Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 581(7807): 209-214, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405004

RESUMEN

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Asunto(s)
Espacio Intracelular/química , Espacio Intracelular/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Termodinámica , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/deficiencia , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transición de Fase , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , ARN Helicasas/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Ribosomas/química , Ribosomas/metabolismo
2.
RNA ; 28(1): 52-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34772787

RESUMEN

Macroscopic membraneless organelles containing RNA such as the nucleoli, germ granules, and the Cajal body have been known for decades. These biomolecular condensates are liquid-like bodies that can be formed by a phase transition. Recent evidence has revealed the presence of similar microscopic condensates associated with the transcription of genes. This brief article summarizes thoughts about the importance of condensates in the regulation of transcription and how RNA molecules, as components of such condensates, control the synthesis of RNA. Models and experimental data suggest that RNAs from enhancers facilitate the formation of a condensate that stabilizes the binding of transcription factors and accounts for a burst of transcription at the promoter. Termination of this burst is pictured as a nonequilibrium feedback loop where additional RNA destabilizes the condensate.


Asunto(s)
Condensados Biomoleculares/química , ADN/química , Proteínas de Unión al ARN/química , ARN/química , Factores de Transcripción/química , Transcripción Genética , Sitios de Unión , Condensados Biomoleculares/metabolismo , Compartimento Celular , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , ADN/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo , Retroalimentación Fisiológica , Gránulos de Ribonucleoproteína de Células Germinales/química , Gránulos de Ribonucleoproteína de Células Germinales/metabolismo , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo
3.
Biochemistry ; 57(17): 2462-2469, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29473743

RESUMEN

Nuclear bodies are RNA-rich membraneless organelles in the cell nucleus that concentrate specific sets of nuclear proteins and RNA-protein complexes. Nuclear bodies such as the nucleolus, Cajal body (CB), and the histone locus body (HLB) concentrate factors required for nuclear steps of RNA processing. Formation of these nuclear bodies occurs on genomic loci and is frequently associated with active sites of transcription. Whether nuclear body formation is dependent on a particular gene element, an active process such as transcription, or the nascent RNA present at gene loci is a topic of debate. Recently, this question has been addressed through studies in model organisms and their embryos. The switch from maternally provided RNA and protein to zygotic gene products in early embryos has been well characterized in a variety of organisms. This process, termed maternal-to-zygotic transition, provides an excellent model for studying formation of nuclear bodies before, during, and after the transcriptional activation of the zygotic genome. Here, we review findings in embryos that reveal key principles in the study of the formation and function of nucleoli, CBs, and HLBs. We propose that while particular gene elements may contribute to formation of these nuclear bodies, active transcription promotes maturation of nuclear bodies and efficient RNA processing within them.


Asunto(s)
Cuerpos Enrollados/genética , Desarrollo Embrionario/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Transcripción Genética , Nucléolo Celular/química , Nucléolo Celular/genética , Cuerpos Enrollados/química , Genoma , Histonas/genética , Humanos , Proteínas Nucleares/genética , ARN/genética , Procesamiento Postranscripcional del ARN/genética , Empalme del ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/química
4.
J Biol Chem ; 292(44): 18113-18128, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28878014

RESUMEN

The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.


Asunto(s)
Empalme Alternativo , Antígenos de Neoplasias/metabolismo , Biogénesis de Organelos , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Cuerpos Enrollados/química , Cuerpos Enrollados/enzimología , Cuerpos Enrollados/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Células MCF-7 , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Peso Molecular , Mutación , Coloración Negativa , Oligopéptidos/genética , Oligopéptidos/metabolismo , Multimerización de Proteína , Estabilidad Proteica , ARN Helicasas/química , ARN Helicasas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Empalmosomas/química , Empalmosomas/enzimología , Proteasas Ubiquitina-Específicas/química , Proteasas Ubiquitina-Específicas/genética
5.
Virus Genes ; 51(1): 156-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26063598

RESUMEN

Grapevine red blotch-associated virus is a recently discovered plant monopartite gemini-like virus found in North American grapevines. Leaf discoloration and a decrease in fruit quality are associated with its infection. Two of its six open reading frames (ORFs), V2 and V3, are of unknown function and share no obvious homology with plant or viral genes. Transient expression of these ORFs in fusion with the green fluorescent protein demonstrated that the V2 protein localizes in the nucleoplasm, Cajal bodies, and cytoplasm; and the V3 protein localizes in various unidentified subnuclear bodies. Additionally, the V2 protein is redirected to the nucleolus upon co-expression with the nucleolus and Cajal body-associated protein Fib2.


Asunto(s)
Nucléolo Celular/química , Núcleo Celular/química , Cuerpos Enrollados/química , Citoplasma/química , Geminiviridae/fisiología , Proteínas Virales/análisis , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , América del Norte , Enfermedades de las Plantas/virología , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Proteínas Virales/genética , Vitis/virología
6.
Nucleic Acids Res ; 41(18): 8489-502, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23877244

RESUMEN

DNA methylation is a conserved epigenetic marker in plants and animals. In Arabidopsis, DNA methylation can be established through an RNA-directed DNA methylation (RdDM) pathway. By screening for suppressors of ros1, we identified STA1, a PRP6-like splicing factor, as a new RdDM regulator. Whole-genome bisulfite sequencing suggested that STA1 and the RdDM pathway share a large number of common targets in the Arabidopsis genome. Small RNA deep sequencing demonstrated that STA1 is predominantly involved in the accumulation of the siRNAs that depend on both Pol IV and Pol V. Moreover, the sta1 mutation partially reduces the levels of Pol V-dependent RNA transcripts. Immunolocalization assay indicated that STA1 signals are exclusively present in the Cajal body and overlap with AGO4 in most nuclei. STA1 signals are also partially overlap with NRPE1. Localization of STA1 to AGO4 and NRPE1 signals is probably related to the function of STA1 in the RdDM pathway. Based on these results, we propose that STA1 acts downstream of siRNA biogenesis and facilitates the production of Pol V-dependent RNA transcripts in the RdDM pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Metilación de ADN , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Nucleares/fisiología , ARN Interferente Pequeño/biosíntesis , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Proteínas Argonautas/análisis , Cuerpos Enrollados/química , Cuerpos Enrollados/enzimología , ARN Polimerasas Dirigidas por ADN/análisis , Silenciador del Gen , Genoma de Planta , Mutación , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , ARN Pequeño no Traducido/biosíntesis
7.
RNA ; 18(1): 31-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22124016

RESUMEN

The survival of motor neuron (SMN) protein plays an important role in the biogenesis of spliceosomal snRNPs and is one factor required for the integrity of nuclear Cajal bodies (CBs). CBs are enriched in small CB-specific (sca) RNAs, which guide the formation of pseudouridylated and 2'-O-methylated residues in the snRNAs. Because SMN-deficient cells lack typical CBs, we asked whether the modification of internal residues of major and minor snRNAs is defective in these cells. We mapped modified nucleotides in the major U2 and the minor U4atac and U12 snRNAs. Using both radioactive and fluorescent primer extension approaches, we found that modification of major and minor spliceosomal snRNAs is normal in SMN-deficient cells. Our experiments also revealed a previously undetected pseudouridine at position 60 in human U2 and 2'-O-methylation of A1, A2, and G19 in human U4atac. These results confirm, and extend to minor snRNAs, previous experiments showing that scaRNPs can function in the absence of typical CBs. Furthermore, they show that the differential splicing defects in SMN-deficient cells are not due to failure of post-transcriptional modification of either major or minor snRNAs.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , ARN Nuclear Pequeño/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Células HeLa , Humanos , Metilación , ARN Nuclear Pequeño/química , Empalmosomas/genética , Empalmosomas/metabolismo
8.
Histochem Cell Biol ; 137(5): 657-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22302308

RESUMEN

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by loss or mutations of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to degeneration and death of motor neurons. In this study, we have analyzed the nuclear reorganization of Cajal bodies, PML bodies and nucleoli in type I SMA motor neurons with homozygous deletion of exons 7 and 8 of the SMN1 gene. Western blot analysis is is revealed a marked reduction of SMN levels compared to the control sample. Using a neuronal dissociation procedure to perform a careful immunocytochemical and quantitative analysis of nuclear bodies, we demonstrated a severe decrease in the mean number of Cajal bodies per neuron and in the proportion of motor neurons containing these structures in type I SMA. Moreover, most Cajal bodies fail to recruit SMN and spliceosomal snRNPs, but contain the proteasome activator PA28, a molecular marker associated with the cellular stress response. Neuronal stress in SMA motor neurons also increases PML body number. The existence of chromatolysis and eccentric nuclei in SMA motor neurons correlates with Cajal body disruption and nucleolar relocalization of coil in, a Cajal body marker. Our results indicate that the Cajal body is a pathophysiological target in type I SMA motor neurons. They also suggest the Cajal body-dependent dysfunction of snRNP biogenesis and, therefore, pre-mRNA splicing in these neurons seems to be an essential component for SMA pathogenesis.


Asunto(s)
Nucléolo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Neuronas Motoras/metabolismo , Proteínas Nucleares/metabolismo , Atrofias Musculares Espinales de la Infancia/metabolismo , Atrofias Musculares Espinales de la Infancia/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Nucléolo Celular/química , Cuerpos Enrollados/química , Humanos , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/química , Proteína 1 para la Supervivencia de la Neurona Motora/genética
10.
J Cell Biol ; 162(5): 821-32, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12939253

RESUMEN

All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize transiently to nucleoli, as visualized by microscopy after injection of fluorescein-labeled transcripts into Xenopus laevis oocyte nuclei. Here, we demonstrate that these RNAs traffic to nucleoli independently of one another, because U4 snRNA deleted in the U6 base-pairing region still localizes to nucleoli. Furthermore, depletion of endogenous U6 snRNA does not affect nucleolar localization of injected U4 or U5. The wild-type U4 transcripts used here are functional: they exhibit normal nucleocytoplasmic traffic, associate with Sm proteins, form the [U4/U6] di-snRNP, and localize to nucleoli and Cajal bodies. The nucleolar localization element (NoLE) of U4 snRNA was mapped by mutagenesis. Neither the 5'-cap nor the 3'-region of U4, which includes the Sm protein binding site, are essential for nucleolar localization. The only region in U4 snRNA required for nucleolar localization is the 5'-proximal stem loop, which contains the binding site for the NHPX/15.5-kD protein. Even mutation of just five nucleotides, essential for binding this protein, impaired U4 nucleolar localization. Intriguingly, the NHPX/15.5-kD protein also binds the nucleolar localization element of box C/D small nucleolar RNAs, suggesting that this protein might mediate nucleolar localization of several small RNAs.


Asunto(s)
Nucléolo Celular/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Autoantígenos , Sitios de Unión , Cuerpos Enrollados/química , Humanos , Microinyecciones , Conformación de Ácido Nucleico , Oocitos/fisiología , Caperuzas de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Xenopus laevis , Proteínas Nucleares snRNP
11.
J Cell Biol ; 164(6): 831-42, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15024031

RESUMEN

Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.


Asunto(s)
Cuerpos Enrollados/metabolismo , Animales , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Sustancias Macromoleculares , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Empalme del ARN , Proteínas de Unión al ARN , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Factores de Tiempo
12.
J Cell Biol ; 151(3): 653-62, 2000 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-11062265

RESUMEN

Cajal bodies (CBs) are subnuclear organelles that contain components of a number of distinct pathways in RNA transcription and RNA processing. CBs have been linked to other subnuclear organelles such as nucleoli, but the reason for the presence of nucleolar proteins such as fibrillarin in CBs remains uncertain. Here, we use full-length fibrillarin and truncated fibrillarin mutants fused to green fluorescent protein (GFP) to demonstrate that specific structural domains of fibrillarin are required for correct intranuclear localization of fibrillarin to nucleoli and CBs. The second spacer domain and carboxy terminal alpha-helix domain in particular appear to target fibrillarin, respectively, to the nucleolar transcription centers and CBs. The presence of the RNP domain seems to be a prerequisite for correct targeting of fibrillarin. Time-lapse confocal microscopy of human cells that stably express fibrillarin-GFP shows that CBs fuse and split, albeit at low frequencies. Recovered fluorescence of fibrillarin-GFP in nucleoli and CBs after photobleaching indicates that it is highly mobile in both organelles (estimated diffusion constant approximately 0.02 microm(2) s(-1)), and has a significantly larger mobile fraction in CBs than in nucleoli.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cuerpos Enrollados/metabolismo , Mutación/genética , Transporte Activo de Núcleo Celular , Nucléolo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cuerpos Enrollados/química , Difusión , Técnica del Anticuerpo Fluorescente , Humanos , Cinética , Movimiento (Física) , Señales de Clasificación de Proteína/genética , Señales de Clasificación de Proteína/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/análisis , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia/genética , Transcripción Genética , Células Tumorales Cultivadas
13.
Nucleic Acids Res ; 35(Database issue): D183-7, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17099227

RESUMEN

Small nucleolar RNAs (snoRNAs) and Cajal body-specific RNAs (scaRNAs) are named for their subcellular localization within nucleoli and Cajal bodies (conserved subnuclear organelles present in the nucleoplasm), respectively. They have been found to play important roles in rRNA, tRNA, snRNAs, and even mRNA modification and processing. All snoRNAs fall in two categories, box C/D snoRNAs and box H/ACA snoRNAs, according to their distinct sequence and secondary structure features. Box C/D snoRNAs and box H/ACA snoRNAs mainly function in guiding 2'-O-ribose methylation and pseudouridilation, respectively. ScaRNAs possess both box C/D snoRNA and box H/ACA snoRNA sequence motif features, but guide snRNA modifications that are transcribed by RNA polymerase II. Here we present a Web-based sno/scaRNA database, called sno/scaRNAbase, to facilitate the sno/scaRNA research in terms of providing a more comprehensive knowledge base. Covering 1979 records derived from 85 organisms for the first time, sno/scaRNAbase is not only dedicated to filling gaps between existing organism-specific sno/scaRNA databases that are focused on different sno/scaRNA aspects, but also provides sno/scaRNA scientists with an opportunity to adopt a unified nomenclature for sno/scaRNAs. Derived from a systematic literature curation and annotation effort, the sno/scaRNAbase provides an easy-to-use gateway to important sno/scaRNA features such as sequence motifs, possible functions, homologues, secondary structures, genomics organization, sno/scaRNA gene's chromosome location, and more. Approximate searches, in addition to accurate and straightforward searches, make the database search more flexible. A BLAST search engine is implemented to enable blast of query sequences against all sno/scaRNAbase sequences. Thus our sno/scaRNAbase serves as a more uniform and friendly platform for sno/scaRNA research. The database is free available at http://gene.fudan.sh.cn/snoRNAbase.nsf.


Asunto(s)
Cuerpos Enrollados/química , Bases de Datos de Ácidos Nucleicos , ARN Nucleolar Pequeño/química , Secuencia de Bases , Internet , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/fisiología , Interfaz Usuario-Computador , ARN Pequeño no Traducido
14.
Mol Biol Cell ; 17(2): 955-65, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16339074

RESUMEN

Telomerase synthesizes telomeres at the ends of human chromosomes during S phase. The results presented here suggest that telomerase activity may be regulated by intranuclear trafficking of the key components of the enzyme in human cells. We examined the subcellular localization of endogenous human telomerase RNA (hTR) and telomerase reverse transcriptase (hTERT) in HeLa cervical carcinoma cells. Throughout most of the cell cycle, we found that the two essential components of telomerase accumulate at intranuclear sites separate from telomeres. However, during S phase, both hTR and hTERT are specifically recruited to subsets of telomeres. The localization of telomerase to telomeres is dynamic, peaking at mid-S phase. We also found complex associations of both hTR and hTERT with nucleoli and Cajal bodies during S phase, implicating both structures in the biogenesis and trafficking of telomerase. Our results mark the first observation of human telomerase at telomeres and provide a mechanism for the cell cycle-dependent regulation of telomere synthesis in human cells.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , ARN no Traducido/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Nucléolo Celular/enzimología , Nucléolo Celular/ultraestructura , Cuerpos Enrollados/química , Cuerpos Enrollados/ultraestructura , Proteínas de Unión al ADN/análisis , Células HeLa , Humanos , Modelos Biológicos , Transporte de Proteínas , ARN , ARN Largo no Codificante , ARN no Traducido/análisis , Fase S/fisiología , Telomerasa/análisis , Telómero/ultraestructura
15.
Mol Biol Cell ; 17(3): 1126-40, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16371507

RESUMEN

DDX1 bodies, cleavage bodies, Cajal bodies (CBs), and gems are nuclear suborganelles that contain factors involved in RNA transcription and/or processing. Although all four nuclear bodies can exist as distinct entities, they often colocalize or overlap with each other. To better understand the relationship between these four nuclear bodies, we examined their spatial distribution as a function of the cell cycle. Here, we report that whereas DDX1 bodies, CBs and gems are present throughout interphase, CPSF-100-containing cleavage bodies are predominantly found during S and G2 phases, whereas CstF-64-containing cleavage bodies are primarily observed during S phase. All four nuclear bodies associate with each other during S phase, with cleavage bodies colocalizing with DDX1 bodies, and cleavage bodies/DDX1 bodies residing adjacent to gems and CBs. Although inhibitors of RNA transcription had no effect on DDX1 bodies or cleavage bodies, inhibitors of DNA replication resulted in loss of CstF-64-containing cleavage bodies. A striking effect on nuclear structures was observed with latrunculin B, an inhibitor of actin polymerization, resulting in the formation of needlelike nuclear spicules made up of CstF-64, CPSF-100, RNA, and RNA polymerase II. Our results suggest that cleavage body components are highly dynamic in nature.


Asunto(s)
Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , Actinas/metabolismo , Animales , Células COS , Ciclo Celular , Chlorocebus aethiops , Factor de Estimulación del Desdoblamiento , ARN Helicasas DEAD-box , Replicación del ADN/efectos de los fármacos , Perros , Fibroblastos/citología , Células HeLa , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Polímeros , Unión Proteica , Transporte de Proteínas , ARN/genética , ARN/metabolismo , ARN Helicasas/ultraestructura , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/efectos de los fármacos
16.
Mol Biol Cell ; 17(7): 3221-31, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16687569

RESUMEN

Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.


Asunto(s)
Cuerpos Enrollados/metabolismo , Cuerpos Enrollados/ultraestructura , Proteínas Nucleares/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Núcleo Celular/química , Núcleo Celular/ultraestructura , Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Células HeLa , Humanos , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Mutación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/antagonistas & inhibidores , Proteínas de Transporte Nucleocitoplasmático/genética , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/análisis , Proteínas del Complejo SMN , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
17.
J Struct Biol ; 163(2): 137-46, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18571432

RESUMEN

Cajal bodies (CBs) are nuclear organelles involved in the maturation of small nuclear ribonucleoproteins required for the processing of pre-mRNAs. They concentrate coilin, splicing factors and the survival of motor neuron protein (SMN). By using immunocytochemistry and transfection experiments with GFP-SUMO-1, DsRed1-Ubc9, GFP-coilin and GFP-SMN constructs we demonstrate the presence of SUMO-1 and the SUMO conjugating enzyme (Ubc9) in a subset of CBs in undifferentiated neuron-like UR61 cells. Furthermore, SUMO-1 is transiently localized into neuronal CBs from adult nervous tissue in response to osmotic stress or inhibition of methyltransferase activity. SUMO-1-positive CBs contain coilin, SMN and small nuclear ribonucleoproteins, suggesting that they are functional CBs involved in pre-mRNA processing. Since coilin and SMN have several putative motifs of SUMO-1 modification, we suggest that the sumoylation of coilin and/or SMN might play a role in the molecular reorganization of CBs during the neuronal differentiation or stress-response.


Asunto(s)
Cuerpos Enrollados/química , Proteína SUMO-1/metabolismo , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Metiltransferasas/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/química , Proteínas Nucleares/metabolismo , Presión Osmótica , Células PC12 , Proteínas de Unión al ARN/metabolismo , Ratas , Proteínas del Complejo SMN , Proteína SUMO-1/análisis , Proteína 1 para la Supervivencia de la Neurona Motora , Enzimas Ubiquitina-Conjugadoras/análisis
18.
Nucleic Acids Res ; 34(10): 2925-32, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16738131

RESUMEN

Neuronal degeneration in spinal muscular atrophy (SMA) is caused by reduced expression of the survival of motor neuron (SMN) protein. The SMN protein is ubiquitously expressed and is present both in the cytoplasm and in the nucleus where it localizes in Cajal bodies. The SMN complex plays an essential role for the biogenesis of spliceosomal U-snRNPs. In this article, we have used an RNA interference approach in order to analyse the effects of SMN depletion on snRNP assembly in HeLa cells. Although snRNP profiles are not perturbed in SMN-depleted cells, we found that SMN depletion gives rise to cytoplasmic accumulation of a GFP-SmB reporter protein. We also demonstrate that the SMN protein depletion induces defects in Cajal body formation with coilin being localized in multiple nuclear foci and in nucleolus instead of canonical Cajal bodies. Interestingly, the coilin containing foci do not contain snRNPs but appear to co-localize with U85 scaRNA. Because Cajal bodies represent the location in which snRNPs undergo 2'-O-methylation and pseudouridylation, our results raise the possibility that SMN depletion might give rise to a defect in the snRNA modification process.


Asunto(s)
Cuerpos Enrollados/química , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Autoantígenos/análisis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Citoplasma/química , Células HeLa , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/análisis , Interferencia de ARN , ARN Nuclear Pequeño/análisis , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/análisis , Proteínas del Complejo SMN , Proteínas Nucleares snRNP , ARN Pequeño no Traducido
19.
Curr Opin Struct Biol ; 14(3): 335-43, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15193314

RESUMEN

From archaea to humans, C/D- and H/ACA-type small ribonucleoprotein particles play key roles in crucial RNA processing events. Various such particles are required for pre-rRNA cleavage steps and/or for chemical modification of rRNAs, spliceosomal small nuclear RNAs, tRNAs and perhaps even mRNAs. Each C/D-type particle contains a small RNA possessing conserved C and D, as well as related C' and D', sequence motifs, whereas each H/ACA-type particle contains a small RNA featuring conserved H and ACA sequence elements. Recently published studies highlight the importance of sequence and structural elements of these RNAs in the localization, activity and assembly of the ribonucleoprotein particles. A novel sequence element, the Cajal body box, found at the apex of stem structures within a subset of H/ACA small RNAs, mediates the specific retention of particles containing these elements inside nucleoplasmic Cajal bodies. Two highly conserved elements, the m1 and m2 boxes, have been identified in the 3' stem of the atypical H/ACA snR30/U17 RNAs. These conserved sequence elements are necessary for early pre-rRNA cleavage events and consequently for mature 18S rRNA production. Finally, convincing evidence has been provided that the conserved C and D sequence motifs of C/D-type small RNAs fold into a helix-bulge-helix structure, called a kink-turn, that provides a platform for assembly of C/D-type ribonucleoprotein particles.


Asunto(s)
Conformación de Ácido Nucleico , ARN/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Animales , Secuencia de Bases , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Secuencia Conservada , Humanos , Datos de Secuencia Molecular , ARN/metabolismo , ARN de Archaea/química , Levaduras/genética
20.
Mol Biol Cell ; 13(7): 2461-73, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12134083

RESUMEN

The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ. The morphology and structure of the isolated CBs, as judged by transmission and scanning electron microscopy analysis, are also similar to those of CBs in situ. This protocol demonstrates the feasibility of isolating intact distinct classes of subnuclear bodies from cultured cells in sufficient yield and purity to allow detailed characterization of their molecular composition, structure, and properties.


Asunto(s)
Núcleo Celular/metabolismo , Cuerpos Enrollados/química , Proteínas Nucleares/aislamiento & purificación , Animales , Fraccionamiento Celular , Núcleo Celular/química , Cuerpos Enrollados/metabolismo , Cuerpos Enrollados/ultraestructura , Células HeLa , Humanos , Inmunohistoquímica , Magnesio/metabolismo , Proteínas Nucleares/metabolismo , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA