Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.958
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 162(5): 961-73, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317465

RESUMEN

DNA-demethylating agents have shown clinical anti-tumor efficacy via an unknown mechanism of action. Using a combination of experimental and bioinformatics analyses in colorectal cancer cells, we demonstrate that low-dose 5-AZA-CdR targets colorectal cancer-initiating cells (CICs) by inducing viral mimicry. This is associated with induction of dsRNAs derived at least in part from endogenous retroviral elements, activation of the MDA5/MAVS RNA recognition pathway, and downstream activation of IRF7. Indeed, disruption of virus recognition pathways, by individually knocking down MDA5, MAVS, or IRF7, inhibits the ability of 5-AZA-CdR to target colorectal CICs and significantly decreases 5-AZA-CdR long-term growth effects. Moreover, transfection of dsRNA into CICs can mimic the effects of 5-AZA-CdR. Together, our results represent a major shift in understanding the anti-tumor mechanisms of DNA-demethylating agents and highlight the MDA5/MAVS/IRF7 pathway as a potentially druggable target against CICs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Azacitidina/análogos & derivados , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Azacitidina/farmacología , Células Cultivadas , ARN Helicasas DEAD-box/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Retrovirus Endógenos/metabolismo , Humanos , Factor 7 Regulador del Interferón/metabolismo , Helicasa Inducida por Interferón IFIH1 , Ratones , ARN Bicatenario/metabolismo , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal
2.
Mol Cell ; 81(7): 1469-1483.e8, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609448

RESUMEN

We demonstrate that DNA hypomethylating agent (HMA) treatment can directly modulate the anti-tumor response and effector function of CD8+ T cells. In vivo HMA treatment promotes CD8+ T cell tumor infiltration and suppresses tumor growth via CD8+ T cell-dependent activity. Ex vivo, HMAs enhance primary human CD8+ T cell activation markers, effector cytokine production, and anti-tumor cytolytic activity. Epigenomic and transcriptomic profiling shows that HMAs vastly regulate T cell activation-related transcriptional networks, culminating with over-activation of NFATc1 short isoforms. Mechanistically, demethylation of an intragenic CpG island immediately downstream to the 3' UTR of the short isoform was associated with antisense transcription and alternative polyadenylation of NFATc1 short isoforms. High-dimensional single-cell mass cytometry analyses reveal a selective effect of HMAs on a subset of human CD8+ T cell subpopulations, increasing both the number and abundance of a granzyme Bhigh, perforinhigh effector subpopulation. Overall, our findings support the use of HMAs as a therapeutic strategy to boost anti-tumor immune response.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Islas de CpG/inmunología , Metilación de ADN/efectos de los fármacos , Decitabina/farmacología , Granzimas/inmunología , Activación de Linfocitos/efectos de los fármacos , Metilación de ADN/inmunología , Humanos , Factores de Transcripción NFATC/inmunología , Perforina/inmunología
3.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760575

RESUMEN

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Decitabina , Ubiquitina-Proteína Ligasas , Decitabina/farmacología , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metilación de ADN/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Animales , Sumoilación/efectos de los fármacos
4.
Proc Natl Acad Sci U S A ; 121(7): e2310264121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319963

RESUMEN

Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.


Asunto(s)
Artritis , Azacitidina , Ratones , Animales , Decitabina/farmacología , Azacitidina/farmacología , Epigénesis Genética , Metilación de ADN , Factores Reguladores del Interferón/metabolismo , Inflamación/genética , Artritis/genética , Antiinflamatorios , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética
5.
Nature ; 588(7836): 169-173, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33087935

RESUMEN

Cancer therapies that target epigenetic repressors can mediate their effects by activating retroelements within the human genome. Retroelement transcripts can form double-stranded RNA (dsRNA) that activates the MDA5 pattern recognition receptor1-6. This state of viral mimicry leads to loss of cancer cell fitness and stimulates innate and adaptive immune responses7,8. However, the clinical efficacy of epigenetic therapies has been limited. To find targets that would synergize with the viral mimicry response, we sought to identify the immunogenic retroelements that are activated by epigenetic therapies. Here we show that intronic and intergenic SINE elements, specifically inverted-repeat Alus, are the major source of drug-induced immunogenic dsRNA. These inverted-repeat Alus are frequently located downstream of 'orphan' CpG islands9. In mammals, the ADAR1 enzyme targets and destabilizes inverted-repeat Alu dsRNA10, which prevents activation of the MDA5 receptor11. We found that ADAR1 establishes a negative-feedback loop, restricting the viral mimicry response to epigenetic therapy. Depletion of ADAR1 in patient-derived cancer cells potentiates the efficacy of epigenetic therapy, restraining tumour growth and reducing cancer initiation. Therefore, epigenetic therapies trigger viral mimicry by inducing a subset of inverted-repeats Alus, leading to an ADAR1 dependency. Our findings suggest that combining epigenetic therapies with ADAR1 inhibitors represents a promising strategy for cancer treatment.


Asunto(s)
Adenosina Desaminasa/metabolismo , Elementos Alu/efectos de los fármacos , Elementos Alu/genética , Decitabina/farmacología , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Transcripción Genética/efectos de los fármacos , Inmunidad Adaptativa/efectos de los fármacos , Adenosina Desaminasa/deficiencia , Elementos Alu/inmunología , Animales , Línea Celular Tumoral , Islas de CpG/efectos de los fármacos , Islas de CpG/genética , ADN Intergénico/efectos de los fármacos , ADN Intergénico/genética , ADN Intergénico/inmunología , ADN-Citosina Metilasas/antagonistas & inhibidores , Retroalimentación Fisiológica , Humanos , Inmunidad Innata/efectos de los fármacos , Helicasa Inducida por Interferón IFIH1/metabolismo , Intrones/efectos de los fármacos , Intrones/genética , Intrones/inmunología , Secuencias Invertidas Repetidas/efectos de los fármacos , Secuencias Invertidas Repetidas/genética , Secuencias Invertidas Repetidas/inmunología , Masculino , Ratones , Imitación Molecular/efectos de los fármacos , Imitación Molecular/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , ARN Bicatenario/efectos de los fármacos , ARN Bicatenario/genética , ARN Bicatenario/inmunología , Proteínas de Unión al ARN/antagonistas & inhibidores , Virus/efectos de los fármacos , Virus/inmunología
6.
Proc Natl Acad Sci U S A ; 120(27): e2302534120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364131

RESUMEN

Aberrant alternative splicing of mRNAs results in dysregulated gene expression in multiple neurological disorders. Here, we show that hundreds of mRNAs are incorrectly expressed and spliced in white blood cells and brain tissues of individuals with fragile X syndrome (FXS). Surprisingly, the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene is transcribed in >70% of the FXS tissues. In all FMR1-expressing FXS tissues, FMR1 RNA itself is mis-spliced in a CGG expansion-dependent manner to generate the little-known FMR1-217 RNA isoform, which is comprised of FMR1 exon 1 and a pseudo-exon in intron 1. FMR1-217 is also expressed in FXS premutation carrier-derived skin fibroblasts and brain tissues. We show that in cells aberrantly expressing mis-spliced FMR1, antisense oligonucleotide (ASO) treatment reduces FMR1-217, rescues full-length FMR1 RNA, and restores FMRP (Fragile X Messenger RibonucleoProtein) to normal levels. Notably, FMR1 gene reactivation in transcriptionally silent FXS cells using 5-aza-2'-deoxycytidine (5-AzadC), which prevents DNA methylation, increases FMR1-217 RNA levels but not FMRP. ASO treatment of cells prior to 5-AzadC application rescues full-length FMR1 expression and restores FMRP. These findings indicate that misregulated RNA-processing events in blood could serve as potent biomarkers for FXS and that in those individuals expressing FMR1-217, ASO treatment may offer a therapeutic approach to mitigate the disorder.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Expansión de Repetición de Trinucleótido/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Decitabina , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Oligonucleótidos , ARN
7.
Blood ; 141(15): 1817-1830, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706355

RESUMEN

The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested the combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naïve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells. Clinical responses were predominantly driven by decitabine-induced cytoreduction. Evidence of immune activation was only apparent after ipilimumab exposure, which altered CD4+ T-cell gene expression, in line with ongoing T-cell differentiation and increased frequency of marrow-infiltrating regulatory T cells. For post-HSCT samples, relapse could be attributed to insufficient clearing of malignant clones in progenitor cell populations. In contrast to AML/MDS bone marrow, the transcriptomes of leukemia cutis samples from patients with durable remission after ipilimumab monotherapy showed evidence of increased infiltration with antigen-experienced resident memory T cells and higher expression of CTLA-4 and FOXP3. Altogether, activity of combined decitabine and ipilimumab is impacted by cellular expression states within the microenvironmental niche of leukemic cells. The inadequate elimination of leukemic progenitors mandates urgent development of novel approaches for targeting these cell populations to generate long-lasting responses. This trial was registered at www.clinicaltrials.gov as #NCT02890329.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Ipilimumab/uso terapéutico , Decitabina/uso terapéutico , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Recurrencia
8.
Int J Cancer ; 154(6): 1029-1042, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947765

RESUMEN

Non-small cell lung cancer (NSCLC) patients are often elderly or unfit and thus cannot tolerate standard aggressive therapy regimes. In our study, we test the efficacy of the DNA-hypomethylating agent decitabine (DAC) in combination with all-trans retinoic acid (ATRA), which has been shown to possess little systemic adverse effects. Screening a broad panel of 56 NSCLC cell lines uncovered a decrease in cell viability after the combination treatment in 77% of the cell lines. Transcriptomics, proteomics, proliferation and migration profiling revealed that fast proliferating and slowly migrating cell lines were more sensitive to the drug combination. The comparison of mutational profiles found oncogenic KRAS mutations only in sensitive cells. Additionally, different cell lines showed a heterogeneous gene expression response to the treatment pointing to diverse mechanisms of action. Silencing KRAS, RIG-I or RARB partially reversed the sensitivity of KRAS-mutant NCI-H460 cells. To study resistance, we generated two NCI-H460 cell populations resistant to ATRA and DAC, which migrated faster and proliferated slower than the parental sensitive cells and showed signs of senescence. In summary, this comprehensive dataset uncovers a broad sensitivity of NSCLC cells to the combinatorial treatment with DAC and ATRA and indicates that migration and proliferation capacities correlate with and could thus serve as determinants for drug sensitivity in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Tretinoina/farmacología , Tretinoina/uso terapéutico , Decitabina/farmacología , Decitabina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Proliferación Celular
9.
Cancer Sci ; 115(1): 270-282, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37942534

RESUMEN

Colorectal cancer (CRC) is a globally common cancer, and the serum carcinoembryonic antigen (sCEA) is widely applied as a diagnostic and prognostic tumor marker in CRC. This study aimed to elucidate the mechanism of CEA expression and corresponding clinical features to improve prognostic assessments. In CRC cells, hypomethylation of the CEACAM5 promoter enhanced CEA expression in HCT116 and HT29 cells with 5-aza-2'-deoxycytidine (5-Aza-dC) treatment. Our clinical data indicated that 64.7% (101/156) of CRC patients had an sCEA level above the normal range, and 76.2% (77/101) of those patients showed a lower average CpG methylation level of the CEACAM5 promoter. The methylation analysis showed that both CRC cell lines and patient samples shared the same critical methylation CpG regions at -200 to -500 and -1000 to -1400 bp of the CEACAM5 promoter. Patients with hypermethylation of the CEACAM5 promoter showed features of a BRAF mutation, TGFB2 mutation, microsatellite instability-high, and preference for right-sided colorectal cancer and peritoneal seeding presentation that had a similar clinical character to the consensus molecular subtype 1 (CMS1) of colorectal cancer. Additionally, hypermethylation of the CEACAM5 promoter combined with evaluated sCEA demonstrated the worst survival among the patients. Therefore, the methylation status of the CEACAM5 promoter also served as an effective biomarker for assessing disease prognosis. Results indicated that DNA methylation is a major regulatory mechanism for CEA expression in colorectal cancer. Moreover, our data also highlighted that patients in a subgroup who escaped from inactivation by DNA methylation had distinct clinical and pathological features and the worst survival.


Asunto(s)
Antígeno Carcinoembrionario , Neoplasias Colorrectales , Humanos , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Relevancia Clínica , Neoplasias Colorrectales/patología , Metilación de ADN/genética , Decitabina , Células HT29 , Regulación Neoplásica de la Expresión Génica , Islas de CpG/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo
10.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38066391

RESUMEN

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Transporte de Membrana , Naftoquinonas , Humanos , Survivin/genética , Survivin/metabolismo , Apoptosis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacología , Células U937 , Regulación hacia Arriba , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Línea Celular Tumoral
11.
Small ; 20(7): e2305526, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37798678

RESUMEN

Pyroptosis-based immunotherapy can escape drug resistance as well as inhibit metastasis. It is urgently required to develop a delivery platform to induce targeted tumor-specific pyroptosis for cancer immunotherapy. Herein, macrophages-based biohybrid microrobots (IDN@MC) are constructed with IR-macrophage and decitabine-loaded Metal-organic frameworks (DZNPs). The integration of fluorescence photosensitizers and pH-sensitive DZNPs endow the microrobots properties such as photothermal conversion, fluorescent navigation, targeted drug delivery, and controlled drug release. In light of the inherent tumor targeting, tumor accumulation of IDN@MC is facilitated. Due to the sustained release of decitabine from packaged DZNPs, the host macrophages are differentiated into M1 phenotypes to exert the tumor phagocytosis at the tumor site, directly transporting the therapeutic agents into cancer cells. With laser control, the rapid and durable caspase 3-cleaved gasdermin E (GSDME)-related tumor pyroptosis is achieved with combined photothermal-chemotherapy, releasing inflammatory factors such as lactate dehydrogenase and interleukin-18. Subsequently, the robust and adaptive immune response is primed with dendritic cell maturation to initiate T-cell clone expansion and modulation of the immune suppressive microenvironment, thus enhancing the tumor immunotherapy to inhibit tumor proliferation and metastasis. This macrophages-based biohybrid microrobot is an efficient strategy for breast cancer treatment to trigger photo-induced pyroptosis and augment the immune response.


Asunto(s)
Neoplasias , Piroptosis , Humanos , Decitabina , Inmunoterapia , Macrófagos , Línea Celular Tumoral , Microambiente Tumoral
12.
Blood ; 140(26): 2818-2834, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36037415

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature cells and natural inhibitors of adaptive immunity. Metabolic fitness of MDSCs is fundamental for its suppressive activity toward effector T cells. Our previous studies showed that the number and inhibitory function of MDSCs were impaired in patients with immune thrombocytopenia (ITP) compared with healthy controls. In this study, we analyzed the effects of decitabine on MDSCs from patients with ITP, both in vitro and in vivo. We found that low-dose decitabine promoted the generation of MDSCs and enhanced their aerobic metabolism and immunosuppressive functions. Lower expression of liver kinase 1 (LKB1) was found in MDSCs from patients with ITP, which was corrected by decitabine therapy. LKB1 short hairpin RNA (shRNA) transfection effectively blocked the function of MDSCs and almost offset the enhanced effect of decitabine on impaired MDSCs. Subsequently, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient (SCID) mice to induce ITP in murine models. Passive transfer of decitabine-modulated MDSCs significantly raised platelet counts compared with that of phosphate buffered saline-modulated MDSCs. However, when LKB1 shRNA-transfected MDSCs were transferred into SCID mice, the therapeutic effect of decitabine in alleviating thrombocytopenia was quenched. In conclusion, our study suggests that the impaired aerobic metabolism of MDSCs is involved in the pathogenesis of ITP, and the modulatory effect of decitabine on MDSC metabolism contributes to the improvement of its immunosuppressive function. This provides a possible mechanism for sustained remission elicited by low-dose decitabine in patients with ITP.


Asunto(s)
Células Supresoras de Origen Mieloide , Púrpura Trombocitopénica Idiopática , Trombocitopenia , Animales , Ratones , Decitabina/farmacología , Decitabina/uso terapéutico , Ratones SCID , Trombocitopenia/metabolismo , Hígado
13.
Drug Metab Dispos ; 52(6): 555-564, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38565301

RESUMEN

Cytochrome P450 1A2 (CYP1A2) is a known tumor suppressor in hepatocellular carcinoma (HCC), but its expression is repressed in HCC and the underlying mechanism is unclear. In this study, we investigated the epigenetic mechanisms of CYP1A2 repression and potential therapeutic implications. In HCC tumor tissues, the methylation rates of CYP1A2 CpG island (CGI) and DNA methyltransferase (DNMT) 3A protein levels were significantly higher, and there was a clear negative correlation between DNMT3A and CYP1A2 protein expression. Knockdown of DNMT3A by siRNA significantly increased CYP1A2 expression in HCC cells. Additionally, treating HCC cells with decitabine (DAC) resulted in a dose-dependent upregulation of CYP1A2 expression by reducing the methylation level of CYP1A2 CGI. Furthermore, we observed a decreased enrichment of H3K27Ac in the promoter region of CYP1A2 in HCC tissues. Treatment with the trichostatin A (TSA) restored CYP1A2 expression in HCC cells by increasing H3K27Ac levels in the CYP1A2 promoter region. Importantly, combination treatment of sorafenib with DAC or TSA resulted in a leftward shift of the dose-response curve, lower IC50 values, and reduced colony numbers in HCC cells. Our findings suggest that hypermethylation of the CGI at the promoter, mediated by the high expression of DNMT3A, and hypoacetylation of H3K27 in the CYP1A2 promoter region, leads to CYP1A2 repression in HCC. Epigenetic drugs DAC and TSA increase HCC cell sensitivity to sorafenib by restoring CYP1A2 expression. Our study provides new insights into the epigenetic regulation of CYP1A2 in HCC and highlights the potential of epigenetic drugs as a therapeutic approach for HCC. SIGNIFICANCE STATEMENT: This study marks the first exploration of the epigenetic mechanisms underlying cytochrome P450 (CYP) 1A2 suppression in hepatocellular carcinoma (HCC). Our findings reveal that heightened DNA methyltransferase expression induces hypermethylation of the CpG island at the promoter, coupled with diminished H3K27Ac levels, resulting in the repression of CYP1A2 in HCC. The use of epigenetic drugs such as decitabine and trichostatin A emerges as a novel therapeutic avenue, demonstrating their potential to restore CYP1A2 expression and enhance sorafenib sensitivity in HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Citocromo P-450 CYP1A2 , Metilación de ADN , Epigénesis Genética , Neoplasias Hepáticas , Sorafenib , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Humanos , Sorafenib/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Metilación de ADN/efectos de los fármacos , Línea Celular Tumoral , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , ADN Metiltransferasa 3A , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Decitabina/farmacología , Islas de CpG/genética , Ácidos Hidroxámicos/farmacología , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/efectos de los fármacos
14.
Haematologica ; 109(1): 186-199, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37534528

RESUMEN

Despite recent advances in the therapy of diffuse large B-cell lymphoma (DLBCL), many patients are still not cured. Therefore, new therapeutic strategies are needed. The anti-apoptotic B-cell lymphoma 2 (BCL2) gene is commonly dysregulated in DLBCL due to various mechanisms such as chromosomal translocation t(14;18)(q32;q21) and copy number alterations; however, targeting BCL-2 with the selective inhibitor, venetoclax, led to response in only a minority of patients. Thus, we sought to identify a rational combination partner of venetoclax to improve its activity against DLBCL cells. Utilizing a functional assay, dynamic BH3 profiling, we found that the DNA hypomethylating agent decitabine increased mitochondrial apoptotic priming and BCL-2 dependence in DLBCL cells. RNA-sequencing analysis revealed that decitabine suppressed the pro-survival PI3K-AKT pathway and altered the mitochondria membrane composition in DLBCL cell lines. Additionally, it induced a DNA damage response and increased BAX and BAK activities. The combination of decitabine and venetoclax synergistically suppressed proliferation of DLBCL cells both in vitro and in vivo in a DLBCL cell line-derived xenograft mouse model. Our study suggests that decitabine plus venetoclax is a promising combination to explore clinically in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Fosfatidilinositol 3-Quinasas , Humanos , Animales , Ratones , Decitabina/farmacología , Decitabina/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-bcl-2 , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Apoptosis
15.
Hematol Oncol ; 42(3): e3274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711253

RESUMEN

Venetoclax, a highly selective BCL-2 inhibitor, combined with hypomethylating agents (HMAs) azacitidine or decitabine, is approved for the treatment of newly diagnosed acute myeloid leukemia (ND AML) in patients who are ineligible to receive intensive chemotherapy. Previous clinical studies initiated venetoclax plus HMA in an inpatient setting owing to concerns of tumor lysis syndrome (TLS). This study (NCT03941964) evaluated the efficacy and safety of venetoclax plus HMA in a United States community-based outpatient setting in patients with ND AML (N = 60) who were treatment naïve for AML, ineligible to receive intensive chemotherapy, had no evidence of spontaneous TLS at screening, and were deemed as appropriate candidates for outpatient initiation of venetoclax plus HMA by the investigator. Patients received venetoclax in combination with azacitidine (75 mg/m2) or decitabine (20 mg/m2) for up to 6 cycles during the study. With a median time on study of 18.3 weeks, the best response rate of composite complete remission was 66.7%, and the overall post-baseline red blood cell (RBC) and platelet transfusion independence rate was 55.0%, consistent with results of studies in which treatment was initiated in an inpatient setting. Key adverse events included nausea, anemia, thrombocytopenia, neutropenia, and white blood cell count decrease of any grade (≥50% of patients). The observed safety profile was generally consistent with that of venetoclax plus HMA observed in inpatient AML studies. With close monitoring, 2 cases of TLS were identified, appropriately managed, and the patients were able to continue study treatment. CLINICAL TRIALS REGISTRATION: This study is registered at ClinicalTrials.gov. The registration identification number is NCT03941964.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , Compuestos Bicíclicos Heterocíclicos con Puentes , Decitabina , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Sulfonamidas/efectos adversos , Azacitidina/administración & dosificación , Azacitidina/uso terapéutico , Azacitidina/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Decitabina/administración & dosificación , Decitabina/uso terapéutico , Decitabina/efectos adversos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anciano de 80 o más Años , Adulto , Pacientes Ambulatorios
16.
Ann Hematol ; 103(3): 759-769, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38273140

RESUMEN

Very few data are available about hypomethylating agent (HMA) efficiency in core binding factor acute myeloid leukemias (CBF-AML). Our main objective was to evaluate the efficacy and safety of HMA in the specific subset of CBF-AML. Here, we report the results of a multicenter retrospective French study about efficacy of HMA monotherapy, used frontline or for R/R CBF-AML. Forty-nine patients were included, and received a median of 5 courses of azacitidine (n = 46) or decitabine (n = 3). ORR was 49% for the whole cohort with a median time to response of 112 days. After a median follow-up of 72.3 months, median OS for the total cohort was 10.6 months. In multivariate analysis, hematological relapse of CBF-AML at HMA initiation was significantly associated with a poorer OS (HR: 2.13; 95%CI: 1.04-4.36; p = 0.038). Responders had a significantly improved OS (1-year OS: 75%) compared to non-responders (1-year OS: 15.3%; p < 0.0001). Hematological improvement occurred for respectively 28%, 33% and 48% for patients who were red blood cell or platelet transfusion-dependent, or who experienced grade 3/4 neutropenia at HMA initiation. Adverse events were consistent with the known safety profile of HMA. Our study highlights that HMA is a well-tolerated therapeutic option with moderate clinical activity for R/R CBF-AML and for patients who cannot handle intensive chemotherapy.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Humanos , Estudios Retrospectivos , Decitabina/uso terapéutico , Azacitidina/efectos adversos , Leucemia Mieloide Aguda/tratamiento farmacológico , Factores de Unión al Sitio Principal , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resultado del Tratamiento
17.
Ann Hematol ; 103(4): 1345-1351, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316642

RESUMEN

Myelodysplastic syndrome (MDS) is a rare clonal hematopoietic disorder in children. The risk stratification system and treatment strategy for adults are unfit for children. The role of hypomethylating agents (HMAs) in higher-risk childhood MDS has not been identified. This study aimed to investigate the outcomes of hematopoietic stem cell transplantation (HSCT) in children with higher-risk MDS at one single center. A retrospective study was conducted in children with higher-risk MDS undergoing HSCT between September 2019 and March 2023 at Blood Diseases Hospital CAMS. The clinical characteristics and transplantation information were reviewed and analyzed. A total of 27 patients were analyzed, including 11 with MDS with excess blasts (MDS-EB), 14 with MDS-EB in transformation (MDS-EBt) or acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), and 2 with therapy-related MDS/AML (t-MDS/AML). Eight patients harbored monosomy 7. Before transplantation, induction therapy was administered to 25 patients, and 19 of them achieved bone marrow blasts <5% before HSCT. The stem cell source was unmanipulated-related bone marrow or peripheral blood stem cells for nineteen patients and unrelated cord blood for eight. All patients received decitabine-containing and Bu/Cy-based myeloablative conditioning; 26 patients achieved initial engraftment. The cumulative incidences of grade II-IV and grade III-IV acute graft-versus-host disease (GvHD) at 100 days were 65.4% and 42.3%, respectively. The incidence of cGvHD was 38.5%. The median follow-up was 26 (range 4-49) months after transplantation. By the end of follow-up, two patients died of complications and two died of disease progression. The probability of 3-year overall survival (OS) was 84.8% (95%CI, 71.1 to 98.5%). In summary, decitabine-containing myeloablative conditioning resulted in excellent outcomes for children with higher-risk MDS undergoing allogeneic HSCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Adulto , Niño , Humanos , Decitabina/uso terapéutico , Estudios Retrospectivos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/métodos , Síndromes Mielodisplásicos/tratamiento farmacológico , Acondicionamiento Pretrasplante/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control
18.
Anticancer Drugs ; 35(5): 440-444, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38386312

RESUMEN

Venetoclax, in combination with hypomethylation agents (HMAs), is a novel treatment for leukemia patients with low chemotherapy tolerance. However, it has been reported to be a risk of causing tumor lysis syndrome (TLS) in chronic lymphocytic leukemia (CLL) and elderly acute myeloid leukemia (AML) patients. Here we report a rare case of a young adult AML patient who induced TLS after receiving a combination therapy of venetoclax with decitabine (DEC). A 36-year-old male patient presented with an unexplained fever and was diagnosed with AML-M5a. The patient was first treated with a combination of antibiotics, including voriconazole 300 mg Q12h. After the infection was relieved, he was treated with 100 mg venetoclax in combination with 75 mg/m 2 DEC. However, 12 h after the first treatment, he developed diarrhea, fatigue and other symptoms, and the laboratory results were consistent with the laboratory TLS. The patient stopped chemotherapy immediately, and TLS gradually improved after receiving rehydration, diuresis, dialysis and other treatments. Finally, the patient achieved complete remission. Based on the experience of this case and related studies, we recommend the prevention of TLS should not be limited to elderly patients taking venetoclax, and it is equally important in young patients. And reduce the dosage of venetoclax when using azole antifungal drugs.


Asunto(s)
Leucemia Mieloide Aguda , Sulfonamidas , Síndrome de Lisis Tumoral , Masculino , Adulto Joven , Humanos , Anciano , Adulto , Decitabina/efectos adversos , Síndrome de Lisis Tumoral/etiología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
19.
Am J Hematol ; 99(3): 380-386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258329

RESUMEN

Acute myeloid leukemia (AML) in older patients has a poor prognosis, low complete remission (CR) rates, and poor overall survival (OS). Preclinical studies have shown synergistic effects of epigenetic priming with hypomethylating agents followed by cytarabine. Based on these data, we hypothesized that an induction regimen using epigenetic priming with decitabine, followed by cytarabine would be effective and safe in older patients with previously untreated AML. Here, we conducted a phase 2 trial in which older patients with previously untreated AML received an induction regimen consisting of 1 or 2 courses of decitabine 20 mg/m2 intravenously (IV) for 5 days followed by cytarabine 100 mg/m2 continuous IV infusion for 5 days. Forty-four patients (median age 76 years) were enrolled, and CR/CRi was achieved by 26 patients (59% of all patients, 66.7% of evaluable patients). Fourteen of 21 (66.7%) patients with adverse cytogenetics achieved CR including six out of seven evaluable patients with TP53 mutations. The 4- and 8-week mortality rates were 2.3% and 9.1%, respectively, with median OS of 10.7 months. These results suggest epigenetic priming with decitabine followed by cytarabine should be considered as an option for first-line therapy in older patients with AML. This trial was registered at www.clinicaltrials.gov as # NCT01829503.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Anciano , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Decitabina , Epigénesis Genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Inducción de Remisión , Resultado del Tratamiento
20.
Am J Hematol ; 99(2): E32-E36, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37994196

RESUMEN

The safety and efficacy of sabatolimab, a novel immunotherapy targeting T-cell immunoglobulin domain and mucin domain-3 (TIM-3), was assessed in combination with hypomethylating agents (HMAs) in patients with HMA-naive revised International Prognostic System Score (IPSS-R) high- or very high-risk myelodysplastic syndromes (HR/vHR-MDS) or chronic myelomonocytic leukemia (CMML). Sabatolimab + HMA had a safety profile similar to that reported for HMA alone and demonstrated durable clinical responses in patients with HR/vHR-MDS. These results support the ongoing evaluation of sabatolimab-based combination therapy in MDS, CMML, and acute myeloid leukemia.


Asunto(s)
Anticuerpos Monoclonales , Leucemia Mieloide Aguda , Leucemia Mielomonocítica Crónica , Síndromes Mielodisplásicos , Humanos , Azacitidina/uso terapéutico , Decitabina/uso terapéutico , Antimetabolitos Antineoplásicos/uso terapéutico , Síndromes Mielodisplásicos/tratamiento farmacológico , Receptor 2 Celular del Virus de la Hepatitis A/uso terapéutico , Leucemia Mielomonocítica Crónica/tratamiento farmacológico , Leucemia Mieloide Aguda/tratamiento farmacológico , Anticuerpos/uso terapéutico , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA