Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98.713
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 411-433, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001141

RESUMEN

Muscles are essential for movement and heart function. Contraction and relaxation of muscles rely on the sliding of two types of filaments-the thin filament and the thick myosin filament. The thin filament is composed mainly of filamentous actin (F-actin), tropomyosin, and troponin. Additionally, several other proteins are involved in the contraction mechanism, and their malfunction can lead to diverse muscle diseases, such as cardiomyopathies. We review recent high-resolution structural data that explain the mechanism of action of muscle proteins at an unprecedented level of molecular detail. We focus on the molecular structures of the components of the thin and thick filaments and highlight the mechanisms underlying force generation through actin-myosin interactions, as well as Ca2+-dependent regulation via the dihydropyridine receptor, the ryanodine receptor, and troponin. We particularly emphasize the impact of cryo-electron microscopy and cryo-electron tomography in leading muscle research into a new era.


Asunto(s)
Actinas , Contracción Muscular , Actinas/metabolismo , Microscopía por Crioelectrón , Contracción Muscular/fisiología , Troponina/química , Troponina/metabolismo , Miosinas/genética , Calcio/metabolismo
2.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946811

RESUMEN

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Asunto(s)
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contracción Muscular , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Succinatos/metabolismo , Simportadores/metabolismo
3.
Cell ; 183(2): 335-346.e13, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035452

RESUMEN

Muscle spasticity after nervous system injuries and painful low back spasm affect more than 10% of global population. Current medications are of limited efficacy and cause neurological and cardiovascular side effects because they target upstream regulators of muscle contraction. Direct myosin inhibition could provide optimal muscle relaxation; however, targeting skeletal myosin is particularly challenging because of its similarity to the cardiac isoform. We identified a key residue difference between these myosin isoforms, located in the communication center of the functional regions, which allowed us to design a selective inhibitor, MPH-220. Mutagenic analysis and the atomic structure of MPH-220-bound skeletal muscle myosin confirmed the mechanism of specificity. Targeting skeletal muscle myosin by MPH-220 enabled muscle relaxation, in human and model systems, without cardiovascular side effects and improved spastic gait disorders after brain injury in a disease model. MPH-220 provides a potential nervous-system-independent option to treat spasticity and muscle stiffness.


Asunto(s)
Músculo Esquelético/metabolismo , Miosinas del Músculo Esquelético/efectos de los fármacos , Miosinas del Músculo Esquelético/genética , Adulto , Animales , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Ratones , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Espasticidad Muscular/genética , Espasticidad Muscular/fisiopatología , Músculo Esquelético/fisiología , Miosinas/efectos de los fármacos , Miosinas/genética , Miosinas/metabolismo , Isoformas de Proteínas , Ratas , Ratas Wistar , Miosinas del Músculo Esquelético/metabolismo
4.
Cell ; 167(1): 145-157.e17, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662087

RESUMEN

The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.


Asunto(s)
Agonistas de los Canales de Calcio/química , Activación del Canal Iónico , Contracción Muscular , Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Cafeína/química , Calcio/química , Microscopía por Crioelectrón , Ligandos , Dominios Proteicos , Conejos , Proteínas de Unión a Tacrolimus/química
5.
Cell ; 167(1): 73-86.e12, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662084

RESUMEN

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Contracción Muscular/fisiología , Neuronas/fisiología , Puente/fisiología , Vejiga Urinaria/fisiología , Micción/fisiología , Animales , Femenino , Ácido Glutámico/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Puente/citología , Olfato , Médula Espinal/citología , Médula Espinal/fisiología , Vejiga Urinaria/inervación
6.
Physiol Rev ; 103(3): 2321-2347, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796098

RESUMEN

The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.


Asunto(s)
Contracción Muscular , Músculo Liso , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Miocitos del Músculo Liso , Fenotipo , Integrinas/metabolismo
7.
Trends Biochem Sci ; 48(11): 927-936, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37709636

RESUMEN

The ability of skeletal muscle to adapt to repeated contractile stimuli is one of the most intriguing aspects of physiology. The molecular bases underpinning these adaptations involve increased protein activity and/or expression, mediated by an array of pre- and post-transcriptional processes, as well as translational and post-translational control. A longstanding dogma assumes a direct relationship between exercise-induced increases in mRNA levels and subsequent changes in the abundance of the proteins they encode. Drawing on the results of recent studies, we dissect and question the common assumption of a direct relationship between changes in the skeletal muscle transcriptome and proteome induced by repeated muscle contractions (e.g., exercise).


Asunto(s)
Ejercicio Físico , Músculo Esquelético , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Transcriptoma , Contracción Muscular/genética , Proteoma
8.
Immunity ; 49(1): 107-119.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958798

RESUMEN

Intestinal macrophages are critical for gastrointestinal (GI) homeostasis, but our understanding of their role in regulating intestinal motility is incomplete. Here, we report that CX3C chemokine receptor 1-expressing muscularis macrophages (MMs) were required to maintain normal GI motility. MMs expressed the transient receptor potential vanilloid 4 (TRPV4) channel, which senses thermal, mechanical, and chemical cues. Selective pharmacologic inhibition of TRPV4 or conditional deletion of TRPV4 from macrophages decreased intestinal motility and was sufficient to reverse the GI hypermotility that is associated with chemotherapy treatment. Mechanistically, stimulation of MMs via TRPV4 promoted the release of prostaglandin E2 and elicited colon contraction in a paracrine manner via prostaglandin E receptor signaling in intestinal smooth muscle cells without input from the enteric nervous system. Collectively, our data identify TRPV4-expressing MMs as an essential component required for maintaining normal GI motility and provide potential drug targets for GI motility disorders.


Asunto(s)
Colon/fisiología , Motilidad Gastrointestinal , Macrófagos/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Colon/fisiopatología , Ciclooxigenasa 1/deficiencia , Ciclooxigenasa 1/metabolismo , Dinoprostona/análisis , Dinoprostona/metabolismo , Femenino , Mucosa Gástrica/citología , Expresión Génica , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Contracción Muscular , Receptores de Prostaglandina E/antagonistas & inhibidores , Receptores de Prostaglandina E/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
9.
Nat Rev Mol Cell Biol ; 21(4): 180, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32060487
10.
Nat Rev Mol Cell Biol ; 16(8): 486-98, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26130009

RESUMEN

Actomyosin-mediated contractility is a highly conserved mechanism for generating mechanical stress in animal cells and underlies muscle contraction, cell migration, cell division and tissue morphogenesis. Whereas actomyosin-mediated contractility in striated muscle is well understood, the regulation of such contractility in non-muscle and smooth muscle cells is less certain. Our increased understanding of the mechanics of actomyosin arrays that lack sarcomeric organization has revealed novel modes of regulation and force transmission. This work also provides an example of how diverse mechanical behaviours at cellular scales can arise from common molecular components, underscoring the need for experiments and theories to bridge the molecular to cellular length scales.


Asunto(s)
Actomiosina/fisiología , Forma de la Célula , Animales , Humanos , Mecanotransducción Celular , Contracción Muscular , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/ultraestructura , Estructura Cuaternaria de Proteína
11.
Cell ; 150(6): 1093-5, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980970

RESUMEN

This year, the Albert Lasker Basic Medical Research Award will be shared by Michael Sheetz, James Spudich, and Ronald Vale for discoveries concerning the biophysical actions of cytoskeletal motor-protein machines that move cargo within cells, contract muscles, and enable cell motility.


Asunto(s)
Movimiento Celular , Proteínas Motoras Moleculares/metabolismo , Movimiento , Citoesqueleto/metabolismo , Enfermedad/genética , Cinesinas/genética , Cinesinas/metabolismo , Vida , Marte , Proteínas Motoras Moleculares/genética , Contracción Muscular
12.
Proc Natl Acad Sci U S A ; 121(8): e2314914121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346202

RESUMEN

Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) ß-adrenergic (ß-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that ß-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.


Asunto(s)
Miocitos Cardíacos , Miosinas , Uracilo/análogos & derivados , Animales , Ratas , Bencilaminas/farmacología , Contracción Muscular
13.
PLoS Genet ; 20(6): e1011101, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905299

RESUMEN

Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Filaminas , Contracción Muscular , Mutación , Miofibrillas , Animales , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Filaminas/genética , Mecanotransducción Celular/genética , Contracción Muscular/genética , Contracción Muscular/fisiología , Miofibrillas/metabolismo , Miofibrillas/genética , Fenotipo , Sarcómeros/metabolismo , Sarcómeros/genética
14.
Physiol Rev ; 99(1): 427-511, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427277

RESUMEN

Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.


Asunto(s)
Envejecimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Sarcopenia/fisiopatología , Animales , Humanos , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Unión Neuromuscular/metabolismo , Sarcopenia/metabolismo
15.
EMBO J ; 41(17): e111650, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35899396

RESUMEN

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Músculo Esquelético , Animales , Quinasas Quinasa Quinasa PAM , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Fosforilación , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
16.
Annu Rev Genet ; 52: 373-396, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30208288

RESUMEN

Ion channels are membrane proteins responsible for the passage of ions down their electrochemical gradients and across biological membranes. In this, they generate and shape action potentials and provide secondary messengers for various signaling pathways. They are often part of larger complexes containing auxiliary subunits and regulatory proteins. Channelopathies arise from mutations in the genes encoding ion channels or their associated proteins. Recent advances in cryo-electron microscopy have resulted in an explosion of ion channel structures in multiple states, generating a wealth of new information on channelopathies. Disease-associated mutations fall into different categories, interfering with ion permeation, protein folding, voltage sensing, ligand and protein binding, and allosteric modulation of channel gating. Prime examples of these are Ca2+-selective channels expressed in myocytes, for which multiple structures in distinct conformational states have recently been uncovered. We discuss the latest insights into these calcium channelopathies from a structural viewpoint.


Asunto(s)
Canales de Calcio/genética , Calcio/metabolismo , Canalopatías/genética , Contracción Muscular/genética , Animales , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Membrana Celular/ultraestructura , Canalopatías/metabolismo , Canalopatías/patología , Microscopía por Crioelectrón , Acoplamiento Excitación-Contracción/genética , Humanos , Transducción de Señal/genética
17.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597112

RESUMEN

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Asunto(s)
Angiotensina II , Músculo Liso Vascular , Receptores Acoplados a Proteínas G , Animales , Humanos , Masculino , Ratones , Angiotensina II/farmacología , Células Cultivadas , Hipertensión/metabolismo , Hipertensión/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/genética , Arterias Mesentéricas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Vasoconstricción
18.
Mol Cell Proteomics ; 23(4): 100748, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493954

RESUMEN

The molecular mechanisms underlying muscular adaptations to concentric (CON) and eccentric (ECC) exercise training have been extensively explored. However, most previous studies have focused on specifically selected proteins, thus, unable to provide a comprehensive protein profile and potentially missing the crucial mechanisms underlying muscular adaptation to exercise training. We herein aimed to investigate proteomic profiles of human skeletal muscle in response to short-term resistance training. Twenty young males were randomly and evenly assigned to two groups to complete a 4-week either ECC or CON training program. Measurements of body composition and physiological function of the quadriceps femoris were conducted both before and after the training. Muscle biopsies from the vastus lateralis of randomly selected participants (five in ECC and four in CON) of both before and after the training were analyzed using the liquid-chromatography tandem mass spectrometry in combination with bioinformatics analysis. Neither group presented a significant difference in body composition or leg muscle mass; however, muscle peak torque, total work, and maximal voluntary contraction were significantly increased after the training in both groups. Proteomics analysis revealed 122 differentially abundant proteins (DAPs; p value < 0.05 & fold change >1.5 or <0.67) in ECC, of which the increased DAPs were mainly related to skeletal muscle contraction and cytoskeleton and enriched specifically in the pentose phosphate pathway, extracellular matrix-receptor interaction, and PI3K-Akt signaling pathway, whereas the decreased DAPs were associated with the mitochondrial respiratory chain. One hundred one DAPs were identified in CON, of which the increased DAPs were primarily involved in translation/protein synthesis and the mitochondria respiratory, whereas the decreased DAPs were related to metabolic processes, cytoskeleton, and de-ubiquitination. In conclusion, the 4-week CON and ECC training resulted in distinctly different proteomic profiles, especially in proteins related to muscular structure and metabolism.


Asunto(s)
Adaptación Fisiológica , Ejercicio Físico , Músculo Esquelético , Proteómica , Entrenamiento de Fuerza , Adulto , Humanos , Masculino , Adulto Joven , Composición Corporal , Ejercicio Físico/fisiología , Contracción Muscular , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteoma/metabolismo , Proteómica/métodos
19.
Proc Natl Acad Sci U S A ; 120(15): e2213186120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011207

RESUMEN

Cellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process governed mainly by differential contractility on short (<5 h) and differential adhesion on long (>5 h) timescales. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. Concomitantly, the tight junction-depleted, contractile cells exhibit weaker cell-cell adhesion and lower traction force. Drug-induced contractility reduction and partial calcium depletion delay the initial segregation but cease to change the final demixed state, rendering differential adhesion the dominant segregation force at longer timescales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.


Asunto(s)
Modelos Biológicos , Contracción Muscular , Técnicas de Cocultivo , Adhesión Celular
20.
Proc Natl Acad Sci U S A ; 120(39): e2300416120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725653

RESUMEN

The shape of cells is the outcome of the balance of inner forces produced by the actomyosin network and the resistive forces produced by cell adhesion to their environment. The specific contributions of contractile, anchoring and friction forces to network deformation rate and orientation are difficult to disentangle in living cells where they influence each other. Here, we reconstituted contractile actomyosin networks in vitro to study specifically the role of the friction forces between the network and its anchoring substrate. To modulate the magnitude and spatial distribution of friction forces, we used glass or lipids surface micropatterning to control the initial shape of the network. We adapted the concentration of Nucleating Promoting Factor on each surface to induce the assembly of actin networks of similar densities and compare the deformation of the network toward the centroid of the pattern shape upon myosin-induced contraction. We found that actin network deformation was faster and more coordinated on lipid bilayers than on glass, showing the resistance of friction to network contraction. To further study the role of the spatial distribution of these friction forces, we designed heterogeneous micropatterns made of glass and lipids. The deformation upon contraction was no longer symmetric but biased toward the region of higher friction. Furthermore, we showed that the pattern of friction could robustly drive network contraction and dominate the contribution of asymmetric distributions of myosins. Therefore, we demonstrate that during contraction, both the active and resistive forces are essential to direct the actin network deformation.


Asunto(s)
Actinas , Actomiosina , Fricción , Contracción Muscular , Membrana Dobles de Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA