Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(20): e107795, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34487363

RESUMEN

Somatic mutations in DNA-binding sites for CCCTC-binding factor (CTCF) are significantly elevated in many cancers. Prior analysis has suggested that elevated mutation rates at CTCF-binding sites in skin cancers are a consequence of the CTCF-cohesin complex inhibiting repair of UV damage. Here, we show that CTCF binding modulates the formation of UV damage to induce mutation hot spots. Analysis of genome-wide CPD-seq data in UV-irradiated human cells indicates that formation of UV-induced cyclobutane pyrimidine dimers (CPDs) is primarily suppressed by CTCF binding but elevated at specific locations within the CTCF motif. Locations of CPD hot spots in the CTCF-binding motif coincide with mutation hot spots in melanoma. A similar pattern of damage formation is observed at CTCF-binding sites in vitro, indicating that UV damage modulation is a direct consequence of CTCF binding. We show that CTCF interacts with binding sites containing UV damage and inhibits repair by a model repair enzyme in vitro. Structural analysis and molecular dynamic simulations reveal the molecular mechanism for how CTCF binding modulates CPD formation.


Asunto(s)
Factor de Unión a CCCTC/química , Reparación del ADN , Melanoma/genética , Proteínas Serina-Treonina Quinasas/química , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/genética , Sitios de Unión , Unión Competitiva , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Línea Celular Tumoral , Daño del ADN , Expresión Génica , Humanos , Melanoma/metabolismo , Melanoma/patología , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dímeros de Pirimidina/biosíntesis , Dímeros de Pirimidina/química , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Rayos Ultravioleta
2.
Nucleic Acids Res ; 51(11): 5341-5350, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37207339

RESUMEN

Photochemical dimerization of adjacent pyrimidines is fundamental to the creation of mutagenic hotspots caused by ultraviolet light. Distribution of the resulting lesions (cyclobutane pyrimidine dimers, CPDs) is already known to be highly variable in cells, and in vitro models have implicated DNA conformation as a major basis for this observation. Past efforts have primarily focused on mechanisms that influence CPD formation and have rarely considered contributions of CPD reversion. However, reversion is competitive under the standard conditions of 254 nm irradiation as illustrated in this report based on the dynamic response of CPDs to changes in DNA conformation. A periodic profile of CPDs was recreated in DNA held in a bent conformation by λ repressor. After linearization of this DNA, the CPD profile relaxed to its characteristic uniform distribution over a similar time of irradiation to that required to generate the initial profile. Similarly, when a T tract was released from a bent conformation, its CPD profile converted under further irradiation to that consistent with a linear T tract. This interconversion of CPDs indicates that both its formation and reversion exert control on CPD populations long before photo-steady-state conditions are achieved and suggests that the dominant sites of CPDs will evolve as DNA conformation changes in response to natural cellular processes.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina , Dímeros de Pirimidina/efectos de la radiación , ADN/genética , Reparación del ADN , Rayos Ultravioleta , Conformación de Ácido Nucleico
3.
Nature ; 558(7710): 445-448, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899448

RESUMEN

Haematopoietic stem and progenitor cells (HSPCs) require a specific microenvironment, the haematopoietic niche, which regulates HSPC behaviour1,2. The location of this niche varies across species, but the evolutionary pressures that drive HSPCs to different microenvironments remain unknown. The niche is located in the bone marrow in adult mammals, whereas it is found in other locations in non-mammalian vertebrates, for example, in the kidney marrow in teleost fish. Here we show that a melanocyte umbrella above the kidney marrow protects HSPCs against ultraviolet light in zebrafish. Because mutants that lack melanocytes have normal steady-state haematopoiesis under standard laboratory conditions, we hypothesized that melanocytes above the stem cell niche protect HSPCs against ultraviolet-light-induced DNA damage. Indeed, after ultraviolet-light irradiation, unpigmented larvae show higher levels of DNA damage in HSPCs, as indicated by staining of cyclobutane pyrimidine dimers and have reduced numbers of HSPCs, as shown by cmyb (also known as myb) expression. The umbrella of melanocytes associated with the haematopoietic niche is highly evolutionarily conserved in aquatic animals, including the sea lamprey, a basal vertebrate. During the transition from an aquatic to a terrestrial environment, HSPCs relocated into the bone marrow, which is protected from ultraviolet light by the cortical bone around the marrow. Our studies reveal that melanocytes above the haematopoietic niche protect HSPCs from ultraviolet-light-induced DNA damage in aquatic vertebrates and suggest that during the transition to terrestrial life, ultraviolet light was an evolutionary pressure affecting the location of the haematopoietic niche.


Asunto(s)
Evolución Biológica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Melanocitos/citología , Melanocitos/efectos de la radiación , Nicho de Células Madre/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Organismos Acuáticos/clasificación , Citoprotección/efectos de la radiación , Daño del ADN/efectos de la radiación , Riñón , Mutación , Petromyzon/clasificación , Filogenia , Dímeros de Pirimidina/efectos de la radiación , Nicho de Células Madre/fisiología , Pez Cebra/clasificación , Pez Cebra/genética
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526704

RESUMEN

In this study, absorption, fluorescence, synchronous fluorescence, and Raman spectra of nonirradiated and ultraviolet (UV)-irradiated thymine solutions were recorded in order to detect thymine dimer formation. The thymine dimer formation, as a function of irradiation dose, was determined by Raman spectroscopy. In addition, the formation of a mutagenic (6-4) photoproduct was identified by its synchronous fluorescence spectrum. Our spectroscopic data suggest that the rate of conversion of thymine to thymine dimer decreases after 20 min of UV irradiation, owing to the formation of an equilibrium between the thymine dimers and monomers. However, the formation of the (6-4) photoproduct continued to increase with UV irradiation. In addition, the Raman spectra of nonirradiated and irradiated calf thymus DNA were recorded, and the formation of thymine dimers was detected. The spectroscopic data presented make it possible to determine the mechanism of thymine dimer formation, which is known to be responsible for the inhibition of DNA replication that causes bacteria inactivation.


Asunto(s)
Daño del ADN/efectos de la radiación , ADN/genética , Dímeros de Pirimidina/genética , Timina/química , Animales , Bovinos , ADN/química , ADN/efectos de la radiación , Daño del ADN/genética , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efectos de la radiación , Espectrometría de Fluorescencia , Espectrometría Raman , Timina/efectos de la radiación , Rayos Ultravioleta/efectos adversos
5.
Mol Biol (Mosk) ; 58(1): 3-21, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38943577

RESUMEN

Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290-320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Their formation is a result of direct UVB photon absorption by DNA bases. UV type A (UVA, 320-400 nm) induces only cyclobutane dimers, which most likely arise via triplet-triplet energy transfer (TTET) from cell chromophores to DNA thymine bases. UVA is much more effective than UVB in inducing sensitized oxidative DNA lesions, such as single-strand breaks and oxidized bases. Of the latter, 8-oxo-dihydroguanine (8-oxodG) is the most frequent, being produced in several oxidation processes. Many recent studies reported novel, more detailed information about the molecular mechanisms of the photochemical reactions that underlie the formation of various DNA lesions. The information is mostly summarized and analyzed in the review. Special attention is paid to the oxidation reactions that are initiated by reactive oxygen species (ROS) and radicals generated by potential endogenous photosensitizers, such as pterins, riboflavin, protoporphyrin IX, NADH, and melanin. The review discusses the role that specific DNA photoproducts play in genotoxic processes induced in living systems by UV radiation of various wavelengths, including human skin carcinogenesis.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Humanos , Daño del ADN/efectos de la radiación , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , ADN/efectos de la radiación , ADN/metabolismo , ADN/genética , Animales , Apoptosis/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , 8-Hidroxi-2'-Desoxicoguanosina/metabolismo
6.
Biochemistry ; 62(15): 2269-2279, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459251

RESUMEN

G-quadruplexes are thought to play an important role in gene regulation and telomere maintenance, but developing probes for their presence and location is challenging due to their transitory and highly dynamic nature. The majority of probes for G-quadruplexes have relied on antibody or small-molecule binding agents, many of which can also alter the dynamics and relative populations of G-quadruplexes. Recently, it was discovered that ultraviolet B (UVB) irradiation of human telomeric DNA and various G-quadruplex forming sequences found in human promoters, as well as reverse Hoogsteen hairpins, produces a unique class of non-adjacent anti cyclobutane pyrimidine dimers (CPDs). Therefore, one can envision using a pulse of UVB light to irreversibly trap these non-B DNA structures via anti CPD formation without perturbing their dynamics, after which the anti CPDs can be identified and mapped. As a first step toward this goal, we report radioactive post- and pre-labeling assays for the detection of non-adjacent CPDs and illustrate their use in detecting trans,anti T=(T) CPD formation in a human telomeric DNA sequence. Both assays make use of snake venom phosphodiesterase (SVP) to degrade the trans,anti T=(T) CPD-containing DNA to the tetranucleotide pTT=(pTT) corresponding to CPD formation between the underlined T's of two separate dinucleotides while degrading the adjacent syn TT CPDs to the trinucleotide pGT=T. In the post-labeling assay, calf intestinal phosphodiesterase is used to dephosphorylate the tetranucleotides, which are then rephosphorylated with kinase and [32P]-ATP to produce radiolabeled mono- and diphosphorylated tetranucleotides. The tetranucleotides are confirmed to be non-adjacent CPDs by 254 nm photoreversion to the dinucleotide p*TT. In the pre-labeling assay, radiolabeled phosphates are introduced into non-adjacent CPD-forming sites by ligation prior to irradiation, thereby eliminating the dephosphorylation and rephosphorylation steps. The assays are also demonstrated to detect the stereoisomeric cis,anti T=(T) CPD.


Asunto(s)
G-Cuádruplex , Humanos , ADN/química , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta , Daño del ADN
7.
Nucleic Acids Res ; 48(22): 12845-12857, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33270891

RESUMEN

Photolyases are ubiquitously occurring flavoproteins for catalyzing photo repair of UV-induced DNA damages. All photolyases described so far have a bilobal architecture with a C-terminal domain comprising flavin adenine dinucleotide (FAD) as catalytic cofactor and an N-terminal domain capable of harboring an additional antenna chromophore. Using sequence-similarity network analysis we discovered a novel subgroup of the photolyase/cryptochrome superfamily (PCSf), the NewPHLs. NewPHL occur in bacteria and have an inverted topology with an N-terminal catalytic domain and a C-terminal domain for sealing the FAD binding site from solvent access. By characterizing two NewPHL we show a photochemistry characteristic of other PCSf members as well as light-dependent repair of CPD lesions. Given their common specificity towards single-stranded DNA many bacterial species use NewPHL as a substitute for DASH-type photolyases. Given their simplified architecture and function we suggest that NewPHL are close to the evolutionary origin of the PCSf.


Asunto(s)
Criptocromos/genética , ADN de Cadena Simple/genética , Desoxirribodipirimidina Fotoliasa/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Dominio Catalítico/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , ADN de Cadena Simple/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Methylobacterium/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Rhodobacteraceae/genética , Rayos Ultravioleta
8.
Nucleic Acids Res ; 48(4): 1941-1953, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31853541

RESUMEN

UVA-induced mutagenesis was investigated in human pol eta-deficient (XP-V) cells through whole-exome sequencing. In UVA-irradiated cells, the increase in the mutation frequency in deficient cells included a remarkable contribution of C>T transitions, mainly at potential pyrimidine dimer sites. A strong contribution of C>A transversions, potentially due to oxidized bases, was also observed in non-irradiated XP-V cells, indicating that basal mutagenesis caused by oxidative stress may be related to internal tumours in XP-V patients. The low levels of mutations involving T induced by UVA indicate that pol eta is not responsible for correctly replicating T-containing pyrimidine dimers, a phenomenon known as the 'A-rule'. Moreover, the mutation signature profile of UVA-irradiated XP-V cells is highly similar to the human skin cancer profile, revealing how studies involving cells deficient in DNA damage processing may be useful to understand the mechanisms of environmentally induced carcinogenesis.


Asunto(s)
Mutagénesis/genética , Estrés Oxidativo/genética , Dímeros de Pirimidina/genética , Xerodermia Pigmentosa/genética , Línea Celular , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de la radiación , Replicación del ADN/efectos de la radiación , Humanos , Mutagénesis/efectos de la radiación , Mutación/genética , Mutación/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta , Secuenciación del Exoma , Xerodermia Pigmentosa/etiología
9.
Proc Natl Acad Sci U S A ; 116(48): 24196-24205, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31723047

RESUMEN

If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.


Asunto(s)
Fibroblastos/efectos de la radiación , Genoma Humano/efectos de la radiación , Melanocitos/efectos de la radiación , Nucleótidos de Pirimidina/efectos de la radiación , Regiones no Traducidas 5' , Células Cultivadas , Daño del ADN/efectos de la radiación , Fibroblastos/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Melanocitos/fisiología , Melanoma/genética , Mutación , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/genética , Serina-Treonina Quinasas TOR/genética , Rayos Ultravioleta
10.
Nucleic Acids Res ; 47(7): 3536-3549, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30698791

RESUMEN

UV light induces cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs), which can result in carcinogenesis and aging, if not properly repaired by nucleotide excision repair (NER). Assays to determine DNA damage load and repair rates are invaluable tools for fundamental and clinical NER research. However, most current assays to quantify DNA damage and repair cannot be performed in real time. To overcome this limitation, we made use of the damage recognition characteristics of CPD and 6-4PP photolyases (PLs). Fluorescently-tagged PLs efficiently recognize UV-induced DNA damage without blocking NER activity, and therefore can be used as sensitive live-cell damage sensors. Importantly, FRAP-based assays showed that PLs bind to damaged DNA in a highly sensitive and dose-dependent manner, and can be used to quantify DNA damage load and to determine repair kinetics in real time. Additionally, PLs can instantly reverse DNA damage by 405 nm laser-assisted photo-reactivation during live-cell imaging, opening new possibilities to study lesion-specific NER dynamics and cellular responses to damage removal. Our results show that fluorescently-tagged PLs can be used as a versatile tool to sense, quantify and repair DNA damage, and to study NER kinetics and UV-induced DNA damage response in living cells.


Asunto(s)
Daño del ADN/genética , ADN/genética , Dímeros de Pirimidina/genética , Carcinogénesis/genética , Carcinogénesis/efectos de la radiación , ADN/efectos de la radiación , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Humanos , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta/efectos adversos
11.
PLoS Genet ; 14(12): e1007849, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586386

RESUMEN

Sequencing of whole cancer genomes has revealed an abundance of recurrent mutations in gene-regulatory promoter regions, in particular in melanoma where strong mutation hotspots are observed adjacent to ETS-family transcription factor (TF) binding sites. While sometimes interpreted as functional driver events, these mutations are commonly believed to be due to locally inhibited DNA repair. Here, we first show that low-dose UV light induces mutations preferably at a known ETS promoter hotspot in cultured cells even in the absence of global or transcription-coupled nucleotide excision repair (NER). Further, by genome-wide mapping of cyclobutane pyrimidine dimers (CPDs) shortly after UV exposure and thus before DNA repair, we find that ETS-related mutation hotspots exhibit strong increases in CPD formation efficacy in a manner consistent with tumor mutation data at the single-base level. Analysis of a large whole genome cohort illustrates the widespread contribution of this effect to recurrent mutations in melanoma. While inhibited NER underlies a general increase in somatic mutation burden in regulatory elements including ETS sites, our data supports that elevated DNA damage formation at specific genomic bases is at the core of the prominent promoter mutation hotspots seen in skin cancers, thus explaining a key phenomenon in whole-genome cancer analyses.


Asunto(s)
Melanoma/etiología , Melanoma/genética , Mutación , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/genética , Dímeros de Pirimidina/biosíntesis , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , Secuencia de Bases , Sitios de Unión/genética , Línea Celular Tumoral , Daño del ADN , ADN de Neoplasias/genética , Humanos , Melanoma/metabolismo , Neoplasias Inducidas por Radiación/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-ets/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/metabolismo , Secuenciación Completa del Genoma
12.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669452

RESUMEN

Susceptibility to photoimmune suppression and photocarcinogenesis is greater in male than in female humans and mice and is exacerbated in female estrogen receptor-beta knockout (ER-ß-/-) mice. We previously reported that the active vitamin D hormone, 1,25-dihydroxyvitamin D3 (1,25(OH)2D), applied topically protects against the ultraviolet radiation (UV) induction of cutaneous cyclobutane pyrimidine dimers (CPDs) and the suppression of contact hypersensitivity (CHS) in female mice. Here, we compare these responses in female versus male Skh:hr1 mice, in ER-ß-/-/-- versus wild-type C57BL/6 mice, and in female ER-blockaded Skh:hr1 mice. The induction of CPDs was significantly greater in male than female Skh:hr1 mice and was more effectively reduced by 1,25(OH)2D in female Skh:hr1 and C57BL/6 mice than in male Skh:hr1 or ER-ß-/- mice, respectively. This correlated with the reduced sunburn inflammation due to 1,25(OH)2D in female but not male Skh:hr1 mice. Furthermore, although 1,25(OH)2D alone dose-dependently suppressed basal CHS responses in male Skh:hr1 and ER-ß-/- mice, UV-induced immunosuppression was universally observed. In female Skh:hr1 and C57BL/6 mice, the immunosuppression was decreased by 1,25(OH)2D dose-dependently, but not in male Skh:hr1, ER-ß-/-, or ER-blockaded mice. These results reveal a sex bias in genetic, inflammatory, and immune photoprotection by 1,25(OH)2D favoring female mice that is dependent on the presence of ER-ß.


Asunto(s)
Calcitriol/administración & dosificación , Receptor beta de Estrógeno/metabolismo , Transducción de Señal/efectos de la radiación , Quemadura Solar/tratamiento farmacológico , Quemadura Solar/metabolismo , Protectores Solares/administración & dosificación , Rayos Ultravioleta , Administración Cutánea , Animales , Dermatitis por Contacto/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptor beta de Estrógeno/genética , Femenino , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/efectos de la radiación , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efectos de la radiación , Factores Sexuales , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/prevención & control , Quemadura Solar/prevención & control
13.
FASEB J ; 32(7): 3700-3706, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29394104

RESUMEN

Epidermal DNA damage, especially to the basal layer, is an established cause of keratinocyte cancers (KCs). Large differences in KC incidence (20- to 60-fold) between white and black populations are largely attributable to epidermal melanin photoprotection in the latter. The cyclobutane pyrimidine dimer (CPD) is the most mutagenic DNA photolesion; however, most studies suggest that melanin photoprotection against CPD is modest and cannot explain the considerable skin color-based differences in KC incidence. Along with melanin quantity, solar-simulated radiation-induced CPD assessed immediately postexposure in the overall epidermis and within 3 epidermal zones was compared in black West Africans and fair Europeans. Melanin in black skin protected against CPD by 8.0-fold in the overall epidermis and by 59.0-, 16.5-, and 5.0-fold in the basal, middle, and upper epidermis, respectively. Protection was related to the distribution of melanin, which was most concentrated in the basal layer of black skin. These results may explain, at least in part, the considerable skin color differences in KC incidence. These data suggest that a DNA protection factor of at least 60 is necessary in sunscreens to reduce white skin KC incidence to a level that is comparable with that of black skin.-Fajuyigbe, D., Lwin, S. M., Diffey, B. L., Baker, R., Tobin, D. J., Sarkany, R. P. E., Young, A. R. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes.


Asunto(s)
Daño del ADN , Epidermis/efectos de la radiación , Melaninas/metabolismo , Dímeros de Pirimidina/efectos de la radiación , Neoplasias Cutáneas/epidemiología , Pigmentación de la Piel , Adulto , Población Negra , Epidermis/metabolismo , Humanos , Melaninas/genética , Neoplasias Cutáneas/etnología , Neoplasias Cutáneas/genética , Luz Solar/efectos adversos , Población Blanca
14.
Bioorg Med Chem ; 27(2): 278-284, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552005

RESUMEN

Electron transfer through π-stacked arrays of double-stranded DNA contributes to the redox chemistry of bases, including guanine oxidation and thymine-thymine dimer repair by photolyase. 5-Bromouracil is an attractive photoreactive thymine analogue that can be used to investigate electron transfer in DNA, and is a useful probe for protein-DNA interaction analysis. In the present study using BrU we found that UV irradiation facilitated electron injection from mitochondrial transcription factor A into DNA. We also observed that this electron injection could lead to repair of a thymine-thymine dimer.


Asunto(s)
Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/química , ADN/química , Electrones , Proteínas Mitocondriales/química , Dímeros de Pirimidina/química , Factores de Transcripción/química , Secuencia de Bases , Bromouracilo/química , Bromouracilo/efectos de la radiación , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/efectos de la radiación , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/efectos de la radiación , Regiones Promotoras Genéticas/efectos de la radiación , Unión Proteica , Dímeros de Pirimidina/efectos de la radiación , Factores de Transcripción/metabolismo , Factores de Transcripción/efectos de la radiación , Rayos Ultravioleta
15.
Proc Natl Acad Sci U S A ; 113(32): 9057-62, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457959

RESUMEN

UV-induced DNA lesions are important contributors to mutagenesis and cancer, but it is not fully understood how the chromosomal landscape influences UV lesion formation and repair. Genome-wide profiling of repair activity in UV irradiated cells has revealed significant variations in repair kinetics across the genome, not only among large chromatin domains, but also at individual transcription factor binding sites. Here we report that there is also a striking but predictable variation in initial UV damage levels across a eukaryotic genome. We used a new high-throughput sequencing method, known as CPD-seq, to precisely map UV-induced cyclobutane pyrimidine dimers (CPDs) at single-nucleotide resolution throughout the yeast genome. This analysis revealed that individual nucleosomes significantly alter CPD formation, protecting nucleosomal DNA with an inward rotational setting, even though such DNA is, on average, more intrinsically prone to form CPD lesions. CPD formation is also inhibited by DNA-bound transcription factors, in effect shielding important DNA elements from UV damage. Analysis of CPD repair revealed that initial differences in CPD damage formation often persist, even at later repair time points. Furthermore, our high-resolution data demonstrate, to our knowledge for the first time, that CPD repair is significantly less efficient at translational positions near the dyad of strongly positioned nucleosomes in the yeast genome. These findings define the global roles of nucleosomes and transcription factors in both UV damage formation and repair, and have important implications for our understanding of UV-induced mutagenesis in human cancers.


Asunto(s)
Daño del ADN , Reparación del ADN , Rayos Ultravioleta , Sitios de Unión , Heterocromatina/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleosomas/fisiología , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efectos de la radiación , Factores de Transcripción/fisiología
16.
Proc Natl Acad Sci U S A ; 113(17): 4706-10, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27071131

RESUMEN

Plants use light for photosynthesis and for various signaling purposes. The UV wavelengths in sunlight also introduce DNA damage in the form of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4)PPs] that must be repaired for the survival of the plant. Genome sequencing has revealed the presence of genes for both CPD and (6-4)PP photolyases, as well as genes for nucleotide excision repair in plants, such as Arabidopsis and rice. Plant photolyases have been purified, characterized, and have been shown to play an important role in plant survival. In contrast, even though nucleotide excision repair gene homologs have been found in plants, the mechanism of nucleotide excision repair has not been investigated. Here we used the in vivo excision repair assay developed in our laboratory to demonstrate that Arabidopsis removes CPDs and (6-4)PPs by a dual-incision mechanism that is essentially identical to the mechanism of dual incisions in humans and other eukaryotes, in which oligonucleotides with a mean length of 26-27 nucleotides are removed by incising ∼20 phosphodiester bonds 5' and 5 phosphodiester bonds 3' to the photoproduct.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , ADN de Plantas/genética , ADN de Plantas/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/genética , Dímeros de Pirimidina/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Línea Celular , Reparación del ADN/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Dímeros de Pirimidina/efectos de la radiación , Pirimidinonas/efectos de la radiación , Dosis de Radiación , Rayos Ultravioleta
17.
Br J Dermatol ; 179(4): 940-950, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29691848

RESUMEN

BACKGROUND: Childhood solar ultraviolet radiation (UVR) exposure increases the risk of skin cancer in adulthood, which is associated with mutations caused by UVR-induced cyclobutane pyrimidine dimers (CPD). Solar UVR is also the main source of vitamin D, essential for healthy bone development in children. OBJECTIVES: To assess the impact of a 12-day Baltic Sea (54° N) beach holiday on serum 25-hydroxyvitamin D3 [25(OH)D3 ] and CPD in 32 healthy Polish children (skin types I-IV). METHODS: Blood and urine were collected before and after the holiday and assessed for 25(OH)D3 and excreted CPD, respectively, and personal UVR exposure was measured. Diaries were used to record sunbathing, sunburn and sunscreen use. Before- and after-holiday skin redness and pigmentation were measured by reflectance spectroscopy. RESULTS: The average ± SD daily exposure UVR dose was 2·4 ± 1·5 standard erythema doses (SEDs), which is borderline erythemal. The mean concentration of 25(OH)D3 increased (× 1·24 ± 0·19) from 64·7 ± 13·3 to 79·3 ± 18·7 nmol L-1 (P < 0·001). Mean CPD increased 12·6 ± 10·0-fold from 26·9 ± 17·9 to 248·9 ± 113·4 fmol µmol-1 creatinine (P < 0·001). Increased 25(OH)D3 was accompanied by a very much greater increase in DNA damage associated with carcinogenic potential. Overall, skin type had no significant effects on behavioural, clinical or analytical outcomes, but skin types I/II had more CPD (unadjusted P = 0·0496) than skin types III/IV at the end of the holiday. CONCLUSIONS: Careful consideration must be given to the health outcomes of childhood solar exposure, and a much better understanding of the risk-benefit relationships of such exposure is required. Rigorous photoprotection is necessary for children, even in Northern Europe.


Asunto(s)
Calcifediol/sangre , Daño del ADN/efectos de la radiación , Neoplasias Cutáneas/prevención & control , Baño de Sol/estadística & datos numéricos , Luz Solar/efectos adversos , Playas , Niño , Diarios como Asunto , Relación Dosis-Respuesta en la Radiación , Femenino , Vacaciones y Feriados , Humanos , Masculino , Polonia , Dímeros de Pirimidina/análisis , Dímeros de Pirimidina/efectos de la radiación , Estaciones del Año , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Protectores Solares/administración & dosificación , Rayos Ultravioleta/efectos adversos
18.
Photochem Photobiol Sci ; 17(4): 404-413, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29464256

RESUMEN

The amount of photolesions produced in DNA after exposure to physiological doses of ultraviolet radiation (UVR) can be estimated with high sensitivity and at low cost through an immunological assay, ELISA, which, however, provides only a relative estimate that cannot be used for comparisons between different photolesions such as cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproduct (64PP) or for analysis of the genotoxicity of photolesions on a molecular basis. To solve this drawback of ELISA, we introduced a set of UVR-exposed, calibration DNA whose photolesion amounts were predetermined and estimated the absolute molecular amounts of CPDs and 64PPs produced in mouse skin exposed to UVC and UVB. We confirmed previously reported observations that UVC induced more photolesions in the skin than UVB at the same dose, and that both types of UVR produced more CPDs than 64PPs. The UVR protection abilities of the cornified and epidermal layers for the lower tissues were also evaluated quantitatively. We noticed that the values of absorbance obtained in ELISA were not always proportional to the molecular amounts of the lesion, especially for CPD, cautioning against the direct use of ELISA absorbance data for estimation of the photolesion amounts. We further estimated the mutagenicity of a CPD produced by UVC and UVB in the epidermis and dermis using the mutation data from our previous studies with mouse skin and found that CPDs produced in the epidermis by UVB were more than two-fold mutagenic than those by UVC, which suggests that the properties of CPDs produced by UVC and UVB might be different. The difference may originate from the wavelength-dependent methyl CpG preference of CPD formation. In addition, the mutagenicity of CPDs in the dermis was lower than that in the epidermis irrespective of the UVR source, suggesting a higher efficiency in the dermis to reduce the genotoxicity of CPDs produced within it. We also estimated the minimum amount of photolesions required to induce the mutation induction suppression (MIS) response in the epidermis to be around 15 64PPs or 100 CPDs per million bases in DNA as the mean estimate from UVC and UVB-induced MIS.


Asunto(s)
Ciclobutanos/efectos de la radiación , Ciclobutanos/toxicidad , Mutágenos/efectos de la radiación , Mutágenos/toxicidad , Dímeros de Pirimidina/efectos de la radiación , Dímeros de Pirimidina/toxicidad , Piel/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Bovinos , Ciclobutanos/análisis , ADN/efectos de los fármacos , ADN/genética , Daño del ADN , Ensayo de Inmunoadsorción Enzimática , Ratones , Ratones Transgénicos , Mutágenos/análisis , Mutación/efectos de los fármacos , Dímeros de Pirimidina/análisis , Dímeros de Pirimidina/biosíntesis
19.
Proc Natl Acad Sci U S A ; 111(18): E1862-71, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24760829

RESUMEN

How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3-0.8, 8.1, and 113-126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , ADN/efectos de la radiación , Sustitución de Aminoácidos , ADN/química , Daño del ADN , Proteínas de Unión al ADN/genética , Humanos , Cinética , Microscopía Fluorescente , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Concentración Osmolar , Conformación Proteica , Multimerización de Proteína , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/efectos de la radiación , Puntos Cuánticos , Rayos Ultravioleta/efectos adversos , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo
20.
Biochemistry ; 55(30): 4173-83, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27431478

RESUMEN

Ultraviolet (UV) light from the sun damages DNA by forming a cyclobutane pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone photoproducts [(6-4) PP]. Photolyase (PHR) enzymes utilize near-UV/blue light for DNA repair, which is initiated by light-induced electron transfer from the fully reduced flavin adenine dinucleotide chromophore. Despite similar structures and repair mechanisms, the functions of PHR are highly selective; CPD PHR repairs CPD, but not (6-4) PP, and vice versa. In this study, we attempted functional conversion between CPD and (6-4) PHRs. We found that a triple mutant of (6-4) PHR is able to repair the CPD photoproduct, though the repair efficiency is 1 order of magnitude lower than that of wild-type CPD PHR. Difference Fourier transform infrared spectra for repair demonstrate the lack of secondary structural alteration in the mutant, suggesting that the triple mutant gains substrate binding ability while it does not gain the optimized conformational changes from light-induced electron transfer to the release of the repaired DNA. Interestingly, the (6-4) photoproduct is not repaired by the reverse mutation of CPD PHR, and eight additional mutations (total of 11 mutations) introduced into CPD PHR are not sufficient. The observed asymmetric functional conversion is interpreted in terms of a more complex repair mechanism for (6-4) repair, which was supported by quantum chemical/molecular mechanical calculation. These results suggest that CPD PHR may represent an evolutionary origin for photolyase family proteins.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Dímeros de Pirimidina/metabolismo , Sustitución de Aminoácidos , Animales , Dominio Catalítico/genética , Cristalografía por Rayos X , Daño del ADN , Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Transporte de Electrón , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dímeros de Pirimidina/química , Dímeros de Pirimidina/efectos de la radiación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA