Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.177
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 634(8036): 1125-1131, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39443790

RESUMEN

Air pollution in South Asia is a health emergency, responsible for 2 million deaths every year1. Crop residue burning accounts for 40-60% of peak pollution during the winter harvest months2,3. Despite being illegal, this practice remains widespread4,5. Any solution to curb the problem necessitates government action at scale. Here we study whether leveraging the incentives of bureaucrats tasked with controlling burning can mitigate this phenomenon. Using a decade of wind, fire and health data from satellites and surveys from the Demographic and Health Surveys Program, we show that crop burning responds to bureaucrat incentives: fires increase by 15% when wind is most likely to direct pollution to neighbouring jurisdictions, and decrease by 14.5% when it pollutes their own. These effects intensify with stronger bureaucratic incentives and capacity. We also find that bureaucrat action against burning deters future polluters, further reducing fires by 13%. Finally, using an atmospheric model, we estimate that one log increase in in utero exposure to pollution from burning raises child mortality by 30-36 deaths per 1,000 births, underscoring the importance of bureaucrat action. Contrary to the growing beliefs that the problem of crop burning is intractable6,7, these findings highlight specific ways in which existing bureaucrats, when properly incentivized, can improve environmental management and public health outcomes.


Asunto(s)
Contaminación del Aire , Mortalidad del Niño , Productos Agrícolas , Incendios , Motivación , Humanos , Niño , Femenino , Productos Agrícolas/crecimiento & desarrollo , Mortalidad del Niño/tendencias , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/efectos adversos , Incendios/prevención & control , Masculino , Asia/epidemiología , Embarazo , Preescolar , Agricultura , Lactante , Sur de Asia
2.
Nature ; 621(7979): 521-529, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730866

RESUMEN

Wildfires are thought to be increasing in severity and frequency as a result of climate change1-5. Air pollution from landscape fires can negatively affect human health4-6, but human exposure to landscape fire-sourced (LFS) air pollution has not been well characterized at the global scale7-23. Here, we estimate global daily LFS outdoor fine particulate matter (PM2.5) and surface ozone concentrations at 0.25° × 0.25° resolution during the period 2000-2019 with the help of machine learning and chemical transport models. We found that overall population-weighted average LFS PM2.5 and ozone concentrations were 2.5 µg m-3 (6.1% of all-source PM2.5) and 3.2 µg m-3 (3.6% of all-source ozone), respectively, in 2010-2019, with a slight increase for PM2.5, but not for ozone, compared with 2000-2009. Central Africa, Southeast Asia, South America and Siberia experienced the highest LFS PM2.5 and ozone concentrations. The concentrations of LFS PM2.5 and ozone were about four times higher in low-income countries than in high-income countries. During the period 2010-2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air pollution per year, with each person in the world having, on average, 9.9 days of exposure per year. These two metrics increased by 6.8% and 2.1%, respectively, compared with 2000-2009. Overall, we find that the global population is increasingly exposed to LFS air pollution, with socioeconomic disparities.


Asunto(s)
Contaminación del Aire , Incendios , Ozono , Material Particulado , Humanos , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Incendios/estadística & datos numéricos , Ozono/análisis , Ozono/provisión & distribución , Material Particulado/análisis , Material Particulado/provisión & distribución , Incendios Forestales/estadística & datos numéricos , Disparidades Socioeconómicas en Salud
3.
Nature ; 622(7984): 761-766, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37730996

RESUMEN

Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , Incendios Forestales , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Contaminación del Aire/legislación & jurisprudencia , Contaminación del Aire/estadística & datos numéricos , Calentamiento Global/estadística & datos numéricos , Material Particulado/análisis , Material Particulado/química , Humo/análisis , Estados Unidos , Incendios Forestales/estadística & datos numéricos , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias
4.
Nature ; 616(7955): 159-167, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020004

RESUMEN

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Asunto(s)
Adenocarcinoma del Pulmón , Contaminantes Atmosféricos , Contaminación del Aire , Transformación Celular Neoplásica , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/inducido químicamente , Adenocarcinoma del Pulmón/genética , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Exposición a Riesgos Ambientales , Receptores ErbB/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Material Particulado/efectos adversos , Material Particulado/análisis , Tamaño de la Partícula , Estudios de Cohortes , Macrófagos Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología
5.
Nature ; 601(7892): 228-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022594

RESUMEN

Air pollution contributes to the global burden of disease, with ambient exposure to fine particulate matter of diameters smaller than 2.5 µm (PM2.5) being identified as the fifth-ranking risk factor for mortality globally1. Racial/ethnic minorities and lower-income groups in the USA are at a higher risk of death from exposure to PM2.5 than are other population/income groups2-5. Moreover, disparities in exposure to air pollution among population and income groups are known to exist6-17. Here we develop a data platform that links demographic data (from the US Census Bureau and American Community Survey) and PM2.5 data18 across the USA. We analyse the data at the tabulation area level of US zip codes (N is approximately 32,000) between 2000 and 2016. We show that areas with higher-than-average white and Native American populations have been consistently exposed to average PM2.5 levels that are lower than areas with higher-than-average Black, Asian and Hispanic or Latino populations. Moreover, areas with low-income populations have been consistently exposed to higher average PM2.5 levels than areas with high-income groups for the years 2004-2016. Furthermore, disparities in exposure relative to safety standards set by the US Environmental Protection Agency19 and the World Health Organization20 have been increasing over time. Our findings suggest that more-targeted PM2.5 reductions are necessary to provide all people with a similar degree of protection from environmental hazards. Our study is observational and cannot provide insight into the drivers of the identified disparities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/análisis , Etnicidad , Humanos , Renta , Material Particulado/efectos adversos , Material Particulado/análisis
6.
Proc Natl Acad Sci U S A ; 121(32): e2310081121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074290

RESUMEN

California faces several serious direct and indirect climate exposures that can adversely affect public health, some of which are already occurring. The public health burden now and in the future will depend on atmospheric greenhouse gas concentrations, underlying population vulnerabilities, and adaptation efforts. Here, we present a structured review of recent literature to examine the leading climate risks to public health in California, including extreme heat, extreme precipitation, wildfires, air pollution, and infectious diseases. Comparisons among different climate-health pathways are difficult due to inconsistencies in study design regarding spatial and temporal scales and health outcomes examined. We find, however, that the current public health burden likely affects thousands of Californians each year, depending on the exposure pathway and health outcome. Further, while more evidence exists for direct and indirect proximal health effects that are the focus of this review, distal pathways (e.g., impacts of drought on nutrition) are more uncertain but could add to this burden. We find that climate adaptation measures can provide significant health benefits, particularly in disadvantaged communities. We conclude with priority recommendations for future analyses and solution-driven policy actions.


Asunto(s)
Cambio Climático , Salud Pública , Humanos , California , Poblaciones Vulnerables/estadística & datos numéricos , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Incendios Forestales
7.
Proc Natl Acad Sci U S A ; 121(38): e2401882121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250663

RESUMEN

Although it is well documented that exposure to fine particulate matter (PM2.5) increases the risk of several adverse health outcomes, less is known about its relationship with economic opportunity. Previous studies have relied on regression modeling, which implied strict assumptions regarding confounding adjustments and did not explore geographical heterogeneity. We obtained data for 63,165 US census tracts (86% of all census tracts in the United States) on absolute upward mobility (AUM) defined as the mean income rank in adulthood of children born to families in the 25th percentile of the national income distribution. We applied and compared several state-of-the-art confounding adjustment methods to estimate the overall and county-specific associations of childhood exposure to PM2.5 and AUM controlling for many census tract-level confounders. We estimate that census tracts with a 1 µg/m3 higher PM2.5 concentrations in 1982 are associated with a statistically significant 1.146% (95% CI: 0.834, 1.458) lower AUM in 2015, on average. We also showed evidence that this relationship varies spatially between counties, exhibiting a more pronounced negative relationship in the Midwest and the South.


Asunto(s)
Exposición a Riesgos Ambientales , Material Particulado , Material Particulado/análisis , Estados Unidos , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Niño , Contaminantes Atmosféricos/análisis , Renta , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Femenino
8.
Proc Natl Acad Sci U S A ; 121(5): e2215685121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38227646

RESUMEN

Future climate change can cause more days with poor air quality. This could trigger more alerts telling people to stay inside to protect themselves, with potential consequences for health and health equity. Here, we study the change in US air quality alerts over this century due to fine particulate matter (PM2.5), who they may affect, and how they may respond. We find air quality alerts increase by over 1 mo per year in the eastern United States by 2100 and quadruple on average. They predominantly affect areas with high Black populations and leakier homes, exacerbating existing inequalities and impacting those less able to adapt. Reducing emissions can offer significant annual health benefits ($5,400 per person) by mitigating the effect of climate change on air pollution and its associated risks of early death. Relying on people to adapt, instead, would require them to stay inside, with doors and windows closed, for an extra 142 d per year, at an average cost of $11,000 per person. It appears likelier, however, that people will achieve minimal protection without policy to increase adaptation rates. Boosting adaptation can offer net benefits, even alongside deep emission cuts. New adaptation policies could, for example: reduce adaptation costs; reduce infiltration and improve indoor air quality; increase awareness of alerts and adaptation; and provide measures for those working or living outdoors. Reducing emissions, conversely, lowers everyone's need to adapt, and protects those who cannot adapt. Equitably protecting human health from air pollution under climate change requires both mitigation and adaptation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Estados Unidos , Modelos Teóricos , Contaminación del Aire/análisis , Material Particulado/análisis , Cambio Climático , Contaminantes Atmosféricos/análisis
9.
Proc Natl Acad Sci U S A ; 121(39): e2400117121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284047

RESUMEN

Future climate change may bring local benefits or penalties to surface air pollution, resulting from changing temperature, precipitation, and transport patterns, as well as changes in climate-sensitive natural precursor emissions. Here, we estimate the climate penalties and benefits at the end of this century with regard to surface ozone and fine particulate matter (PM[Formula: see text]; excluding dust and smoke) using a one-way offline coupling between a general circulation model and a global 3-D chemical-transport model. We archive meteorology for the present day (2005 to 2014) and end of this century (2090 to 2099) for seven future scenarios developed for Phase 6 of the Coupled Model Intercomparison Project. The model isolates the impact of forecasted anthropogenic precursor emission changes versus that of climate-only driven changes on surface ozone and PM[Formula: see text] for scenarios ranging from extreme mitigation to extreme warming. We then relate these changes to impacts on human mortality and crop production. We find ozone penalties over nearly all land areas with increasing warming. We find net benefits due to climate-driven changes in PM[Formula: see text] in the Northern Extratropics, but net penalties in the Tropics and Southern Hemisphere, where most population growth is forecast for the coming century.


Asunto(s)
Contaminación del Aire , Cambio Climático , Productos Agrícolas , Ozono , Contaminación del Aire/análisis , Contaminación del Aire/efectos adversos , Humanos , Ozono/análisis , Ozono/efectos adversos , Productos Agrícolas/crecimiento & desarrollo , Material Particulado/análisis , Material Particulado/efectos adversos , Mortalidad/tendencias , Predicción
10.
Proc Natl Acad Sci U S A ; 121(40): e2403960121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316057

RESUMEN

Despite the substantial evidence on the health effects of short-term exposure to ambient fine particles (PM2.5), including increasing studies focusing on those from wildland fire smoke, the impacts of long-term wildland fire smoke PM2.5 exposure remain unclear. We investigated the association between long-term exposure to wildland fire smoke PM2.5 and nonaccidental mortality and mortality from a wide range of specific causes in all 3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a nonlinear association between 12-mo moving average concentration of smoke PM2.5 and monthly nonaccidental mortality rate. Relative to a month with the long-term smoke PM2.5 exposure below 0.1 µg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 2.11 deaths per 100,000 people per month when the 12-mo moving average of PM2.5 concentration was of 0.1 to 5 and 5+ µg/m3, respectively. Cardiovascular, ischemic heart disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality were all found to be associated with long-term wildland fire smoke PM2.5 exposure. Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 6,754, 16,075) in the contiguous United States. Higher smoke PM2.5-related increases in mortality rates were found for people aged 65 and above. Positive interaction effects with extreme heat were also observed. Our study identified the detrimental effects of long-term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, underscoring the need for public health actions and communications that span the health risks of both short- and long-term exposure.


Asunto(s)
Exposición a Riesgos Ambientales , Material Particulado , Humo , Humanos , Estados Unidos/epidemiología , Material Particulado/efectos adversos , Material Particulado/análisis , Humo/efectos adversos , Humo/análisis , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Femenino , Masculino , Incendios Forestales , Mortalidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Anciano
11.
Annu Rev Med ; 75: 277-292, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37738508

RESUMEN

We review current knowledge on the trends and drivers of global wildfire activity, advances in the measurement of wildfire smoke exposure, and evidence on the health effects of this exposure. We describe methodological issues in estimating the causal effects of wildfire smoke exposures on health and quantify their importance, emphasizing the role of nonlinear and lagged effects. We conduct a systematic review and meta-analysis of the health effects of wildfire smoke exposure, finding positive impacts on all-cause mortality and respiratory hospitalizations but less consistent evidence on cardiovascular morbidity. We conclude by highlighting priority areas for future research, including leveraging recently developed spatially and temporally resolved wildfire-specific ambient air pollution data to improve estimates of the health effects of wildfire smoke exposure.


Asunto(s)
Contaminación del Aire , Incendios Forestales , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Hospitalización , Humo/efectos adversos , Humo/análisis
12.
N Engl J Med ; 388(15): 1396-1404, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36961127

RESUMEN

BACKGROUND: Black Americans are exposed to higher annual levels of air pollution containing fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) than White Americans and may be more susceptible to its health effects. Low-income Americans may also be more susceptible to PM2.5 pollution than high-income Americans. Because information is lacking on exposure-response curves for PM2.5 exposure and mortality among marginalized subpopulations categorized according to both race and socioeconomic position, the Environmental Protection Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 standards. METHODS: We analyzed 623 million person-years of Medicare data from 73 million persons 65 years of age or older from 2000 through 2016 to estimate associations between annual PM2.5 exposure and mortality in subpopulations defined simultaneously by racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible). RESULTS: Lower PM2.5 exposure was associated with lower mortality in the full population, but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic meter to 8 µg per cubic meter for the White higher-income subpopulation was 0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black low-income subpopulation. CONCLUSIONS: Higher-income Black persons, low-income White persons, and low-income Black persons may benefit more from lower PM2.5 levels than higher-income White persons. These findings underscore the importance of considering racial identity and income together when assessing health inequities. (Funded by the National Institutes of Health and the Alfred P. Sloan Foundation.).


Asunto(s)
Contaminación del Aire , Susceptibilidad a Enfermedades , Inequidades en Salud , Material Particulado , Grupos Raciales , Factores Socioeconómicos , Anciano , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Negro o Afroamericano/estadística & datos numéricos , Susceptibilidad a Enfermedades/economía , Susceptibilidad a Enfermedades/epidemiología , Susceptibilidad a Enfermedades/etnología , Susceptibilidad a Enfermedades/mortalidad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Medicare/estadística & datos numéricos , Material Particulado/efectos adversos , Material Particulado/análisis , Pobreza/estadística & datos numéricos , Factores Raciales/estadística & datos numéricos , Grupos Raciales/estadística & datos numéricos , Clase Social , Estados Unidos/epidemiología , Blanco/estadística & datos numéricos
13.
Nature ; 587(7834): 414-419, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208962

RESUMEN

Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Bronquios/citología , Células Cultivadas , Ciudades , Células Epiteliales , Europa (Continente) , Humanos , Modelos Teóricos , Oxidación-Reducción , Población Rural , Población Urbana
14.
Proc Natl Acad Sci U S A ; 120(28): e2300395120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410866

RESUMEN

The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region's interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Estados Unidos , Humanos , Contaminantes Atmosféricos/análisis , Sequías , Contaminación del Aire/análisis , Combustibles Fósiles , Electricidad
15.
Proc Natl Acad Sci U S A ; 120(32): e2302708120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523535

RESUMEN

To date, no study has explored the extent to which genetic susceptibility modifies the effects of air pollutants on the risk of atrial fibrillation (AF). This study was designed to investigate the separate and joint effects of long-term exposure to air pollutants and genetic susceptibility on the risk of AF events. This study included 401,251 participants without AF at baseline from UK Biobank. We constructed a polygenic risk score and categorized it into three categories. Cox proportional hazards models were fitted to assess the separate and joint effects of long-term exposure to air pollutants and genetics on the risk of AF. Additionally, we further evaluated the effect modification of genetic susceptibility. The hazard ratios and corresponding 95% confidence intervals of incident AF for per interquartile range increase in particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) or 10 µm (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) were 1.044 (1.025, 1.063), 1.063 (1.044, 1.083), 1.061 (1.042, 1.081), and 1.039 (1.023, 1.055), respectively. For the combined effects, participants exposed to high air pollutants levels and high genetic risk had approximately 149.2% (PM2.5), 181.7% (PM10), 170.2% (NO2), and 157.2% (NOx) higher risk of AF compared to those with low air pollutants levels and low genetic risk, respectively. Moreover, the significant additive interactions between PM10 and NO2 and genetic risk on AF risk were observed, with around 16.4% and 35.1% of AF risk could be attributable to the interactive effects. In conclusion, long-term exposure to air pollutants increases the risk of AF, particularly among individuals with high genetic susceptibility.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Fibrilación Atrial , Humanos , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Óxido Nítrico
16.
Proc Natl Acad Sci U S A ; 120(1): e2211282119, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574646

RESUMEN

Growing evidence suggests that fine particulate matter (PM2.5) likely increases the risks of dementia, yet little is known about the relative contributions of different constituents. Here, we conducted a nationwide population-based cohort study (2000 to 2017) by integrating the Medicare Chronic Conditions Warehouse database and two independently sourced datasets of high-resolution PM2.5 major chemical composition, including black carbon (BC), organic matter (OM), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+), and soil dust (DUST). To investigate the impact of long-term exposure to PM2.5 constituents on incident all-cause dementia and Alzheimer's disease (AD), hazard ratios for dementia and AD were estimated using Cox proportional hazards models, and penalized splines were used to evaluate potential nonlinear concentration-response (C-R) relationships. Results using two exposure datasets consistently indicated higher rates of incident dementia and AD for an increased exposure to PM2.5 and its major constituents. An interquartile range increase in PM2.5 mass was associated with a 6 to 7% increase in dementia incidence and a 9% increase in AD incidence. For different PM2.5 constituents, associations remained significant for BC, OM, SO42-, and NH4+ for both end points (even after adjustments of other constituents), among which BC and SO42- showed the strongest associations. All constituents had largely linear C-R relationships in the low exposure range, but most tailed off at higher exposure concentrations. Our findings suggest that long-term exposure to PM2.5 is significantly associated with higher rates of incident dementia and AD and that SO42-, BC, and OM related to traffic and fossil fuel combustion might drive the observed associations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Demencia , Humanos , Anciano , Estados Unidos/epidemiología , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios de Cohortes , Medicare , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Polvo , Demencia/inducido químicamente , Demencia/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , China
17.
Nature ; 573(7774): 408-411, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31534245

RESUMEN

The combustion of fossil fuels produces emissions of the long-lived greenhouse gas carbon dioxide and of short-lived pollutants, including sulfur dioxide, that contribute to the formation of atmospheric aerosols1. Atmospheric aerosols can cool the climate, masking some of the warming effect that results from the emission of greenhouse gases1. However, aerosol particulates are highly toxic when inhaled, leading to millions of premature deaths per year2,3. The phasing out of unabated fossil-fuel combustion will therefore provide health benefits, but will also reduce the extent to which the warming induced by greenhouse gases is masked by aerosols. Because aerosol levels respond much more rapidly to changes in emissions relative to carbon dioxide, large near-term increases in the magnitude and rate of climate warming are predicted in many idealized studies that typically assume an instantaneous removal of all anthropogenic or fossil-fuel-related emissions1,4-9. Here we show that more realistic modelling scenarios do not produce a substantial near-term increase in either the magnitude or the rate of warming, and in fact can lead to a decrease in warming rates within two decades of the start of the fossil-fuel phase-out. Accounting for the time required to transform power generation, industry and transportation leads to gradually increasing and largely offsetting climate impacts of carbon dioxide and sulfur dioxide, with the rate of warming further slowed by reductions in fossil-methane emissions. Our results indicate that even the most aggressive plausible transition to a clean-energy society provides benefits for climate change mitigation and air quality at essentially all decadal to centennial timescales.


Asunto(s)
Contaminación del Aire/análisis , Política Ambiental , Combustibles Fósiles , Modelos Teóricos , Atmósfera , Cambio Climático , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias
18.
Nature ; 572(7767): 51-55, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367029

RESUMEN

The cooling of the Earth's climate through the effects of anthropogenic aerosols on clouds offsets an unknown fraction of greenhouse gas warming. An increase in the amount of water inside liquid-phase clouds induced by aerosols, through the suppression of rain formation, has been postulated to lead to substantial cooling, which would imply that the Earth's surface temperature is highly sensitive to anthropogenic forcing. Here we provide direct observational evidence that, instead of a strong increase, aerosols cause a relatively weak average decrease in the amount of water in liquid-phase clouds compared with unpolluted clouds. Measurements of polluted clouds downwind of various anthropogenic sources-such as oil refineries, smelters, coal-fired power plants, cities, wildfires and ships-reveal that aerosol-induced cloud-water increases, caused by suppressed rain formation, and decreases, caused by enhanced evaporation of cloud water, partially cancel each other out. We estimate that the observed decrease in cloud water offsets 23% of the global climate-cooling effect caused by aerosol-induced increases in the concentration of cloud droplets. These findings invalidate the hypothesis that increases in cloud water cause a substantial climate cooling effect and translate into reduced uncertainty in projections of future climate.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Cambio Climático/estadística & datos numéricos , Actividades Humanas , Modelos Teóricos , Temperatura , Agua/análisis , Agua/química , Contaminación del Aire/análisis , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos , Lluvia , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA