RESUMEN
In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.
Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Humanos , Estimulación Encefálica Profunda/métodos , Epilepsia/terapia , Convulsiones/terapia , Encéfalo , Epilepsia Refractaria/terapiaRESUMEN
Transcranial direct current stimulation (tDCS) has garnered significant interest for its potential to enhance cognitive functions and as a therapeutic intervention in various cognitive disorders. However, the clinical application of tDCS has been hampered by significant variability in its cognitive outcomes. Furthermore, the widespread use of tDCS has raised concerns regarding its safety and efficacy, particularly in light of our limited understanding of its underlying neural mechanisms at the cellular level. We still do not know 'where', 'when' and 'how' tDCS modulates information encoding by neurons, in order to lead to the observed changes in cognitive functions. Without elucidating these fundamental unknowns, the root causes of its outcome variability and long-term safety remain elusive, challenging the effective application of tDCS in clinical settings. Addressing this gap, our study investigates the effects of tDCS, applied over the dorsolateral prefrontal cortex, on cognitive abilities and individual neuron activity in macaque monkeys performing cognitive tasks. Like humans performing a delayed match-to-sample task, monkeys exhibited practice-related slowing in their responses (within-session behavioural adaptation). Concurrently, there were practice-related changes in simultaneously recorded activity of prefrontal neurons (within-session neuronal adaptation). Anodal tDCS attenuated both these behavioural and neuronal adaptations when compared with sham stimulation. Furthermore, tDCS abolished the correlation between response time of monkeys and neuronal firing rate. At a single-cell level, we also found that following tDCS, neuronal firing rate was more likely to exhibit task-specific modulation than after sham stimulation. These tDCS-induced changes in both behaviour and neuronal activity persisted even after the end of tDCS stimulation. Importantly, multiple applications of tDCS did not alter burst-like firing rates of individual neurons when compared with sham stimulation. This suggests that tDCS modulates neural activity without enhancing susceptibility to epileptiform activity, confirming a potential for safe use in clinical settings. Our research contributes unprecedented insights into the 'where', 'when' and 'how' of tDCS effects on neuronal activity and cognitive functions by showing that modulation of the behaviour of monkeys by the tDCS of the prefrontal cortex is accompanied by alterations in prefrontal cortical cell activity ('where') during distinct trial phases ('when'). Importantly, tDCS led to task-specific and state-dependent alterations in prefrontal cell activities ('how'). Our findings suggest a significant shift from the view that the effects of tDCS are merely attributable to polarity-specific shifts in cortical excitability and instead propose a more complex mechanism of action for tDCS that encompasses various aspects of cortical neuronal activity without increasing burst-like epileptiform susceptibility.
Asunto(s)
Macaca mulatta , Neuronas , Corteza Prefrontal , Estimulación Transcraneal de Corriente Directa , Animales , Estimulación Transcraneal de Corriente Directa/métodos , Neuronas/fisiología , Masculino , Corteza Prefrontal/fisiología , Convulsiones/fisiopatología , Convulsiones/terapia , Potenciales de Acción/fisiología , Conducta Animal/fisiología , Cognición/fisiología , Tiempo de Reacción/fisiologíaRESUMEN
Focal cortical dysplasias are a common subtype of malformation of cortical development, which frequently presents with a spectrum of cognitive and behavioural abnormalities as well as pharmacoresistant epilepsy. Focal cortical dysplasia type II is typically caused by somatic mutations resulting in mammalian target of rapamycin (mTOR) hyperactivity, and is the commonest pathology found in children undergoing epilepsy surgery. However, surgical resection does not always result in seizure freedom, and is often precluded by proximity to eloquent brain regions. Gene therapy is a promising potential alternative treatment and may be appropriate in cases that represent an unacceptable surgical risk. Here, we evaluated a gene therapy based on overexpression of the Kv1.1 potassium channel in a mouse model of frontal lobe focal cortical dysplasia. An engineered potassium channel (EKC) transgene was placed under control of a human promoter that biases expression towards principal neurons (CAMK2A) and packaged in an adeno-associated viral vector (AAV9). We used an established focal cortical dysplasia model generated by in utero electroporation of frontal lobe neural progenitors with a constitutively active human Ras homolog enriched in brain (RHEB) plasmid, an activator of mTOR complex 1. We characterized the model by quantifying electrocorticographic and behavioural abnormalities, both in mice developing spontaneous generalized seizures and in mice only exhibiting interictal discharges. Injection of AAV9-CAMK2A-EKC in the dysplastic region resulted in a robust decrease (â¼64%) in the frequency of seizures. Despite the robust anti-epileptic effect of the treatment, there was neither an improvement nor a worsening of performance in behavioural tests sensitive to frontal lobe function. AAV9-CAMK2A-EKC had no effect on interictal discharges or behaviour in mice without generalized seizures. AAV9-CAMK2A-EKC gene therapy is a promising therapy with translational potential to treat the epileptic phenotype of mTOR-related malformations of cortical development. Cognitive and behavioural co-morbidities may, however, resist an intervention aimed at reducing circuit excitability.
Asunto(s)
Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Niño , Humanos , Ratones , Animales , Epilepsia/terapia , Epilepsia/cirugía , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Convulsiones/genética , Convulsiones/terapia , Terapia Genética , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/terapia , Malformaciones del Desarrollo Cortical/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMEN
BACKGROUND: Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES: This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS: We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS: Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION: Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.
Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Zona Incerta , Humanos , Pilocarpina/toxicidad , Calcio , Estimulación Encefálica Profunda/métodos , Neuronas GABAérgicas , Epilepsia/terapia , Ácido Kaínico/toxicidad , Convulsiones/terapiaRESUMEN
ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.
Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/terapia , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/complicaciones , Glicosilación , Fenotipo , Mutación , Hipotonía Muscular/genética , Hipotonía Muscular/terapia , Hipotonía Muscular/diagnóstico , Guías de Práctica Clínica como Asunto , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/terapia , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Convulsiones/genética , Convulsiones/terapia , Convulsiones/diagnóstico , N-AcetilglucosaminiltransferasasRESUMEN
BACKGROUND: We compared dissociative seizure specific cognitive behavior therapy (DS-CBT) plus standardized medical care (SMC) to SMC alone in a randomized controlled trial. DS-CBT resulted in better outcomes on several secondary trial outcome measures at the 12-month follow-up point. The purpose of this paper is to evaluate putative treatment mechanisms. METHODS: We carried out a secondary mediation analysis of the CODES trial. 368 participants were recruited from the National Health Service in secondary / tertiary care in England, Scotland, and Wales. Sixteen mediation hypotheses corresponding to combinations of important trial outcomes and putative mediators were assessed. Twelve-month trial outcomes considered were final-month seizure frequency, Work and Social Adjustment Scale (WSAS), and the SF-12v2, a quality-of-life measure providing physical (PCS) and mental component summary (MCS) scores. Mediators chosen for analysis at six months (broadly corresponding to completion of DS-CBT) included: (a) beliefs about emotions, (b) a measure of avoidance behavior, (c) anxiety and (d) depression. RESULTS: All putative mediator variables except beliefs about emotions were found to be improved by DS-CBT. We found evidence for DS-CBT effect mediation for the outcome variables dissociative seizures (DS), WSAS and SF-12v2 MCS scores by improvements in target variables avoidance behavior, anxiety, and depression. The only variable to mediate the DS-CBT effect on the SF-12v2 PCS score was avoidance behavior. CONCLUSIONS: Our findings largely confirmed the logic model underlying the development of CBT for patients with DS. Interventions could be additionally developed to specifically address beliefs about emotions to assess whether it improves outcomes.
Asunto(s)
Terapia Cognitivo-Conductual , Análisis de Mediación , Convulsiones , Humanos , Terapia Cognitivo-Conductual/métodos , Masculino , Femenino , Adulto , Convulsiones/terapia , Persona de Mediana Edad , Trastornos Disociativos/terapia , Calidad de Vida , Resultado del Tratamiento , Ansiedad/terapia , Evaluación de Resultado en la Atención de Salud , Depresión/terapia , EscociaRESUMEN
Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011 and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia, and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. The current study involves a total of 58 distinct participants; of these, 43 caregivers were interviewed using the Vineland-3 and answered a survey regarding therapy and other questions, 10 of whom completed the Vineland-3 but did not answer the survey, and 5 participants who answered the survey but have not yet performed the Vineland-3 due to language constraints. The average age at the time of the most recent assessment was 12.4 years, with individuals ranging in age from 11 months to 40.2 years. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome (n = 53). Sub-domain analysis found the decline to be present across all modalities. In addition, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. A therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy, with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status, and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.
Asunto(s)
Convulsiones , Humanos , Convulsiones/genética , Convulsiones/fisiopatología , Convulsiones/terapia , Femenino , Masculino , Niño , Preescolar , Adulto , Lactante , Adolescente , Discapacidad Intelectual/genética , Adulto Joven , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/terapia , Acetiltransferasa E N-Terminal/genética , Acetiltransferasa A N-Terminal/genética , FenotipoRESUMEN
OBJECTIVES: Acute symptomatic seizures (ASyS) and epileptiform abnormalities (EAs) on electroencephalography (EEG) are commonly encountered following acute brain injury. Their immediate and long-term management remains poorly investigated. We conducted an international survey to understand their current management. METHODS: The cross-sectional web-based survey of 21 fixed-response questions was based on a common clinical encounter: convulsive or suspected ASyS following an acute brain injury. Respondents selected the option that best matched their real-world practice. Respondents completing the survey were compared with those who accessed but did not complete it. RESULTS: A total of 783 individuals (44 countries) accessed the survey; 502 completed it. Almost everyone used anti-seizure medications (ASMs) for secondary prophylaxis after convulsive or electrographic ASyS (95.4% and 97.2%, respectively). ASM dose escalation after convulsive ASyS depends on continuous EEG (cEEG) findings: most often increased after electrographic seizures (78% of respondents), followed by lateralized periodic discharges (LPDs; 41%) and sporadic epileptiform discharges (sEDs; 17.5%). If cEEG is unrevealing, one in five respondents discontinue ASMs after a week. In the absence of convulsive and electrographic ASyS, a large proportion of respondents start ASMs due to LPD (66.7%) and sED (44%) on cEEG. At hospital discharge, most respondents (85%) continue ASM without dose change. The recommended duration of outpatient ASM use is as follows: 1-3 months (36%), 3-6 months (30%), 6-12 months (13%), >12 months (11%). Nearly one-third of respondents utilized ancillary testing before outpatient ASM taper, most commonly (79%) a <2 h EEG. Approximately half of respondents had driving restrictions recommended for 6 months after discharge. SIGNIFICANCE: ASM use for secondary prophylaxis after convulsive and electrographic ASyS is a universal practice and is continued upon discharge. Outpatient care, particularly the ASM duration, varies significantly. Wide practice heterogeneity in managing acute EAs reflects uncertainty about their significance and management. These results highlight the need for a structured outpatient follow-up and optimized care pathway for patients with ASyS.
Asunto(s)
Lesiones Encefálicas , Estado Epiléptico , Humanos , Estudios Transversales , Convulsiones/diagnóstico , Convulsiones/terapia , Electroencefalografía , Estudios RetrospectivosRESUMEN
OBJECTIVE: Seizure care is a significant driver of health care costs in both emergency department (ED) and inpatient settings, but the majority of studies have focused on inpatient admissions as the only metric of health care utilization. This study aims to better characterize ED and inpatient encounters among patients with seizure to inform care and policy. METHODS: Using statewide administrative data from the Healthcare Cost and Utilization Project State Inpatient Databases and State Emergency Department Databases from Florida and New York, we identified patients with a seizure-related index hospitalization between January 1, 2016, and December 31, 2018. Among this cohort, we examined the incidence and characteristics of subsequent acute care visits in the ED and inpatient settings for 365 days after initial hospital discharge. RESULTS: A total of 54 456 patients had an eligible seizure-related hospitalization. Patients were 49% female, predominantly White (64%) and non-Hispanic (84%), and used a public primary payer (68%). There were 36 838 (68%) patients with at least one acute care visit in the year following discharge. Overall, patients had a median of 2 (interquartile [IQR] = 1-5) subsequent acute care visits and the median time to first acute care visit was 53 days (IQR = 15-138). Of the 154 369 subsequent acute care visits, 97 399 (63%) were ED-only visits, 56 970 (37%) were readmissions, and 37 176 (24%) were seizure-related. There were 18 786 patients (35%) with four or more acute care visits over 365 days of follow-up. Patients with four or more visits contributed 84% of acute care visits and 78% of costs after initial hospitalization. SIGNIFICANCE: The majority of patients hospitalized for seizure return to the ED or hospital at least once in the year after discharge. A small portion of patients account for the majority of ED and inpatient visits as well as health care costs associated with this population, identifying a subgroup of patients who may benefit from improved inpatient and outpatient management.
Asunto(s)
Hospitalización , Pacientes Internos , Humanos , Femenino , Masculino , Estudios Retrospectivos , Servicio de Urgencia en Hospital , Costos de la Atención en Salud , Aceptación de la Atención de Salud , Convulsiones/epidemiología , Convulsiones/terapiaRESUMEN
OBJECTIVE: Functional seizures (FS) account for 20%-25% of referrals to specialist epilepsy clinics. They are associated with major disability, increased mortality, and frequent and costly health care use. Current guidelines emphasize the importance of implementing clinical pathways to coordinate and deliver effective treatment, but there are few targeted evidence-based interventions that reliably improve patient outcomes, and treatment resources are limited. We conducted a retrospective evaluation of Re-PROGRAM, a novel, brief intervention for functional seizure patients, to assess its feasibility in an outpatient setting. METHODS: Twenty-nine patients with FS undertook Re-PROGRAM between August 2020 and January 2022 at the Alfred Hospital Functional Seizures Clinic, Melbourne, Australia. The intervention comprised five 60-90-min consecutive weekly appointments via telehealth, where psychologists engaged patients in a structured program of seizure management skills, lifestyle modification, and behavioral activation strategies. Following the intervention, patient feedback was collected in routine clinical follow-up as well as with a 24-item self-report pre-/postintervention comparison questionnaire. RESULTS: All 29 patients who enrolled in Re-PROGRAM completed the scheduled sessions. Of those who returned the postintervention questionnaire (n = 16), 15 reported a reduction in seizure frequency. Four patients were lost to follow-up. Of the remaining nine, eight reported seizure frequency reduction during clinical follow-up. Qualitative analysis of the feedback revealed the majority of patients reported reduced seizure duration, intensity, and bothersomeness, and patients felt improvements in their sense of control over seizures, confidence to use seizure control strategies, assertive communication, problem solving, coping skills, relationships with others, and their day-to-day functioning. SIGNIFICANCE: This retrospective evaluation demonstrates the feasibility and acceptability of Re-PROGRAM as a brief intervention for individuals diagnosed with FS delivered in a clinical outpatient setting and warrants further investigation in larger scale, randomized controlled studies.
Asunto(s)
Convulsiones , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Convulsiones/terapia , Adulto Joven , Telemedicina , Trastornos de Conversión/terapia , Estudios de Factibilidad , Anciano , Resultado del TratamientoRESUMEN
OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.
Asunto(s)
Ritmo Circadiano , Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/terapia , Epilepsia del Lóbulo Temporal/fisiopatología , Masculino , Femenino , Adulto , Ritmo Circadiano/fisiología , Estudios Retrospectivos , Persona de Mediana Edad , Epilepsia Refractaria/terapia , Epilepsia Refractaria/fisiopatología , Convulsiones/fisiopatología , Convulsiones/terapia , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento , Adulto Joven , Electroencefalografía/métodosRESUMEN
OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.
Asunto(s)
Epilepsia Generalizada , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Convulsiones/diagnóstico , Convulsiones/terapia , Epilepsia/diagnóstico , Electroencefalografía/métodosRESUMEN
OBJECTIVE: Although >30% of epilepsy patients have drug-resistant epilepsy (DRE), typically those with generalized or multifocal disease have not traditionally been considered surgical candidates. Responsive neurostimulation (RNS) of the centromedian (CM) region of the thalamus now appears to be a promising therapeutic option for this patient population. We present outcomes following CM RNS for 13 patients with idiopathic generalized epilepsy (IGE) and eight with multifocal onsets that rapidly generalize to bilateral tonic-clonic (focal to bilateral tonic-clonic [FBTC]) seizures. METHODS: A retrospective review of all patients undergoing bilateral CM RNS by the senior author through July 2022 were reviewed. Electrodes were localized and volumes of tissue activation were modeled in Lead-DBS. Changes in patient seizure frequency were extracted from electronic medical records. RESULTS: Twenty-one patients with DRE underwent bilateral CM RNS implantation. For 17 patients with at least 1 year of postimplantation follow-up, average seizure reduction from preoperative baseline was 82.6% (SD = 19.0%, median = 91.7%), with 18% of patients Engel class 1, 29% Engel class 2, 53% Engel class 3, and 0% Engel class 4. There was a trend for average seizure reduction to be greater for patients with nonlesional FBTC seizures than for other patients. For patients achieving at least Engel class 3 outcome, median time to worthwhile seizure reduction was 203.5 days (interquartile range = 110.5-343.75 days). Patients with IGE with myoclonic seizures had a significantly shorter time to worthwhile seizure reduction than other patients. The surgical targeting strategy evolved after the first four subjects to achieve greater anatomic accuracy. SIGNIFICANCE: Patients with both primary and rapidly generalized epilepsy who underwent CM RNS experienced substantial seizure relief. Subsets of these patient populations may particularly benefit from CM RNS. The refinement of lead targeting, tuning of RNS system parameters, and patient selection are ongoing areas of investigation.
Asunto(s)
Epilepsia Refractaria , Epilepsia Generalizada , Humanos , Femenino , Masculino , Adulto , Epilepsia Generalizada/terapia , Estudios Retrospectivos , Adulto Joven , Adolescente , Epilepsia Refractaria/terapia , Resultado del Tratamiento , Persona de Mediana Edad , Núcleos Talámicos Intralaminares , Convulsiones/terapia , Convulsiones/cirugía , Estimulación Encefálica Profunda/métodos , Epilepsia Tónico-Clónica/terapia , Epilepsias Parciales/terapia , NiñoRESUMEN
BACKGROUND: We previously reported that hydrogen (H2) gas combined with therapeutic hypothermia (TH) improved short-term neurological outcomes in asphyxiated piglets. However, the effect on seizure burden was unclear. Using amplitude-integrated electroencephalography (aEEG), we compared TH + H2 with TH alone in piglets 24 h after hypoxic-ischemic (HI) insult. METHODS: After a 40-min insult and resuscitation, 36 piglets ≤24 h old were divided into three groups: normothermia (NT, n = 14), TH alone (33.5 ± 0.5 °C, 24 h, n = 13), and TH + H2 (2.1-2.7% H2 gas, 24 h, n = 9). aEEG was recorded for 24 h post-insult and its background pattern, status epilepticus (SE; recurrent seizures lasting >5 min), and seizure occurrence (Sz; occurring at least once but not fitting the definition of SE) were evaluated. Background findings with a continuous low voltage and burst suppression were considered abnormal. RESULTS: The percentage of piglets with an abnormal aEEG background (aEEG-BG), abnormal aEEG-BG+Sz and SE was lower with TH + H2 than with TH at 24 h after HI insult. The duration of SE was shorter with TH + H2 and significantly shorter than with NT. CONCLUSIONS: H2 gas combined with TH ameliorated seizure burden 24 h after HI insult. IMPACT: In this asphyxiated piglet model, there was a high percentage of animals with an abnormal amplitude-integrated electroencephalography background (aEEG-BG) after hypoxic-ischemic (HI) insult, which may correspond to moderate and severe hypoxic-ischemic encephalopathy (HIE). Therapeutic hypothermia (TH) was associated with a low percentage of piglets with EEG abnormalities up to 6 h after HI insult but this percentage increased greatly after 12 h, and TH was not effective in attenuating seizure development. H2 gas combined with TH was associated with a low percentage of piglets with an abnormal aEEG-BG and with a shorter duration of status epilepticus at 24 h after HI insult.
Asunto(s)
Animales Recién Nacidos , Electroencefalografía , Hidrógeno , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Convulsiones , Animales , Hipotermia Inducida/métodos , Porcinos , Convulsiones/terapia , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Asfixia Neonatal/terapia , Asfixia Neonatal/fisiopatología , Asfixia Neonatal/complicaciones , Asfixia/complicaciones , Asfixia/terapia , Estado Epiléptico/terapia , Estado Epiléptico/fisiopatologíaRESUMEN
BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.
Asunto(s)
Anticonvulsivantes , Enfermedades Mitocondriales , Convulsiones , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Consenso , Epilepsia/terapia , Epilepsia/tratamiento farmacológico , Técnica DelphiRESUMEN
Management of severe (drug-resistant) epilepsy and epilepsy in other serious illnesses is multidimensional and requires consideration of both physical symptoms and psychosocial distress that require individualized treatment. Palliative care offers a holistic approach to disease that focuses on all dimensions of suffering to maintain quality of life. Integration of a palliative care mind- and skillset in the management of severe epilepsy and epilepsy in other serious illnesses can provide person-centered care and support for families and caregivers.
Asunto(s)
Epilepsia , Cuidados Paliativos , Humanos , Cuidados Paliativos/métodos , Cuidados Paliativos/tendencias , Epilepsia/terapia , Adulto , Convulsiones/terapia , Calidad de VidaRESUMEN
Patients with brain and spine tumors represent a distinct population with unique needs. We provide a practical review of neurologic care in this group with an emphasis on familiarizing the general neurologist to the nuances of neuro-oncologic supportive care. We review the management of cerebral edema, steroid dosing, and pertinent side effects. We discuss seizure management, including choice of anticonvulsants, putative antitumor effects, and important seizure mimics like drop attacks. We review the presentation and symptomatology of stroke-like migraine attack after radiation therapy (SMART syndrome). We describe the signs and symptoms that should prompt concern for metastatic spinal cord compression, as well as both acute and definitive treatment options. Finally, we discuss the underappreciated incidence of venous thromboembolic events, particularly in patients with gliomas, and review the data on management.
Asunto(s)
Glioma , Accidente Cerebrovascular , Humanos , Convulsiones/terapia , Anticonvulsivantes/uso terapéutico , Accidente Cerebrovascular/complicaciones , Glioma/tratamiento farmacológico , EncéfaloRESUMEN
OBJECTIVE: Functional seizures are common among people with traumatic brain injury (TBI). Subjective cognitive concerns refer to a person's own perception of problems with cognitive functioning in everyday life. The authors investigated the presence and correlates of subjective cognitive concerns and the response to neurobehavioral therapy among adults with TBI and functional seizures (TBI+FS group). METHODS: In this observational study, participants in the TBI+FS group (N=47) completed a 12-session neurobehavioral therapy protocol for seizures, while participants in the comparison group (TBI without seizures) (N=50) received usual treatment. Subjective cognitive concerns, objective cognition, mental health, and quality of life were assessed before and after treatment. Data collection occurred from 2018 to 2022. RESULTS: Baseline subjective cognitive concerns were reported for 37 (79%) participants in the TBI+FS group and 20 (40%) participants in the comparison group. In a multivariable regression model in the TBI+FS group, baseline global mental health (ß=-0.97) and obsessive-compulsive symptoms (ß=-1.01) were associated with subjective cognitive concerns at baseline. The TBI+FS group had fewer subjective cognitive concerns after treatment (η2=0.09), whereas the TBI comparison group showed a nonsignificant increase in subjective cognitive concerns. CONCLUSIONS: Subjective cognitive concerns are common among people with TBI and functional seizures and may be related to general mental health and obsessive-compulsive symptoms. Evidence-based neurobehavioral therapy for functional seizures is a reasonable treatment option to address such concerns in this population, although additional studies in culturally diverse samples are needed. In addition, people with functional seizures would likely benefit from rehabilitation specifically targeted toward cognitive functioning.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Convulsiones , Humanos , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/rehabilitación , Masculino , Femenino , Adulto , Convulsiones/etiología , Convulsiones/psicología , Convulsiones/terapia , Persona de Mediana Edad , Disfunción Cognitiva/etiología , Disfunción Cognitiva/rehabilitación , Disfunción Cognitiva/terapia , Disfunción Cognitiva/fisiopatología , Calidad de Vida , Cognición/fisiología , Terapia Cognitivo-Conductual , Adulto JovenRESUMEN
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.
Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Masculino , Humanos , Adulto , Persona de Mediana Edad , Epilepsia/terapia , Epilepsia Refractaria/terapia , Convulsiones/terapia , Tálamo/fisiologíaRESUMEN
Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.