Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.701
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 625(7994): 345-351, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057661

RESUMEN

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Asunto(s)
Degeneración Lobar Frontotemporal , Factores Asociados con la Proteína de Unión a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestructura , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Microscopía por Crioelectrón , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/complicaciones , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Corteza Motora/metabolismo , Corteza Motora/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores Asociados con la Proteína de Unión a TATA/ultraestructura , Lóbulo Temporal/metabolismo , Lóbulo Temporal/patología
2.
Nature ; 601(7891): 139-143, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34880495

RESUMEN

The abnormal aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in neurons and glia is the defining pathological hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and multiple forms of frontotemporal lobar degeneration (FTLD)1,2. It is also common in other diseases, including Alzheimer's and Parkinson's. No disease-modifying therapies exist for these conditions and early diagnosis is not possible. The structures of pathological TDP-43 aggregates are unknown. Here we used cryo-electron microscopy to determine the structures of aggregated TDP-43 in the frontal and motor cortices of an individual who had ALS with FTLD and from the frontal cortex of a second individual with the same diagnosis. An identical amyloid-like filament structure comprising a single protofilament was found in both brain regions and individuals. The ordered filament core spans residues 282-360 in the TDP-43 low-complexity domain and adopts a previously undescribed double-spiral-shaped fold, which shows no similarity to those of TDP-43 filaments formed in vitro3,4. An abundance of glycine and neutral polar residues facilitates numerous turns and restricts ß-strand length, which results in an absence of ß-sheet stacking that is associated with cross-ß amyloid structure. An uneven distribution of residues gives rise to structurally and chemically distinct surfaces that face external densities and suggest possible ligand-binding sites. This work enhances our understanding of the molecular pathogenesis of ALS and FTLD and informs the development of diagnostic and therapeutic agents that target aggregated TDP-43.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Secuencia de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Lóbulo Frontal/ultraestructura , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/metabolismo , Corteza Motora/patología , Corteza Motora/ultraestructura , Mutación
3.
PLoS Comput Biol ; 20(7): e1012259, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38968294

RESUMEN

Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.


Asunto(s)
Biología Computacional , Síndrome de Down , Modelos Neurológicos , Síndrome de Down/fisiopatología , Síndrome de Down/patología , Animales , Ratones , Células Piramidales/patología , Células Piramidales/fisiología , Neuronas/fisiología , Neuronas/patología , Interneuronas/fisiología , Interneuronas/patología , Simulación por Computador , Corteza Motora/fisiopatología , Corteza Motora/patología , Modelos Animales de Enfermedad , Humanos , Ratones Transgénicos , Red Nerviosa/fisiopatología , Red Nerviosa/patología
4.
Brain ; 147(8): 2826-2841, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643019

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. The spatial architecture of cell types and gene expression are the basis of cell-cell interactions, biological function and disease pathology, but are not well investigated in the human motor cortex, a key ALS-relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, the brain regional vulnerability of ALS-associated genes and the genetic link between region-specific genes and ALS risk remain largely unclear. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics. We benchmarked SpatialE against another enrichment tool (multimodal intersection analysis) using spatial transcriptomics data from both human and mouse brain tissues. To investigate regional vulnerability, we analysed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function variants detected by whole-genome sequencing in ALS patients and controls, then analysed differential gene expression in the TargetALS RNA-sequencing dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than multimodal intersection analysis in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogeneous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 of the motor cortex, with abundant expression of upper motor neurons and layer 5 excitatory neurons. Burden analyses of rare loss-of-function variants in Layer 5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6814 ALS patients and 3324 controls (P = 0.029). Gene expression analyses in CNS tissues revealed downregulation of NOMO1 in ALS, which is consistent with a loss-of-function disease mechanism. In conclusion, our integrated spatial transcriptomics and genomic analyses identified regional brain vulnerability in ALS and the association of a layer 5 gene (NOMO1) with ALS risk.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Humanos , Ratones , Animales , Corteza Motora/metabolismo , Corteza Motora/patología , Transcriptoma , Genómica/métodos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Masculino
5.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38061694

RESUMEN

Age at onset may be an important feature associated with distinct subtypes of amyotrophic lateral sclerosis (ALS). Little is known about the neuropathological mechanism of early-onset ALS (EO-ALS) and late-onset ALS (LO-ALS). Ninety ALS patients were divided into EO-ALS and LO-ALS group, and 128 healthy controls were matched into young controls(YCs) and old controls (OCs). A voxel-based morphometry approach was employed to investigate differences in gray matter volume (GMV). Significant age at onset-by-diagnosis interactions were found in the left parietal operculum, left precentral gyrus, bilateral postcentral gyrus, right occipital gyrus, and right orbitofrontal cortex. Post hoc analysis revealed a significant decrease in GMV in all affected regions of EO-ALS patients compared with YCs, with increased GMV in 5 of the 6 brain regions, except for the right orbitofrontal cortex, in LO-ALS patients compared with OCs. LO-ALS patients had a significantly increased GMV than EO-ALS patients after removing the aging effect. Correspondingly, GMV of the left postcentral gyrus correlated with disease severity in the 2 ALS groups. Our findings suggested that the pathological mechanisms in ALS patients with different ages at onset might differ. These findings provide unique insight into the clinical and biological heterogeneity of the 2 ALS subtypes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/patología , Imagen por Resonancia Magnética , Encéfalo/patología , Corteza Motora/patología
6.
Cell Mol Life Sci ; 81(1): 346, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134808

RESUMEN

In people with multiple sclerosis (MS), newborn and surviving oligodendrocytes (OLs) can contribute to remyelination, however, current therapies are unable to enhance or sustain endogenous repair. Low intensity repetitive transcranial magnetic stimulation (LI-rTMS), delivered as an intermittent theta burst stimulation (iTBS), increases the survival and maturation of newborn OLs in the healthy adult mouse cortex, but it is unclear whether LI-rTMS can promote remyelination. To examine this possibility, we fluorescently labelled oligodendrocyte progenitor cells (OPCs; Pdgfrα-CreER transgenic mice) or mature OLs (Plp-CreER transgenic mice) in the adult mouse brain and traced the fate of each cell population over time. Daily sessions of iTBS (600 pulses; 120 mT), delivered during cuprizone (CPZ) feeding, did not alter new or pre-existing OL survival but increased the number of myelin internodes elaborated by new OLs in the primary motor cortex (M1). This resulted in each new M1 OL producing ~ 471 µm more myelin. When LI-rTMS was delivered after CPZ withdrawal (during remyelination), it significantly increased the length of the internodes elaborated by new M1 and callosal OLs, increased the number of surviving OLs that supported internodes in the corpus callosum (CC), and increased the proportion of axons that were myelinated. The ability of LI-rTMS to modify cortical neuronal activity and the behaviour of new and surviving OLs, suggests that it may be a suitable adjunct intervention to enhance remyelination in people with MS.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Vaina de Mielina , Oligodendroglía , Remielinización , Estimulación Magnética Transcraneal , Animales , Estimulación Magnética Transcraneal/métodos , Oligodendroglía/metabolismo , Enfermedades Desmielinizantes/terapia , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Ratones , Vaina de Mielina/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Corteza Motora/patología , Corteza Motora/metabolismo , Supervivencia Celular , Ratones Endogámicos C57BL , Esclerosis Múltiple/terapia , Esclerosis Múltiple/patología
7.
Hum Brain Mapp ; 45(8): e26723, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864296

RESUMEN

This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.


Asunto(s)
Neoplasias Encefálicas , Lateralidad Funcional , Glioma , Imagen por Resonancia Magnética , Corteza Sensoriomotora , Humanos , Masculino , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/fisiopatología , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Adulto , Persona de Mediana Edad , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/patología , Corteza Sensoriomotora/fisiopatología , Lateralidad Funcional/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Corteza Motora/diagnóstico por imagen , Corteza Motora/patología , Corteza Motora/fisiopatología , Mapeo Encefálico , Adulto Joven
8.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651310

RESUMEN

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Asunto(s)
Ganglios Basales , Distonía , Corteza Motora , Vías Nerviosas , Trastornos Parkinsonianos , Ratas Long-Evans , Animales , Corteza Motora/fisiopatología , Corteza Motora/patología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/patología , Ratas , Vías Nerviosas/fisiopatología , Distonía/fisiopatología , Distonía/patología , Distonía/etiología , Ganglios Basales/patología , Masculino , Globo Pálido/patología , Modelos Animales de Enfermedad
9.
Acta Neuropathol ; 147(1): 100, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884646

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with average lifespan of 2-5 years after diagnosis. The identification of novel prognostic and pharmacodynamic biomarkers are needed to facilitate therapeutic development. Metalloprotein human superoxide dismutase 1 (SOD1) is known to accumulate and form aggregates in patient neural tissue with familial ALS linked to mutations in their SOD1 gene. Aggregates of SOD1 have also been detected in other forms of ALS, including the sporadic form and the most common familial form linked to abnormal hexanucleotide repeat expansions in the Chromosome 9 open reading frame 72 (C9ORF72) gene. Here, we report the development of a real-time quaking-induced conversion (RT-QuIC) seed amplification assay using a recombinant human SOD1 substrate to measure SOD1 seeding activity in postmortem spinal cord and motor cortex tissue from persons with different ALS etiologies. Our SOD1 RT-QuIC assay detected SOD1 seeds in motor cortex and spinal cord dilutions down to 10-5. Importantly, we detected SOD1 seeding activity in specimens from both sporadic and familial ALS cases, with the latter having mutations in either their SOD1 or C9ORF72 genes. Analyses of RT-QuIC parameters indicated similar lag phases in spinal cords of sporadic and familial ALS patients, but higher ThT fluorescence maxima by SOD1 familial ALS specimens and sporadic ALS thoracic cord specimens. For a subset of sporadic ALS patients, motor cortex and spinal cords were examined, with seeding activity in both anatomical regions. Our results suggest SOD1 seeds are in ALS patient neural tissues not linked to SOD1 mutation, suggesting that SOD1 seeding activity may be a promising biomarker, particularly in sporadic ALS cases for whom genetic testing is uninformative.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Médula Espinal , Superóxido Dismutasa-1 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Corteza Motora/patología , Corteza Motora/metabolismo , Mutación/genética , Médula Espinal/patología , Médula Espinal/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Biomarcadores/análisis
10.
Cereb Cortex ; 33(13): 8179-8193, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36967112

RESUMEN

Motor disturbances are observed in schizophrenia patients, but the neuroanatomical background is unknown. Our aim was to investigate the pyramidal cells of the primary motor cortex (BA 4) in both hemispheres of postmortem control and schizophrenia subjects-8 subjects in each group-with 2.5-5.5 h postmortem interval. The density and size of the Sternberger monoclonal incorporated antibody 32 (SMI32)-immunostained pyramidal cells in layer 3 and 5 showed no change; however, the proportion of larger pyramidal cells is decreased in layer 5. Giant pyramidal neurons (Betz cells) were investigated distinctively with SMI32- and parvalbumin (PV) immunostainings. In the right hemisphere of schizophrenia subjects, the density of Betz cells was decreased and their PV-immunopositive perisomatic input showed impairment. Part of the Betz cells contained PV in both groups, but the proportion of PV-positive cells has declined with age. The rat model of antipsychotic treatment with haloperidol and olanzapine showed no differences in size and density of SMI32-immunopositive pyramidal cells. Our results suggest that motor impairment of schizophrenia patients may have a morphological basis involving the Betz cells in the right hemisphere. These alterations can have neurodevelopmental and neurodegenerative explanations, but antipsychotic treatment does not explain them.


Asunto(s)
Lateralidad Funcional , Corteza Motora , Células Piramidales , Esquizofrenia , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Envejecimiento , Antipsicóticos/uso terapéutico , Autopsia , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Lateralidad Funcional/efectos de los fármacos , Haloperidol/farmacología , Haloperidol/uso terapéutico , Inmunohistoquímica , Filamentos Intermedios/metabolismo , Corteza Motora/efectos de los fármacos , Corteza Motora/patología , Olanzapina/farmacología , Olanzapina/uso terapéutico , Parvalbúminas/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Ratas Sprague-Dawley , Análisis de Regresión , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología
11.
Mol Cell Neurosci ; 126: 103883, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527694

RESUMEN

There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.


Asunto(s)
Mucuna , Enfermedad de Parkinson , Extractos Vegetales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Ácido Glutámico/metabolismo , Biomarcadores/metabolismo , Corteza Motora/efectos de los fármacos , Corteza Motora/metabolismo , Corteza Motora/patología , Mucuna/química , Extractos Vegetales/administración & dosificación , Marcha/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Ganglios Basales/metabolismo , Ganglios Basales/patología , Animales , Ratones
12.
J Integr Neurosci ; 23(7): 132, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39082301

RESUMEN

BACKGROUND: Non-invasive brain mapping using navigated transcranial magnetic stimulation (nTMS) is a valuable tool prior to resection of malignant brain tumors. With nTMS motor mapping, it is additionally possible to analyze the function of the motor system and to evaluate tumor-induced neuroplasticity. Distinct changes in motor cortex excitability induced by certain malignant brain tumors are a focal point of research. METHODS: A retrospective single-center study was conducted involving patients with malignant brain tumors. Clinical data, resting motor threshold (rMT), and nTMS-based tractography were evaluated. The interhemispheric rMT-ratio (rMTTumor/rMTControl) was calculated for each extremity and considered pathological if it was >110% or <90%. Distances between the corticospinal tract and the tumor (lesion-to-tract-distance - LTD) were measured. RESULTS: 49 patients were evaluated. 16 patients (32.7%) had a preoperative motor deficit. The cohort comprised 22 glioblastomas (44.9%), 5 gliomas of Classification of Tumors of the Central Nervous System (CNS WHO) grade 3 (10.2%), 6 gliomas of CNS WHO grade 2 (12.2%) and 16 cerebral metastases (32.7%). 26 (53.1%) had a pathological rMT-ratio for the upper extremity and 35 (71.4%) for the lower extremity. All patients with tumor-induced motor deficits had pathological interhemispheric rMT-ratios, and presence of tumor-induced motor deficits was associated with infiltration of the tumor to the nTMS-positive cortex (p = 0.04) and shorter LTDs (all p < 0.021). Pathological interhemispheric rMT-ratio for the upper extremity was associated with cerebral metastases, but not with gliomas (p = 0.002). CONCLUSIONS: Our study underlines the diagnostic potential of nTMS motor mapping to go beyond surgical risk stratification. Pathological alterations in motor cortex excitability can be measured with nTMS mapping. Pathological cortical excitability was more frequent in cerebral metastases than in gliomas.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Corteza Motora , Tractos Piramidales , Estimulación Magnética Transcraneal , Humanos , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Corteza Motora/patología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Anciano , Glioma/fisiopatología , Glioma/patología , Glioma/diagnóstico por imagen , Mapeo Encefálico , Potenciales Evocados Motores/fisiología
13.
Gene Ther ; 30(7-8): 560-574, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36823441

RESUMEN

Recombinant adeno-associated virus (rAAV)-based gene therapies offer an immense opportunity for rare diseases, such as amyotrophic lateral sclerosis (ALS), which is defined by the loss of the upper and the lower motor neurons. Here, we describe generation, characterization, and utilization of a novel vector system, which enables expression of the active form of hepatocyte growth factor (HGF) under EF-1α promoter with bovine growth hormone (bGH) poly(A) sequence and is effective with intrathecal injections. HGF's role in promoting motor neuron survival had been vastly reported. Therefore, we investigated whether intrathecal delivery of HGF would have an impact on one of the most common pathologies of ALS: the TDP-43 pathology. Increased astrogliosis, microgliosis and progressive upper motor neuron loss are important consequences of ALS in the motor cortex with TDP-43 pathology. We find that cortex can be modulated via intrathecal injection, and that expression of HGF reduces astrogliosis, microgliosis in the motor cortex, and help restore ongoing UMN degeneration. Our findings not only introduce a novel viral vector for the treatment of ALS, but also demonstrate modulation of motor cortex by intrathecal viral delivery, and that HGF treatment is effective in reducing astrogliosis and microgliosis in the motor cortex of ALS with TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Corteza Motora , Animales , Bovinos , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Proteínas de Unión al ADN/genética , Gliosis , Factor de Crecimiento de Hepatocito/genética , Corteza Motora/patología
14.
Hum Brain Mapp ; 44(2): 727-743, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189822

RESUMEN

Subcortical ischemic stroke can lead to persistent structural changes in the cerebral cortex. The evolution of cortical structural changes after subcortical stroke is largely unknown, as are their relations with motor recovery, lesion location, and early impairment of specific subsets of fibers in the corticospinal tract (CST). In this observational study, cortical structural changes were compared between 181 chronic patients with subcortical stroke involving the motor pathway and 113 healthy controls. The impacts of acute lesion location and early impairments of specific CSTs on cortical structural changes were investigated in the patients by combining voxel-based correlation analysis with an association study that compared CST damage and cortical structural changes. Longitudinal patterns of cortical structural change were explored in a group of 81 patients with subcortical stroke using a linear mixed-effects model. In the cross-sectional analyses, patients with partial recovery showed more significant reductions in cortical thickness, surface area, or gray matter volume in the sensorimotor cortex, cingulate gyrus, and gyrus rectus than did patients with complete recovery; however, patients with complete recovery demonstrated more significant increases in the cortical structural measures in frontal, temporal, and occipital regions than did patients with partial recovery. Voxel-based correlation analysis in these patients showed that acute stroke lesions involving the CST fibers originating from the primary motor cortex were associated with cortical thickness reductions in the ipsilesional motor cortex in the chronic stage. Acute stroke lesions in the putamen were correlated with increased surface area in the temporal pole in the chronic stage. The early impairment of the CST fibers originating from the primary sensory area was associated with increased cortical thickness in the occipital cortex. In the longitudinal analyses, patients with partial recovery showed gradually reduced cortical thickness, surface area, and gray matter volume in brain regions with significant structural damage in the chronic stage. Patients with complete recovery demonstrated gradually increasing cortical thickness, surface area, and gray-matter volume in the frontal, temporal, and occipital regions. The directions of slow structural changes in the frontal, occipital, and cingulate cortices were completely different between patients with partial and complete recovery. Complex cortical structural changes and their dynamic evolution patterns were different, even contrasting, in patients with partial and complete recovery, and were associated with lesion location and with impairment of specific CST fiber subsets.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Humanos , Estudios Transversales , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones , Encéfalo/patología , Corteza Motora/patología
15.
Genome Res ; 30(8): 1083-1096, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820007

RESUMEN

Somatic motor neurons are selectively vulnerable in spinal muscular atrophy (SMA), which is caused by a deficiency of the ubiquitously expressed survival of motor neuron protein. However, some motor neuron groups, including oculomotor and trochlear (ocular), which innervate eye muscles, are for unknown reasons spared. To reveal mechanisms of vulnerability and resistance in SMA, we investigate the transcriptional dynamics in discrete neuronal populations using laser capture microdissection coupled with RNA sequencing (LCM-seq). Using gene correlation network analysis, we reveal a TRP53-mediated stress response that is intrinsic to all somatic motor neurons independent of their vulnerability, but absent in relatively resistant red nucleus and visceral motor neurons. However, the temporal and spatial expression analysis across neuron types shows that the majority of SMA-induced modulations are cell type-specific. Using Gene Ontology and protein network analyses, we show that ocular motor neurons present unique disease-adaptation mechanisms that could explain their resilience. Specifically, ocular motor neurons up-regulate (1) Syt1, Syt5, and Cplx2, which modulate neurotransmitter release; (2) the neuronal survival factors Gdf15, Chl1, and Lif; (3) Aldh4, that protects cells from oxidative stress; and (4) the caspase inhibitor Pak4. Finally, we show that GDF15 can rescue vulnerable human spinal motor neurons from degeneration. This confirms that adaptation mechanisms identified in resilient neurons can be used to reduce susceptibility of vulnerable neurons. In conclusion, this in-depth longitudinal transcriptomics analysis in SMA reveals novel cell type-specific changes that, alone and combined, present compelling targets, including Gdf15, for future gene therapy studies aimed toward preserving vulnerable motor neurons.


Asunto(s)
Adaptación Fisiológica/fisiología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Neuroprotección/genética , Adaptación Fisiológica/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ojo/inervación , Predisposición Genética a la Enfermedad/genética , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Captura por Microdisección con Láser , Ratones , Ratones Noqueados , Corteza Motora/patología , Análisis de Secuencia de ARN , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Cereb Cortex ; 32(24): 5622-5627, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-35169830

RESUMEN

Imaging studies have evidenced that contralesional cortices are involved in recovery after motor stroke. Cortical thickness (CT) analysis has proven its potential to capture the changes of cortical anatomy, which have been related to recovery and treatment gains under therapy. An open question is whether CT obtained in the acute phase after stroke might inform correlational models to explain outcome variability. Data of 38 severely impaired (median NIH Stroke Scale 9, interquartile range: 6-13) acute stroke patients of 2 independent cohorts were reanalyzed. Structural imaging data were processed via the FreeSurfer pipeline to quantify regional CT of the contralesional hemisphere. Ordinal logistic regression models were fit to relate CT to modified Rankin Scale as an established measure of global disability after 3-6 months, adjusted for the initial deficit, lesion volume, and age. The data show that CT of contralesional cortices, such as the precentral gyrus, the superior frontal sulcus, and temporal and cingulate cortices, positively relates to the outcome after stroke. This work shows that the baseline cortical anatomy of selected contralesional cortices can explain the outcome variability after severe stroke, which further contributes to the concept of structural brain reserve with respect to contralesional cortices to promote recovery.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/patología , Corteza Motora/patología , Torso
17.
Proc Natl Acad Sci U S A ; 117(46): 29113-29122, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139574

RESUMEN

The corticospinal tract is unique to mammals and the corpus callosum is unique to placental mammals (eutherians). The emergence of these structures is thought to underpin the evolutionary acquisition of complex motor and cognitive skills. Corticospinal motor neurons (CSMN) and callosal projection neurons (CPN) are the archetypal projection neurons of the corticospinal tract and corpus callosum, respectively. Although a number of conserved transcriptional regulators of CSMN and CPN development have been identified in vertebrates, none are unique to mammals and most are coexpressed across multiple projection neuron subtypes. Here, we discover 17 CSMN-enriched microRNAs (miRNAs), 15 of which map to a single genomic cluster that is exclusive to eutherians. One of these, miR-409-3p, promotes CSMN subtype identity in part via repression of LMO4, a key transcriptional regulator of CPN development. In vivo, miR-409-3p is sufficient to convert deep-layer CPN into CSMN. This is a demonstration of an evolutionarily acquired miRNA in eutherians that refines cortical projection neuron subtype development. Our findings implicate miRNAs in the eutherians' increase in neuronal subtype and projection diversity, the anatomic underpinnings of their complex behavior.


Asunto(s)
Evolución Biológica , Corteza Cerebral/fisiología , Mamíferos/genética , MicroARNs/genética , MicroARNs/fisiología , Animales , Cuerpo Calloso/fisiología , Euterios/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Corteza Motora/patología , Neuronas Motoras , Tractos Piramidales/patología
18.
BMC Neurol ; 22(1): 303, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982397

RESUMEN

BACKGROUND: Polymicrogyria refers to the disruption of normal cerebral cortical development late in neuronal migration or in early cortical organization. Although patients with polymicrogyria feature relatively favorable motor outcomes, polymicrogyric lesions accompanied by extensive unilateral hemispheric atrophy and ipsilateral brainstem atrophy may induce poorer motor outcomes. This study is the first to employ transcranial magnetic stimulation (TMS) and diffusion tensor imaging (DTI) to characterize changes to motor organization and white matter tracts induced by polymicrogyria. CASE PRESENTATION: We document a case of a 16-year-old female with left hemiplegic unilateral polymicrogyria associated with ipsilateral brainstem atrophy. Magnetic resonance imaging (MRI) of the brain revealed unilateral polymicrogyria to have affected anterior cortical areas, including the perisylvian region on the right side. The right halves of the brain and brainstem were significantly smaller than the left halves. Although our patient was found to exhibit cortical dysplasia of the right frontoparietal and sylvian fissure areas and a decreased number of fibers in the corticospinal tract (CST) of the affected side on DTI, the connectivity of the CST was preserved up to the motor cortex. We also measured the cross-sectional area of the CST at the level of the pons. In TMS, contralateral motor evoked potentials (MEPs) were evoked from both hands, but the ipsilateral MEPs were evoked only from the left hand. The left hand featured a long duration, polyphasic pattern of contralateral MEPs. DISCUSSION AND CONCLUSION: TMS revealed that the concurrent bilateral projections to the paretic hand from the affected and unaffected hemispheres and contralateral MEPs in the paretic hand were polyphasic, indicating delayed electrophysiological maturation or a pathologic condition of the corticospinal motor pathways. In DTI, the cross-sectional area of the CST at the level of the pons on the affected side was smaller than that on the unaffected side. These DTI findings reveal an inadequate CST volume. Despite extensive brain malformation and ipsilateral brainstem atrophy, our patient had less severe motor dysfunction and presented with involuntary mirror movements. Mirror movements in the paretic hand are considered to indicate ipsilateral corticospinal projections from the unaffected hemisphere and may suggest favorable motor outcomes in early brain injury.


Asunto(s)
Corteza Motora , Trastornos del Movimiento , Malformaciones del Sistema Nervioso , Polimicrogiria , Adolescente , Atrofia/patología , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/patología , Imagen de Difusión Tensora , Potenciales Evocados Motores , Femenino , Lateralidad Funcional/fisiología , Humanos , Corteza Motora/patología , Trastornos del Movimiento/patología , Polimicrogiria/patología , Tractos Piramidales/patología , Estimulación Magnética Transcraneal/métodos
19.
Cereb Cortex ; 31(5): 2322-2344, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33350438

RESUMEN

Rostro-caudal specificity of corticospinal tract (CST) projections from different areas of the cortex was assessed by retrograde labeling with fluorogold and retrograde transfection following retro-AAV/Cre injection into the spinal cord of tdT reporter mice. Injections at C5 led to retrograde labeling of neurons throughout forelimb area of the sensorimotor cortex and a region in the dorsolateral cortex near the barrel field (S2). Injections at L2 led to retrograde labeling of neurons in the posterior sensorimotor cortex (hindlimb area) but not the dorsolateral cortex. With injections of biotinylated dextran amine (BDA) into the main sensorimotor cortex (forelimb region), labeled axons terminated selectively at cervical levels. With BDA injections into caudal sensorimotor cortex (hindlimb region), labeled axons passed through cervical levels without sending collaterals into the gray matter and then elaborated terminal arbors at thoracic sacral levels. With BDA injections into the dorsolateral cortex near the barrel field, labeled axons terminated at high cervical levels. Axons from medial sensorimotor cortex terminated primarily in intermediate laminae and axons from lateral sensorimotor cortex terminated primarily in laminae III-V of the dorsal horn. One of the descending pathways seen in rats (the ventral CST) was not observed in most mice.


Asunto(s)
Corteza Motora/fisiología , Neuronas/patología , Tractos Piramidales/fisiología , Médula Espinal/fisiología , Animales , Axones/fisiología , Miembro Posterior/patología , Miembro Posterior/fisiología , Masculino , Ratones Endogámicos BALB C , Corteza Motora/patología , Neuronas/fisiología , Tractos Piramidales/patología , Médula Espinal/patología
20.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628158

RESUMEN

Neuroinflammation underlies neurodegenerative diseases. Herein, we test whether acute colon inflammation activates microglia and astrocytes, induces neuroinflammation, disturbs neuron intrinsic electrical properties in the primary motor cortex, and alters motor behaviors. We used a rat model of acute colon inflammation induced by dextran sulfate sodium. Inflammatory mediators and microglial activation were assessed in the primary motor cortex by PCR and immunofluorescence assays. Electrophysiological properties of the motor cortex neurons were determined by whole-cell patch-clamp recordings. Motor behaviors were examined using open-field and rotarod tests. We show that the primary motor cortex of rats with acute colon inflammation exhibited microglial and astrocyte activation and increased mRNA abundance of interleukin-6, tumor necrosis factor-alpha, and both inducible and neuronal nitric oxide synthases. These changes were accompanied by a reduction in resting membrane potential and rheobase and increased input resistance and action potential frequency, indicating motor neuron hyperexcitability. In addition, locomotion and motor coordination were impaired. In conclusion, acute colon inflammation induces motor cortex microglial and astrocyte activation and inflammation, which led to neurons' hyperexcitability and reduced motor coordination performance. The described disturbances resembled some of the early features found in amyotrophic lateral sclerosis patients and animal models, suggesting that colon inflammation might be a risk factor for developing this disease.


Asunto(s)
Colitis , Corteza Motora , Animales , Colitis/inducido químicamente , Colitis/patología , Humanos , Inflamación/patología , Corteza Motora/patología , Neuronas Motoras/patología , Enfermedades Neuroinflamatorias , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA