively correlated with apoptosis rate (P < 0.05). TGF-ß1, BMP2, and BMP4 were significantly increased in the three concentrations of the Danzikang Granule serum intervention group (P<0.05). TGF-ß1, BMP2 and BMP4 were significantly increased in the high concentration group, while TGF-ß1, BMP2 and BMP4 were significantly decreased in the low concentration group (P<0.05). The Wakitani histological score of the control group was significantly lower than the other three groups (P<0.05). In general, Danzikang Knee Granule plays a role in cartilage repair in knee osteoarthritis by promoting mesenchymal stem cell proliferation and cartilage differentiation, and the specific mechanism may be related to TGF-ß1/BMPs signaling pathway.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Animales , Cartílago , Diferenciación Celular , Condrocitos/metabolismo , Condrogénesis/fisiología , Articulación de la Rodilla/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/terapia , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
Exp Cell Res ; 399(2): 112436, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33358860

RESUMEN

Insulin mimetics, including zinc containing compounds, have previously been shown to influence chondrogenesis as it relates to healing of fractures in various preclinical models. However, the mechanism by which these compounds drive chondrogenic differentiation is yet undefined. Here, via next-generation sequencing (NGS) and in vitro functional validation, we show that Zinc Chloride (ZnCl2) induces expression of both chondrogenic genes (Sox9, Runx1, collagen) as well as genes associated with VEGF-mediated signal transduction, including VEGF receptors 1 and 2 and their ligands; VEGF-A and VEGF-B. Noticeably, although insulin was able to also induce expression of these pro-angiogenic and pro-chondrogenic genes, the impact of insulin on expression of VEGF receptor and ligand genes was marginal when compared to that of ZnCl2. Furthermore, while the VEGFR antagonist, Axitinib, was able to attenuate the pro-chondrogenic effects of both insulin and ZnCl2; a reduction in gene and protein expression was most profoundly observed when the antagonist was applied to cells treated with ZnCl2. Taken together, these data suggest an important role for the VEGF-mediated signal transduction pathways in the positive effects observed when applying zinc-based compounds as adjuvants for chondrogenesis-mediated fracture healing. In this regard, further mechanistic evaluation of ZnCl2 and other zinc-containing insulin mimetics may support rational design of therapies targeted for disease indications associated with impaired fracture healing.


Asunto(s)
Cloruros/farmacología , Condrogénesis/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Compuestos de Zinc/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/fisiología , Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética
14.
BMC Musculoskelet Disord ; 23(1): 344, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410202

RESUMEN

BACKGROUND: The aim of this study was to investigate the role of Vaspin on the chondrogenic differentiation of bone mesenchymal stem cells (BMSCs), and its effect on chondrocyte survival and ECM secretion. We also assessed whether the Akt activation participates in these processes. METHODS: In vivo, immunohistochemistry was used to examine the positive rate of the protein expressions of Akt in Wistar rat articular cartilage and subchondral bone after Vaspin intraperitoneal injection for 14 days. In vitro, we isolated and expanded BMSCs from Wistar rats, and further cultured BMSCs as pellets in a chondrogenic-differentiation medium supplemented with different concentrations of Vaspin. After 21 days, the pellets were processed for cell counting kit assay. The mRNA level of Akt, SOX9 and COL2A1 in the pellets were investigated using quantitative Real-Time polymerase chain reaction, and the protein level of COMP was detected using western blot. RESULTS: During the chondrogenic differentiation of BMSCs, Vaspin promoted the chondrogenic differentiation of BMSCs and chondrocyte survival by activating the Akt pathway. These effects were significantly reduced by treatment with an Akt inhibitor. Moreover, Vaspin promoted chondrogenic differentiation of BMSCs by increasing the expression of markers in cartilage formation and extracellular matrix secretion. Furthermore, our study also found that Vaspin could increase Akt expression in cartilage cavities and subchondral bone in vivo. CONCLUSION: These findings demonstrate that Vaspin can promote the chondrogenic differentiation of BMSCs and chondrocyte survival via Akt activation. Our study provides new insights into the potential ability of Vaspin to ameliorate the chondrogenic differentiation of BMSCs and chondrocyte survival in OA.


Asunto(s)
Células Madre Mesenquimatosas , Osteoartritis , Animales , Condrogénesis/fisiología , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
15.
Proc Natl Acad Sci U S A ; 116(5): 1569-1578, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30647113

RESUMEN

Several recent studies have demonstrated that coculture of chondrocytes (CHs) with bone marrow-derived mesenchymal stem cells (MSCs) improves their chondrogenesis. This implies that intercellular communication dictates fate decisions in recipient cells and/or reprograms their metabolic state to support a differentiated function. While this coculture phenomenon is compelling, the differential chondroinductivity of zonal CHs on MSC cocultures, the nature of the molecular cargo, and their transport mechanisms remains undetermined. Here, we demonstrate that juvenile CHs in coculture with adult MSCs promote functional differentiation and improved matrix production. We further demonstrate that close proximity between the two cell types is a prerequisite for this response and that the outcome of this interaction improves viability, chondrogenesis, matrix formation, and homeostasis in the recipient MSCs. Furthermore, we visualized the transfer of intracellular contents from CHs to nearby MSCs and showed that inhibition of extracellular vesicle (EV) transfer blocks the synergistic effect of coculture, identifying EVs as the primary mode of communication in these cocultures. These findings will forward the development of therapeutic agents and more effective delivery systems to promote cartilage repair.


Asunto(s)
Cartílago/citología , Cartílago/fisiología , Condrocitos/citología , Condrocitos/fisiología , Vesículas Extracelulares/fisiología , Células Madre Mesenquimatosas/citología , Animales , Bovinos , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Técnicas de Cocultivo/métodos , Matriz Extracelular/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido
16.
Proc Natl Acad Sci U S A ; 116(43): 21592-21601, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31591237

RESUMEN

All cells, including nonexcitable cells, maintain a discrete transmembrane potential (Vmem), and have the capacity to modulate Vmem and respond to their own and neighbors' changes in Vmem Spatiotemporal variations have been described in developing embryonic tissues and in some cases have been implicated in influencing developmental processes. Yet, how such changes in Vmem are converted into intracellular inputs that in turn regulate developmental gene expression and coordinate patterned tissue formation, has remained elusive. Here we document that the Vmem of limb mesenchyme switches from a hyperpolarized to depolarized state during early chondrocyte differentiation. This change in Vmem increases intracellular Ca2+ signaling through Ca2+ influx, via CaV1.2, 1 of L-type voltage-gated Ca2+ channels (VGCCs). We find that CaV1.2 activity is essential for chondrogenesis in the developing limbs. Pharmacological inhibition by an L-type VGCC specific blocker, or limb-specific deletion of CaV1.2, down-regulates expression of genes essential for chondrocyte differentiation, including Sox9, Col2a1, and Agc1, and thus disturbs proper cartilage formation. The Ca2+-dependent transcription factor NFATc1, which is a known major transducer of intracellular Ca2+ signaling, partly rescues Sox9 expression. These data reveal instructive roles of CaV1.2 in limb development, and more generally expand our understanding of how modulation of membrane potential is used as a mechanism of developmental regulation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cartílago/embriología , Condrogénesis/fisiología , Extremidades/embriología , Potenciales de la Membrana/fisiología , Agrecanos/metabolismo , Animales , Embrión de Pollo , Pollos , Colágeno Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción SOX9/metabolismo
17.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682655

RESUMEN

The vertebrate musculoskeletal system is known to be formed by mesenchymal stem cells condensing into tissue elements, which then differentiate into cartilage, bone, tendon/ligament, and muscle cells. These lineage-committed cells mature into end-stage differentiated cells, like hypertrophic chondrocytes and osteocytes, which are expected to expire and to be replaced by newly differentiated cells arising from the same lineage pathway. However, there is emerging evidence of the role of cell transdifferentiation in bone development and disease. Although the concept of cell transdifferentiation is not new, a breakthrough in cell lineage tracing allowed scientists to trace cell fates in vivo. Using this powerful tool, new theories have been established: (1) hypertrophic chondrocytes can transdifferentiate into bone cells during endochondral bone formation, fracture repair, and some bone diseases, and (2) tendon cells, beyond their conventional role in joint movement, directly participate in normal bone and cartilage formation, and ectopic ossification. The goal of this review is to obtain a better understanding of the key roles of cell transdifferentiation in skeletal development and diseases. We will first review the transdifferentiation of chondrocytes to bone cells during endochondral bone formation. Specifically, we will include the history of the debate on the fate of chondrocytes during bone formation, the key findings obtained in recent years on the critical factors and molecules that regulate this cell fate change, and the role of chondrocyte transdifferentiation in skeletal trauma and diseases. In addition, we will also summarize the latest discoveries on the novel roles of tendon cells and adipocytes on skeletal formation and diseases.


Asunto(s)
Transdiferenciación Celular , Osteogénesis , Cartílago/metabolismo , Diferenciación Celular/fisiología , Condrocitos/metabolismo , Condrogénesis/fisiología , Osteogénesis/fisiología
18.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216203

RESUMEN

Osteoarthritis (OA) is a whole joint disease characterized by an important remodeling of the osteochondral junction. It includes cartilage mineralization due to chondrocyte hypertrophic differentiation and bone sclerosis. Here, we investigated whether gremlin-1 (Grem-1) and its BMP partners could be involved in the remodeling events of the osteochondral junction in OA. We found that Grem-1, BMP-2, and BMP-4 immunostaining was detected in chondrocytes from the deep layer of cartilage and in subchondral bone of knee OA patients, and was positively correlated with cartilage damage. ELISA assays showed that bone released more Grem-1 and BMP-4 than cartilage, which released more BMP-2. In vitro experiments evidenced that compression stimulated the expression and the release of Grem-1 and BMP-4 by osteoblasts. Grem-1 was also overexpressed during the prehypertrophic to hypertrophic differentiation of murine articular chondrocytes. Recombinant Grem-1 stimulated Mmp-3 and Mmp-13 expression in murine chondrocytes and osteoblasts, whereas recombinant BMP-4 stimulated the expression of genes associated with angiogenesis (Angptl4 and osteoclastogenesis (Rankl and Ccl2). In conclusion, Grem-1 and BMP-4, whose expression at the osteochondral junction increased with OA progression, may favor the pathological remodeling of the osteochondral junction by inducing a catabolic and tissue remodeling program in hypertrophic chondrocytes and osteoblasts.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Osteoartritis de la Rodilla/metabolismo , Osteoblastos/metabolismo , Animales , Proteína Morfogenética Ósea 2/metabolismo , Cartílago Articular/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Condrogénesis/fisiología , Humanos , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología
19.
J Cell Mol Med ; 25(23): 10869-10878, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34725901

RESUMEN

Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.


Asunto(s)
Células Madre Multipotentes/citología , Pericardio/citología , Pleura/citología , Tráquea/citología , Adipocitos/citología , Adipogénesis/fisiología , Tejido Adiposo/citología , Animales , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/fisiología , Células Madre/citología , Porcinos , Ingeniería de Tejidos/métodos
20.
Dev Biol ; 463(2): 124-134, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32417169

RESUMEN

Initial limb chondrogenesis offers the first differentiated tissues that resemble the mature skeletal anatomy. It is a developmental progression of three tissues. The limb begins with undifferentiated mesenchyme-1, some of which differentiates into condensations-2, and this tissue then transforms into cartilage-3. Each tissue is identified by physical characteristics of cell density, shape, and extracellular matrix composition. Tissue specific regimes of gene regulation underlie the diagnostic physical and chemical properties of these three tissues. These three tissue based regimes co-exist amid a background of other gene regulatory regimes within the same tissues and time-frame of limb development. The bio-molecular indicators of gene regulation reveal six identifiable patterns. Three of these patterns describe the unique bio-molecular indicators of each of the three tissues. A fourth pattern shares bio-molecular indicators between condensation and cartilage. Finally, a fifth pattern is composed of bio-molecular indicators that are found in undifferentiated mesenchyme prior to any condensation differentiation, then these bio-molecular indicators are upregulated in condensations and downregulated in undifferentiated mesenchyme. The undifferentiated mesenchyme that remains in between the condensations and cartilage, the interdigit, contains a unique set of bio-molecular indicators that exhibit dynamic behaviour during chondrogenesis and therefore argue for its own inclusion as a tissue in its own right and for more study into this process of differentiation.


Asunto(s)
Cartílago/embriología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Esbozos de los Miembros/embriología , Mesodermo/embriología , Animales , Cartílago/citología , Matriz Extracelular/metabolismo , Esbozos de los Miembros/citología , Mesodermo/citología , Proteoglicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA