Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32755595

RESUMEN

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Asunto(s)
Proteínas de Ciclo Celular/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/ultraestructura , ADN/ultraestructura , Intercambio de Cromátides Hermanas/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica/genética , Microscopía por Crioelectrón , ADN/genética , Conformación de Ácido Nucleico , Conformación Proteica , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Cohesinas
2.
Mol Cell ; 64(1): 134-147, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716481

RESUMEN

Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Anafase , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Expresión Génica , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
3.
Mol Cell ; 63(6): 1044-54, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27618487

RESUMEN

Cohesin is a ring-shaped protein complex that is capable of embracing DNA. Most of the ring circumference is comprised of the anti-parallel intramolecular coiled coils of the Smc1 and Smc3 proteins, which connect globular head and hinge domains. Smc coiled coil arms contain multiple acetylated and ubiquitylated lysines. To investigate the role of these modifications, we substituted lysines for arginines to mimic the unmodified state and uncovered genetic interaction between the Smc arms. Using scanning force microscopy, we show that wild-type Smc arms associate with each other when the complex is not on DNA. Deacetylation of the Smc1/Smc3 dimers promotes arms' dissociation. Smc arginine mutants display loose packing of the Smc arms and, although they dimerize at the hinges, fail to connect the heads and associate with the DNA. Our findings highlight the importance of a "collapsed ring," or "rod," conformation of cohesin for its loading on the chromosomes.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , ADN de Hongos/química , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Acetilación , Sustitución de Aminoácidos , Animales , Arginina/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Clonación Molecular , ADN de Hongos/genética , ADN de Hongos/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , Cohesinas
4.
PLoS Biol ; 18(8): e3000817, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32813728

RESUMEN

During meiosis, chromosomes adopt a specialized organization involving assembly of a cohesin-based axis along their lengths, with DNA loops emanating from this axis. We applied novel, quantitative, and widely applicable cytogenetic strategies to elucidate the molecular bases of this organization using Caenorhabditis elegans. Analyses of wild-type (WT) chromosomes and de novo circular minichromosomes revealed that meiosis-specific HORMA-domain proteins assemble into cohorts in defined numbers and co-organize the axis together with 2 functionally distinct cohesin complexes (REC-8 and COH-3/4) in defined stoichiometry. We further found that REC-8 cohesins, which load during S phase and mediate sister-chromatid cohesion, usually occur as individual complexes, supporting a model wherein sister cohesion is mediated locally by a single cohesin ring. REC-8 complexes are interspersed in an alternating pattern with cohorts of axis-organizing COH-3/4 complexes (averaging 3 per cohort), which are insufficient to confer cohesion but can bind to individual chromatids, suggesting a mechanism to enable formation of asymmetric sister-chromatid loops. Indeed, immunofluorescence/fluorescence in situ hybridization (immuno-FISH) assays demonstrate frequent asymmetry in genomic content between the loops formed on sister chromatids. We discuss how features of chromosome axis/loop architecture inferred from our data can help to explain enigmatic, yet essential, aspects of the meiotic program.


Asunto(s)
Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas/ultraestructura , Meiosis , Complejo Sinaptonémico/ultraestructura , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Análisis Citogenético , Hibridación Fluorescente in Situ , Fase S/genética , Complejo Sinaptonémico/metabolismo , Cohesinas
5.
PLoS Genet ; 16(7): e1008918, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730246

RESUMEN

Holocentric chromosomes possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes [1]. They have been described for the first time in cytogenetic experiments dating from 1935 and, since this first observation, the term holocentric chromosome has referred to chromosomes that: i. lack the primary constriction corresponding to centromere observed in monocentric chromosomes [2]; ii. possess multiple kinetochores dispersed along the chromosomal axis so that microtubules bind to chromosomes along their entire length and move broadside to the pole from the metaphase plate [3]. These chromosomes are also termed holokinetic, because, during cell division, chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes [4-6]. Holocentric chromosomes evolved several times during both animal and plant evolution and are currently reported in about eight hundred diverse species, including plants, insects, arachnids and nematodes [7,8]. As a consequence of their diffuse kinetochores, holocentric chromosomes may stabilize chromosomal fragments favouring karyotype rearrangements [9,10]. However, holocentric chromosome may also present limitations to crossing over causing a restriction of the number of chiasma in bivalents [11] and may cause a restructuring of meiotic divisions resulting in an inverted meiosis [12].


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas/genética , Cinetocoros/ultraestructura , Meiosis/genética , Animales , Caenorhabditis elegans/citología , Centrómero/genética , Centrómero/ultraestructura , Cromátides/genética , Cromátides/ultraestructura , Segregación Cromosómica/genética , Cromosomas/ultraestructura , Cariotipo , Plantas/genética
6.
Exp Cell Res ; 399(2): 112455, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33400935

RESUMEN

During meiosis, homologous chromosomes exchange genetic material. This exchange or meiotic recombination is mediated by a proteinaceous scaffold known as the Synaptonemal complex (SC). Any defects in its formation produce failures in meiotic recombination, chromosome segregation and meiosis completion. It has been proposed that DNA repair events that will be resolved by crossover between homologous chromosomes are predetermined by the SC. Hence, structural analysis of the organization of the DNA in the SC could shed light on the process of crossover interference. In this work, we employed an ultrastructural DNA staining technique on mouse testis and followed nuclei of pachytene cells. We observed structures organized similarly to the SCs stained with conventional techniques. These structures, presumably the DNA in the SCs, are delineating the edges of both lateral elements and no staining was observed between them. DNA in the LEs resembles two parallel tracks. However, a bubble-like staining pattern in certain regions of the SC was observed. Furthermore, this staining pattern is found in SCs formed between non-homologous chromosomes, in SCs formed between sister chromatids and in SCs without lateral elements, suggesting that this particular organization of the DNA is determined by the synapsis of the chromosomes despite their lack of homology or the presence of partially formed SCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Meiosis/fisiología , Complejo Sinaptonémico/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestructura , Emparejamiento Cromosómico/fisiología , ADN/química , ADN/ultraestructura , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Complejo Sinaptonémico/fisiología , Complejo Sinaptonémico/ultraestructura
7.
EMBO Rep ; 20(8): e47905, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31290587

RESUMEN

The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.


Asunto(s)
Anafase , Cinetocoros/ultraestructura , Metafase , Microtúbulos/ultraestructura , Oocitos/ultraestructura , Secuencia de Aminoácidos , Animales , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Femenino , Humanos , Cinetocoros/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Oocitos/metabolismo , Espermatocitos/metabolismo , Espermatocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
8.
EMBO Rep ; 19(1): 43-56, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29138236

RESUMEN

Sister-chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non-catalytic N-terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl-Pds5B interaction at centromeres. Here, we show that the C-terminal kinase domain of Haspin (Haspin-KD) binds and phosphorylates the YSR motif of Wapl (Wapl-YSR), thereby directly inhibiting the YSR motif-dependent interaction of Wapl with Pds5B. Cells expressing a Wapl-binding-deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho-mimetic mutation in Wapl-YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin-KD to centromeres partly bypasses the need for Haspin-Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase-dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Anafase , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Profase , Unión Proteica , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
9.
EMBO J ; 33(11): 1243-55, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24797475

RESUMEN

Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring-shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α-kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis-specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis-specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α-kleisins present in meiotic cells show different dosage-dependent requirements for STAG3 and that STAG3-REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética , Meiosis/genética , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Cromosomas/ultraestructura , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Nucleares/genética , Ovario/ultraestructura , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Testículo/ultraestructura , Cohesinas
10.
EMBO J ; 33(4): 327-40, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24473148

RESUMEN

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.


Asunto(s)
Cromosomas Fúngicos/ultraestructura , Daño del ADN , ADN de Hongos/genética , Proteínas del Grupo de Alta Movilidad/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Cromátides/genética , Cromátides/ultraestructura , Cromatina/ultraestructura , Cromosomas Fúngicos/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Cruciforme , ADN de Hongos/efectos de los fármacos , Inestabilidad Genómica , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/genética , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación A/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
PLoS Biol ; 13(3): e1002089, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25764370

RESUMEN

Modification of proteins by SUMO is essential for the maintenance of genome integrity. During DNA replication, the Mms21-branch of the SUMO pathway counteracts recombination intermediates at damaged replication forks, thus facilitating sister chromatid disjunction. The Mms21 SUMO ligase docks to the arm region of the Smc5 protein in the Smc5/6 complex; together, they cooperate during recombinational DNA repair. Yet how the activity of the SUMO ligase is controlled remains unknown. Here we show that the SUMO ligase and the chromosome disjunction functions of Mms21 depend on its docking to an intact and active Smc5/6 complex, indicating that the Smc5/6-Mms21 complex operates as a large SUMO ligase in vivo. In spite of the physical distance separating the E3 and the nucleotide-binding domains in Smc5/6, Mms21-dependent sumoylation requires binding of ATP to Smc5, a step that is part of the ligase mechanism that assists Ubc9 function. The communication is enabled by the presence of a conserved disruption in the coiled coil domain of Smc5, pointing to potential conformational changes for SUMO ligase activation. In accordance, scanning force microscopy of the Smc5-Mms21 heterodimer shows that the molecule is physically remodeled in an ATP-dependent manner. Our results demonstrate that the ATP-binding activity of the Smc5/6 complex is coordinated with its SUMO ligase, through the coiled coil domain of Smc5 and the physical remodeling of the molecule, to promote sumoylation and chromosome disjunction during DNA repair.


Asunto(s)
Proteínas de Ciclo Celular/genética , ADN de Hongos/metabolismo , Regulación Fúngica de la Expresión Génica , Reparación del ADN por Recombinación , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Cromátides/ultraestructura , Daño del ADN , Replicación del ADN , ADN de Hongos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sumoilación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
12.
Nucleic Acids Res ; 44(13): 6363-76, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27298259

RESUMEN

Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids. Cohesion is thought to occur through the entrapment of DNA within the tripartite ring (Smc1, Smc3 and Rad21) with enforcement from a fourth subunit (SA1/SA2). Surprisingly, cohesin rings do not play a major role in sister telomere cohesion. Instead, this role is replaced by SA1 and telomere binding proteins (TRF1 and TIN2). Neither the DNA binding property of SA1 nor this unique telomere cohesion mechanism is understood. Here, using single-molecule fluorescence imaging, we discover that SA1 displays two-state binding on DNA: searching by one-dimensional (1D) free diffusion versus recognition through subdiffusive sliding at telomeric regions. The AT-hook motif in SA1 plays dual roles in modulating non-specific DNA binding and subdiffusive dynamics over telomeric regions. TRF1 tethers SA1 within telomeric regions that SA1 transiently interacts with. SA1 and TRF1 together form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy imaging. These results suggest that at telomeres cohesion relies on the molecular interplay between TRF1 and SA1 to promote DNA-DNA pairing, while along chromosomal arms the core cohesin assembly might also depend on SA1 1D diffusion on DNA and sequence-specific DNA binding.


Asunto(s)
Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas de Unión a Telómeros/genética , Telómero/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Secuencias AT-Hook/genética , Cromátides/genética , Cromátides/ultraestructura , Proteínas de Unión al ADN/genética , Humanos , Microscopía de Fuerza Atómica , Mitosis/genética , Proteínas Nucleares/metabolismo , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
13.
EMBO Rep ; 16(4): 481-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712672

RESUMEN

Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow assembly. In the absence of annexin A2, the small GTPase RhoA-which regulates cortical cytoskeletal rearrangement-fails to form a compact ring at the equatorial plane. Furthermore, annexin A2 is required for cortical localization of the RhoGEF Ect2 and to maintain the association between the equatorial cortex and the central spindle. Our results demonstrate that annexin A2 is necessary in the early phase of cytokinesis. We propose that annexin A2 participates in central spindle-equatorial plasma membrane communication.


Asunto(s)
Anexina A2/genética , Citocinesis/genética , Osteoblastos/metabolismo , Huso Acromático/metabolismo , Anexina A2/antagonistas & inhibidores , Anexina A2/metabolismo , Sitios de Unión , Línea Celular Tumoral , Cromátides/metabolismo , Cromátides/ultraestructura , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Osteoblastos/ultraestructura , Mutación Puntual , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteína Fluorescente Roja
14.
Mol Hum Reprod ; 22(4): 252-60, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769260

RESUMEN

STUDY HYPOTHESIS: What factors in mouse oocytes are involved in the ageing-related decline in oocyte quality? STUDY FINDING: The maternal effect gene Mater is involved in ageing-related oocyte quality decline in mice. WHAT IS KNOWN ALREADY: Premature loss of centromere cohesion is a hallmark of ageing-related oocyte quality decline; the maternal effect gene Mater (maternal antigen that embryos require, also known as Nlrp5) is required for preimplantation embryo development beyond the 2-cell stage, and mRNA expression of Mater decreases with maternal ageing. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Mater protein expression level in mature oocytes from 7 young (5-8 weeks old) to 7 old mice (41-68 weeks old) was compared by immunoblotting analysis. Wild-type and Mater-null mice were used to examine whether Mater is necessary for maintaining normal centromere cohesion by means of cytogenetic karyotyping, time-lapse confocal microscopy and immunofluorescence staining. MAIN RESULTS AND THE ROLE OF CHANCE: Mater protein is decreased in mature oocytes from old versus young mice (P = 0.0022). Depletion of Mater from oocytes leads to a reduction in centromere cohesion, manifested by precocious sister chromatid separation, enlargement of sister centromere distance and misalignment of chromosomes in the metaphase plate during meiosis I and II. LIMITATIONS, REASONS FOR CAUTION: This study was conducted in mice. Whether or not the results are applicable to human remains further elucidation. In addition, we were unable to confirm if the strain of mice (C57BL/6XSv129) at the age of 41-68 weeks old has the 'cohesin-loss' phenotype. WIDER IMPLICATIONS OF THE FINDINGS: Investigating Mater's functional mechanisms could provide fresh insights into understanding how the ageing-related oocyte quality decline occurs. LARGE SCALE DATA: N/A. STUDY FUNDING AND COMPETING INTERESTS: This work was supported by the research grant from Chinese NSFC to P.Z. (31071274). We have no conflict of interests to declare.


Asunto(s)
Envejecimiento/genética , Antígenos/genética , Proteínas del Huevo/genética , Oocitos/metabolismo , Animales , Antígenos/metabolismo , Centrómero/metabolismo , Centrómero/ultraestructura , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas del Huevo/metabolismo , Femenino , Expresión Génica , Cariotipificación , Meiosis , Ratones , Ratones Endogámicos C57BL , Oocitos/citología , Imagen de Lapso de Tiempo
15.
PLoS Genet ; 9(9): e1003719, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086141

RESUMEN

Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genoma de los Insectos , Mitosis/genética , Proteínas Nucleares/genética , Proteína 1 de Ensamblaje de Nucleosomas/genética , Unión Proteica , Proteína Fosfatasa 2/genética , Cohesinas
16.
PLoS Genet ; 9(2): e1003319, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468650

RESUMEN

Because cohesion prevents sister-chromatid separation and spindle elongation, cohesion dissolution may trigger these two events simultaneously. However, the relatively normal spindle elongation kinetics in yeast cohesin mutants indicates an additional mechanism for the temporal control of spindle elongation. Here we show evidence indicating that S-phase CDK (cyclin dependent kinase) negatively regulates spindle elongation. In contrast, mitotic CDK promotes spindle elongation by activating Cdc14 phosphatase, which reverses the protein phosphorylation imposed by S-phase CDK. Our data suggest that S-phase CDK negatively regulates spindle elongation partly through its phosphorylation of a spindle pole body (SPB) protein Spc110. We also show that hyperactive S-phase CDK compromises the microtubule localization of Stu2, a processive microtubule polymerase essential for spindle elongation. Strikingly, we found that hyperactive mitotic CDK induces uncoupled spindle elongation and sister-chromatid separation in securin mutants (pds1Δ), and we speculate that asynchronous chromosome segregation in pds1Δ cells contributes to this phenotype. Therefore, the tight temporal control of spindle elongation and cohesin cleavage assure orchestrated chromosome separation and spindle elongation.


Asunto(s)
Proteínas de Ciclo Celular , Cromátides , Mitosis/genética , Proteínas Tirosina Fosfatasas , Proteínas de Saccharomyces cerevisiae , Huso Acromático , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Fase S/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Huso Acromático/genética , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Cohesinas
17.
Genes Cells ; 19(5): 359-73, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24635992

RESUMEN

Meiotic chromosome architecture called 'axis-loop structures' and histone modifications have been shown to regulate the Spo11-dependent formation of DNA double-strand breaks (DSBs) that trigger meiotic recombination. Using genome-wide chromatin immunoprecipitation (ChIP) analyses followed by deep sequencing, we compared the genome-wide distribution of the axis protein Rec8 (the kleisin subunit of meiotic cohesin) with that of oligomeric DNA covalently bound to Spo11, indicative of DSB sites. The frequency of DSB sites is overall constant between Rec8 binding sites. However, DSB cold spots are observed in regions spanning ±0.8 kb around Rec8 binding sites. The axis-associated cold spots are not due to the exclusion of Spo11 localization from the axis, because ChIP experiments showed that substantial Spo11 persists at Rec8 binding sites during DSB formation. Spo11 fused with Gal4 DNA binding domain (Gal4BD-Spo11) tethered in close proximity (≤0.8 kb) to Rec8 binding sites hardly forms meiotic DSBs, in contrast with other regions. In addition, H3K4 trimethylation (H3K4me3) remarkably decreases at Rec8 binding sites. These results suggest that reduced histone H3K4me3 in combination with inactivation of Spo11 activity on the axis discourages DSB hot spot formation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/genética , Meiosis , Recombinación Genética , Saccharomyces cerevisiae/genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
18.
Tsitologiia ; 57(1): 47-55, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-25872375

RESUMEN

It is considered that sister chromatids are held together immediately after replication by special protein complex--cohesin that consists of Smc1--Smc3 core dimer and two additional subunits, Scc1 and Scc3. This process is called cohesion. We have characterized binding of cohesin complex to early- and late-replicated chromatin at different stages of the cell cycle in human cells HeLa and HT1080 using superresolution microscopy (based on Structural ilumination microscopy--SIM) and immunoelectron microscopy. It has been shown that cohesins do not play important role in cohesion of heterochromatic domains, but they provide cohesion and organization of subdomains in euchromatic regions.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteoglicanos Tipo Condroitín Sulfato/química , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/química , Eucromatina/metabolismo , Heterocromatina/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/química , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Eucromatina/ultraestructura , Expresión Génica , Células HeLa , Heterocromatina/ultraestructura , Humanos , Microscopía Inmunoelectrónica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Multimerización de Proteína
19.
Circ Res ; 111(7): 894-906, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22851539

RESUMEN

RATIONALE: According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE: Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS: Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS: The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.


Asunto(s)
Cromátides/fisiología , Segregación Cromosómica/fisiología , Corazón/fisiología , Infarto del Miocardio/terapia , Miocardio/citología , Regeneración/fisiología , Trasplante de Células Madre , Células Madre/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bromodesoxiuridina , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Cromátides/ultraestructura , ADN/fisiología , Femenino , Humanos , Técnicas In Vitro , Lactante , Masculino , Persona de Mediana Edad , Modelos Animales , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Ratas , Ratas Endogámicas F344 , Células Madre/fisiología , Telómero/ultraestructura , Adulto Joven
20.
Nucleic Acids Res ; 40(22): 11428-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23066100

RESUMEN

Mitotic chromosome structure is pivotal to cell division but difficult to observe in fine detail using conventional methods. DNA catenation has been implicated in both sister chromatid cohesion and chromosome condensation, but has never been observed directly. We have used a lab-on-a-chip microfluidic device and fluorescence microscopy, coupled with a simple image analysis pipeline, to digest chromosomal proteins and examine the structure of the remaining DNA, which maintains the canonical 'X' shape. By directly staining DNA, we observe that DNA catenation between sister chromatids (separated by fluid flow) is composed of distinct fibres of DNA concentrated at the centromeres. Disrupting the catenation of the chromosomes with Topoisomerase IIα significantly alters overall chromosome shape, suggesting that DNA catenation must be simultaneously maintained for correct chromosome condensation, and destroyed to complete sister chromatid disjunction. In addition to demonstrating the value of microfluidics as a tool for examining chromosome structure, these results lend support to certain models of DNA catenation organization and regulation: in particular, we conclude from our observation of centromere-concentrated catenation that spindle forces could play a driving role in decatenation and that Topoisomerase IIα is differentially regulated at the centromeres, perhaps in conjunction with cohesin.


Asunto(s)
Cromosomas Humanos/ultraestructura , ADN Encadenado/ultraestructura , Metafase/genética , Cromátides/ultraestructura , Humanos , Técnicas Analíticas Microfluídicas , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA