Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.897
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995520

RESUMEN

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Asunto(s)
Dermatoglifia , Dedos/crecimiento & desarrollo , Organogénesis/genética , Polimorfismo de Nucleótido Simple , Dedos del Pie/crecimiento & desarrollo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Pueblo Asiatico/genética , Tipificación del Cuerpo/genética , Niño , Estudios de Cohortes , Femenino , Miembro Anterior/crecimiento & desarrollo , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
2.
Physiol Rev ; 104(3): 983-1020, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385888

RESUMEN

Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.


Asunto(s)
Evolución Biológica , Dedos , Humanos , Fenómenos Biomecánicos , Dedos/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Neurobiología , Desempeño Psicomotor/fisiología
3.
Proc Natl Acad Sci U S A ; 121(13): e2314901121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466880

RESUMEN

Tactile perception of softness serves a critical role in the survival, well-being, and social interaction among various species, including humans. This perception informs activities from food selection in animals to medical palpation for disease detection in humans. Despite its fundamental importance, a comprehensive understanding of how softness is neurologically and cognitively processed remains elusive. Previous research has demonstrated that the somatosensory system leverages both cutaneous and kinesthetic cues for the sensation of softness. Factors such as contact area, depth, and force play a particularly critical role in sensations experienced at the fingertips. Yet, existing haptic technologies designed to explore this phenomenon are limited, as they often couple force and contact area, failing to provide a real-world experience of softness perception. Our research introduces the softness-rendering interface (SORI), a haptic softness display designed to bridge this knowledge gap. Unlike its predecessors, SORI has the unique ability to decouple contact area and force, thereby allowing for a quantitative representation of softness sensations at the fingertips. Furthermore, SORI incorporates individual physical fingertip properties and model-based softness cue estimation and mapping to provide a highly personalized experience. Utilizing this method, SORI quantitatively replicates the sensation of softness on stationary, dynamic, homogeneous, and heterogeneous surfaces. We demonstrate that SORI accurately renders the surfaces of both virtual and daily objects, thereby presenting opportunities across a range of fields, from teleoperation to medical technology. Finally, our proposed method and SORI will expedite psychological and neuroscience research to unlock the nature of softness perception.


Asunto(s)
Percepción del Tacto , Humanos , Piel , Señales (Psicología) , Dedos , Tacto , Interfaz Usuario-Computador
4.
PLoS Genet ; 20(2): e1011159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38377146

RESUMEN

Common genetic variants in the repressive GATA-family transcription factor (TF) TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over 80 percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes estrogen receptor alpha (ER) to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the genomic distribution of ER, both activating and repressing transcription of genes related to cancer cell fitness.


Asunto(s)
Neoplasias de la Mama , Cromatina , Dedos , Enfermedades del Cabello , Síndrome de Langer-Giedion , Nariz , Femenino , Humanos , Neoplasias de la Mama/genética , Cromatina/genética , Receptor alfa de Estrógeno/genética , Dedos/anomalías , Factores de Transcripción GATA , Expresión Génica , Genes cdc , Nariz/anomalías , Proteínas Represoras/genética
5.
EMBO Rep ; 25(3): 1256-1281, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429579

RESUMEN

The plant homeodomain zinc-finger protein, PHF6, is a transcriptional regulator, and PHF6 germline mutations cause the X-linked intellectual disability (XLID) Börjeson-Forssman-Lehmann syndrome (BFLS). The mechanisms by which PHF6 regulates transcription and how its mutations cause BFLS remain poorly characterized. Here, we show genome-wide binding of PHF6 in the developing cortex in the vicinity of genes involved in central nervous system development and neurogenesis. Characterization of BFLS mice harbouring PHF6 patient mutations reveals an increase in embryonic neural stem cell (eNSC) self-renewal and a reduction of neural progenitors. We identify a panel of Ephrin receptors (EphRs) as direct transcriptional targets of PHF6. Mechanistically, we show that PHF6 regulation of EphR is impaired in BFLS mice and in conditional Phf6 knock-out mice. Knockdown of EphR-A phenocopies the PHF6 loss-of-function defects in altering eNSCs, and its forced expression rescues defects of BFLS mice-derived eNSCs. Our data indicate that PHF6 directly promotes Ephrin receptor expression to control eNSC behaviour in the developing brain, and that this pathway is impaired in BFLS.


Asunto(s)
Epilepsia , Cara/anomalías , Dedos/anomalías , Trastornos del Crecimiento , Hipogonadismo , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Obesidad , Humanos , Ratones , Animales , Discapacidad Intelectual/genética , Proteínas Represoras , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Transcripción
6.
Proc Natl Acad Sci U S A ; 120(44): e2311637120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871221

RESUMEN

Equilibrium bifurcation in natural systems can sometimes be explained as a route to stress shielding for preventing failure. Although compressive buckling has been known for a long time, its less-intuitive tensile counterpart was only recently discovered and yet never identified in living structures or organisms. Through the analysis of an unprecedented all-in-one paradigm of elastic instability, it is theoretically and experimentally shown that coexistence of two curvatures in human finger joints is the result of an optimal design by nature that exploits both compressive and tensile buckling for inducing luxation in case of traumas, so realizing a unique mechanism for protecting tissues and preventing more severe damage under extreme loads. Our findings might pave the way to conceive complex architectured and bio-inspired materials, as well as next generation artificial joint prostheses and robotic arms for bio-engineering and healthcare applications.


Asunto(s)
Materiales Biomiméticos , Dedos , Humanos , Prótesis e Implantes
7.
Dev Biol ; 507: 44-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145727

RESUMEN

The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.


Asunto(s)
Dedos , Cicatrización de Heridas , Animales , Ratones , Filogenia , Cicatrización de Heridas/fisiología , Corazón
8.
PLoS Biol ; 20(4): e3001598, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35389982

RESUMEN

Humans and other animals are able to adjust their speed-accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context.


Asunto(s)
Corteza Motora , Animales , Potenciales Evocados Motores/fisiología , Dedos/fisiología , Humanos , Actividad Motora , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal
9.
Nature ; 574(7777): 249-253, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578523

RESUMEN

The integrity of the mammalian epidermis depends on a balance of proliferation and differentiation in the resident population of stem cells1. The kinase RIPK4 and the transcription factor IRF6 are mutated in severe developmental syndromes in humans, and mice lacking these genes display epidermal hyperproliferation and soft-tissue fusions that result in neonatal lethality2-5. Our understanding of how these genes control epidermal differentiation is incomplete. Here we show that the role of RIPK4 in mouse development requires its kinase activity; that RIPK4 and IRF6 expressed in the epidermis regulate the same biological processes; and that the phosphorylation of IRF6 at Ser413 and Ser424 primes IRF6 for activation. Using RNA sequencing (RNA-seq), histone chromatin immunoprecipitation followed by sequencing (ChIP-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) of skin in wild-type and IRF6-deficient mouse embryos, we define the transcriptional programs that are regulated by IRF6 during epidermal differentiation. IRF6 was enriched at bivalent promoters, and IRF6 deficiency caused defective expression of genes that are involved in the metabolism of lipids and the formation of tight junctions. Accordingly, the lipid composition of the stratum corneum of Irf6-/- skin was abnormal, culminating in a severe defect in the function of the epidermal barrier. Collectively, our results explain how RIPK4 and IRF6 function to ensure the integrity of the epidermis and provide mechanistic insights into why developmental syndromes that are characterized by orofacial, skin and genital abnormalities result when this axis goes awry.


Asunto(s)
Diferenciación Celular , Células Epidérmicas/citología , Epidermis/fisiología , Factores Reguladores del Interferón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Anomalías Múltiples/genética , Animales , Labio Leporino/genética , Fisura del Paladar/genética , Quistes/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Epidérmicas/metabolismo , Epidermis/embriología , Anomalías del Ojo/genética , Femenino , Dedos/anomalías , Regulación de la Expresión Génica , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/genética , Rodilla/anomalías , Articulación de la Rodilla/anomalías , Labio/anomalías , Metabolismo de los Lípidos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sindactilia/genética , Anomalías Urogenitales/genética
10.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642106

RESUMEN

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Asunto(s)
Percepción del Tacto , Tacto , Humanos , Tacto/fisiología , Dedos/fisiología , Percepción del Tacto/fisiología , Mano/fisiología , Electroencefalografía , Corteza Somatosensorial
11.
Proc Natl Acad Sci U S A ; 119(12): e2122903119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35294291

RESUMEN

Stable precision grips using the fingertips are a cornerstone of human hand dexterity. However, our fingers become unstable sometimes and snap into a hyperextended posture. This is because multilink mechanisms like our fingers can buckle under tip forces. Suppressing this instability is crucial for hand dexterity, but how the neuromuscular system does so is unknown. Here we show that people rely on the stiffness from muscle contraction for finger stability. We measured buckling time constants of 50 ms or less during maximal force application with the index finger­quicker than feedback latencies­which suggests that muscle-induced stiffness may underlie stability. However, a biomechanical model of the finger predicts that muscle-induced stiffness cannot stabilize at maximal force unless we add springs to stiffen the joints or people reduce their force to enable cocontraction. We tested this prediction in 38 volunteers. Upon adding stiffness, maximal force increased by 34 ± 3%, and muscle electromyography readings were 21 ± 3% higher for the finger flexors (mean ± SE). Muscle recordings and mathematical modeling show that adding stiffness offloads the demand for muscle cocontraction, thus freeing up muscle capacity for fingertip force. Hence, people refrain from applying truly maximal force unless an external stabilizing stiffness allows their muscles to apply higher force without losing stability. But more stiffness is not always better. Stiff fingers would affect the ability to adapt passively to complex object geometries and precisely regulate force. Thus, our results show how hand function arises from neurally tuned muscle stiffness that balances finger stability with compliance.


Asunto(s)
Dedos , Fuerza de la Mano , Fenómenos Biomecánicos , Electromiografía , Dedos/fisiología , Fuerza de la Mano/fisiología , Humanos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Postura
12.
Proc Natl Acad Sci U S A ; 119(24): e2200830119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35679344

RESUMEN

The functional support and advancement of our body while preserving inherent naturalness is one of the ultimate goals of bioengineering. Skin protection against infectious pathogens is an application that requires common and long-term wear without discomfort or distortion of the skin functions. However, no antimicrobial method has been introduced to prevent cross-infection while preserving intrinsic skin conditions. Here, we propose an antimicrobial skin protection platform copper nanomesh, which prevents cross-infectionmorphology, temperature change rate, and skin humidity. Copper nanomesh exhibited an inactivation rate of 99.99% for Escherichia coli bacteria and influenza virus A within 1 and 10 min, respectively. The thin and porous nanomesh allows for conformal coating on the fingertips, without significant interference with the rate of skin temperature change and humidity. Efficient cross-infection prevention and thermal transfer of copper nanomesh were demonstrated using direct on-hand experiments.


Asunto(s)
Antiinfecciosos , Cobre , Infección Hospitalaria , Nanopartículas del Metal , Piel , Antiinfecciosos/farmacología , Cobre/farmacología , Infección Hospitalaria/prevención & control , Escherichia coli/efectos de los fármacos , Dedos , Humanos , Virus de la Influenza A/efectos de los fármacos , Porosidad , Piel/microbiología
13.
J Neurosci ; 43(22): 4033-4046, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37142429

RESUMEN

Dexterous object manipulation depends critically on information about forces normal and tangential to the fingerpads, and also on torque associated with object orientation at grip surfaces. We investigated how torque information is encoded by human tactile afferents in the fingerpads and compared them to 97 afferents recorded in monkeys (n = 3; 2 females) in our previous study. Human data included slowly-adapting Type-II (SA-II) afferents, which are absent in the glabrous skin of monkeys. Torques of different magnitudes (3.5-7.5 mNm) were applied in clockwise and anticlockwise directions to a standard central site on the fingerpads of 34 human subjects (19 females). Torques were superimposed on a 2, 3, or 4 N background normal force. Unitary recordings were made from fast-adapting Type-I (FA-I, n = 39), and slowly-adapting Type-I (SA-I, n = 31) and Type-II (SA-II, n = 13) afferents supplying the fingerpads via microelectrodes inserted into the median nerve. All three afferent types encoded torque magnitude and direction, with torque sensitivity being higher with smaller normal forces. SA-I afferent responses to static torque were inferior to dynamic stimuli in humans, while in monkeys the opposite was true. In humans this might be compensated by the addition of sustained SA-II afferent input, and their capacity to increase or decrease firing rates with direction of rotation. We conclude that the discrimination capacity of individual afferents of each type was inferior in humans than monkeys which could be because of differences in fingertip tissue compliance and skin friction.SIGNIFICANCE STATEMENT We investigated how individual human tactile nerve fibers encode rotational forces (torques) and compared them to their monkey counterparts. Human hands, but not monkey hands, are innervated by a tactile neuron type (SA-II afferents) specialized to encode directional skin strain yet, so far, torque encoding has only been studied in monkeys. We find that human SA-I afferents were generally less sensitive and less able to discriminate torque magnitude and direction than their monkey counterparts, especially during the static phase of torque loading. However, this shortfall in humans could be compensated by SA-II afferent input. This indicates that variation in afferent types might complement each other signaling different stimulus features possibly providing computational advantage to discriminate stimuli.


Asunto(s)
Dedos , Tacto , Femenino , Humanos , Torque , Tacto/fisiología , Dedos/fisiología , Piel/inervación , Mano , Mecanorreceptores/fisiología , Neuronas Aferentes/fisiología
14.
J Neurosci ; 43(9): 1572-1589, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36717227

RESUMEN

Despite the tight coupling between sensory and motor processing for fine manipulation in humans, it is not yet totally clear which specific properties of the fingers are mapped in the precentral and postcentral gyrus. We used fMRI to compare the morphology, connectivity, and encoding of the motor and tactile finger representations (FRs) in the precentral and postcentral gyrus of 25 5-fingered participants (8 females). Multivoxel pattern and structural and functional connectivity analyses demonstrated the existence of distinct motor and tactile FRs within both the precentral and postcentral gyrus, integrating finger-specific motor and tactile information. Using representational similarity analysis, we found that the motor and tactile FRs in the sensorimotor cortex were described by the perceived structure of the hand better than by the actual hand anatomy or other functional models (finger kinematics, muscles synergies). We then studied a polydactyly individual (i.e., with a congenital 6-fingered hand) showing superior manipulation abilities and divergent anatomic-functional hand properties. The perceived hand model was still the best model for tactile representations in the precentral and postcentral gyrus, while finger kinematics better described motor representations in the precentral gyrus. We suggest that, under normal conditions (i.e., in subjects with a standard hand anatomy), the sensorimotor representations of the 5 fingers in humans converge toward a model of perceived hand anatomy, deviating from the real hand structure, as the best synthesis between functional and structural features of the hand.SIGNIFICANCE STATEMENT Distinct motor and tactile finger representations exist in both the precentral and postcentral gyrus, supported by a finger-specific pattern of anatomic and functional connectivity across modalities. At the representational level, finger representations reflect the perceived structure of the hand, which might result from an adapting process harmonizing (i.e., uniformizing) the encoding of hand function and structure in the precentral and postcentral gyrus. The same analyses performed in an extremely rare polydactyly subject showed that the emergence of such representational geometry is also found in neuromechanical variants with different hand anatomy and function. However, the harmonization process across the precentral and postcentral gyrus might not be possible because of divergent functional-structural properties of the hand and associated superior manipulation abilities.


Asunto(s)
Polidactilia , Corteza Somatosensorial , Femenino , Humanos , Corteza Somatosensorial/fisiología , Dedos/fisiología , Tacto/fisiología , Mano , Imagen por Resonancia Magnética , Mapeo Encefálico
15.
J Neurosci ; 43(19): 3456-3476, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37001994

RESUMEN

The functional topography of the human primary somatosensory cortex hand area is a widely studied model system to understand sensory organization and plasticity. It is so far unclear whether the underlying 3D structural architecture also shows a topographic organization. We used 7 Tesla (7T) magnetic resonance imaging (MRI) data to quantify layer-specific myelin, iron, and mineralization in relation to population receptive field maps of individual finger representations in Brodman area 3b (BA 3b) of human S1 in female and male younger adults. This 3D description allowed us to identify a characteristic profile of layer-specific myelin and iron deposition in the BA 3b hand area, but revealed an absence of structural differences, an absence of low-myelin borders, and high similarity of 3D microstructure profiles between individual fingers. However, structural differences and borders were detected between the hand and face areas. We conclude that the 3D structural architecture of the human hand area is nontopographic, unlike in some monkey species, which suggests a high degree of flexibility for functional finger organization and a new perspective on human topographic plasticity.SIGNIFICANCE STATEMENT Using ultra-high-field MRI, we provide the first comprehensive in vivo description of the 3D structural architecture of the human BA 3b hand area in relation to functional population receptive field maps. High similarity of precise finger-specific 3D profiles, together with an absence of structural differences and an absence of low-myelin borders between individual fingers, reveals the 3D structural architecture of the human hand area to be nontopographic. This suggests reduced structural limitations to cortical plasticity and reorganization and allows for shared representational features across fingers.


Asunto(s)
Mano , Corteza Somatosensorial , Adulto , Humanos , Masculino , Femenino , Dedos , Corteza Cerebral , Imagen por Resonancia Magnética , Mapeo Encefálico/métodos
16.
J Physiol ; 602(9): 2089-2106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38544437

RESUMEN

When manipulating objects, humans begin adjusting their grip force to friction within 100 ms of contact. During motor adaptation, subjects become aware of the slipperiness of touched surfaces. Previously, we have demonstrated that humans cannot perceive frictional differences when surfaces are brought in contact with an immobilised finger, but can do so when there is submillimeter lateral displacement or subjects actively make the contact movement. Similarly, in, we investigated how humans perceive friction in the absence of intentional exploratory sliding or rubbing movements, to mimic object manipulation interactions. We used a two-alternative forced-choice paradigm in which subjects had to reach and touch one surface followed by another, and then indicate which felt more slippery. Subjects correctly identified the more slippery surface in 87 ± 8% of cases (mean ± SD; n = 12). Biomechanical analysis of finger pad skin displacement patterns revealed the presence of tiny (<1 mm) localised slips, known to be sufficient to perceive frictional differences. We tested whether these skin movements arise as a result of natural hand reaching kinematics. The task was repeated with the introduction of a hand support, eliminating the hand reaching movement and minimising fingertip movement deviations from a straight path. As a result, our subjects' performance significantly declined (66 ± 12% correct, mean ± SD; n = 12), suggesting that unrestricted reaching movement kinematics and factors such as physiological tremor, play a crucial role in enhancing or enabling friction perception upon initial contact. KEY POINTS: More slippery objects require a stronger grip to prevent them from slipping out of hands. Grip force adjustments to friction driven by tactile sensory signals are largely automatic and do not necessitate cognitive involvement; nevertheless, some associated awareness of grip surface slipperiness under such sensory conditions is present and helps to select a safe and appropriate movement plan. When gripping an object, tactile receptors provide frictional information without intentional rubbing or sliding fingers over the surface. However, we have discovered that submillimeter range lateral displacement might be required to enhance or enable friction sensing. The present study provides evidence that such small lateral movements causing localised partial slips arise and are an inherent part of natural reaching movement kinematics.


Asunto(s)
Fricción , Movimiento , Humanos , Masculino , Fenómenos Biomecánicos , Adulto , Femenino , Movimiento/fisiología , Adulto Joven , Brazo/fisiología , Percepción del Tacto/fisiología , Dedos/fisiología , Fuerza de la Mano/fisiología , Tacto/fisiología , Desempeño Psicomotor/fisiología
17.
J Cogn Neurosci ; 36(7): 1412-1426, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38683729

RESUMEN

Reactively canceling movements is a vital feature of the motor system to ensure safety. This behavior can be studied in the laboratory using the stop-signal task. There remains ambiguity about whether a "point-of-no-return" exists, after which a response cannot be aborted. A separate question concerns whether motor system inhibition associated with attempted stopping persists when stopping is unsuccessful. We address these two questions using electromyography (EMG) in two stop-signal task experiments. Experiment 1 (n = 24) involved simple right and left index finger responses in separate task blocks. Experiment 2 (n = 28) involved a response choice between the right index and pinky fingers. To evaluate the approximate point of no return, we measured EMG in responding fingers during the 100 msec preceding the stop signal and observed significantly greater EMG amplitudes during failed than successful stopping in both experiments. Thus, EMG before the stop signal differentiated success, regardless of whether there was a response choice. To address whether motor inhibition persists after failed stopping, we assessed EMG peak-to-offset durations and slopes (i.e., rate of EMG decline) for go, failed stop, and successful stop (partial response) trials. EMG peak-to-offset was shorter and steeper for failed stopping compared to go and successful stop partial response trials, suggesting motor inhibition persists even when failing to stop. These findings indicate EMG is sensitive to a "transition zone" at which the relative likelihood of stop failure versus success inverts and also suggest peak-to-offset time of response-related EMG activity during failed stopping reflects stopping-related inhibition.


Asunto(s)
Electromiografía , Inhibición Psicológica , Humanos , Masculino , Femenino , Adulto Joven , Adulto , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Músculo Esquelético/fisiología , Dedos/fisiología , Adolescente
18.
Neuroimage ; 294: 120638, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719153

RESUMEN

It has been found that mind wandering can impair motor control. However, it remains unclear whether the impact of mind wandering on motor control is modulated by movement difficulty and its associated neural mechanisms. To address this issue, we manipulated movement difficulty using handedness and finger dexterity separately in two signal-response tasks with identical experiment designs, in which right-handed participants performed key-pressing and key-releasing movements with the specified fingers, and they had to intermittently report whether their attention was "On task" or "Off task." Key-releasing with the right index finger (RI) had a faster reaction time and stronger contralateral delta-theta (1-7 Hz) functional connectivity than with the left index (LI) in Experiment 1, and mind wandering only reduced the contralateral delta-theta functional connectivity and midfrontal delta-theta activity for key-releasing with RI. Key-pressing with right index and middle fingers (RIR) had a faster reaction time and stronger midfrontal delta-theta activity than with right index and ring fingers (RIR) in Experiment 2, and mind wandering only reduced the midfrontal delta-theta activity for key-pressing with RIM. Theta oscillations are vital in motor control. These findings suggest that mind wandering only impairs the motor control of relatively simple movements without affecting the difficult ones. It supports the notion that mind wandering competes for executive resources with the primary task. Moreover, the quantity of executive resources recruited for a task and how these resources are allocated is contingent upon the task difficulty, which may determine whether mind wandering would interfere with motor control.


Asunto(s)
Atención , Desempeño Psicomotor , Tiempo de Reacción , Humanos , Masculino , Femenino , Adulto Joven , Atención/fisiología , Adulto , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Movimiento/fisiología , Lateralidad Funcional/fisiología , Dedos/fisiología , Imagen por Resonancia Magnética , Encéfalo/fisiología
19.
J Neurophysiol ; 131(2): 152-165, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116603

RESUMEN

We explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production. Individual MUs were identified in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Principal component analysis was applied to motor unit frequencies to identify robust MU groups (MU-modes) with parallel scaling of the firing frequencies in FDS, in EDC, and the combined MUs of FDS + EDC. The framework of the uncontrolled manifold hypothesis was used to quantify force-stabilizing synergies when visual feedback on the force magnitude was available and 15 s after turning the visual feedback off. Removing visual feedback led to a force drift toward lower magnitudes, accompanied by the disappearance of multifinger synergies. In contrast, MU-mode synergies were minimally affected by removing visual feedback off and continued to be robust for the FDS and for the EDC, while being absent for the (FDS + EDC) analysis. We interpret the findings within the theory of hierarchical control of action with spatial referent coordinates. The qualitatively different behavior of the multifinger and MU-mode-based synergies likely reflects the difference in the involved neural circuitry, supraspinal for the former and spinal for the latter.NEW & NOTEWORTHY Two types of synergies, in the space of commands to individual fingers and in the space of motor unit groups, show qualitatively different behaviors during accurate multifinger force-production tasks. After removing visual feedback, finger force synergies disappear, whereas motor unit-based synergies persist. These results point at different neural circuitry involved in these two basic classes of synergies: supraspinal for multieffector synergies, and spinal for motor unit-based synergies.


Asunto(s)
Dedos , Desempeño Psicomotor , Humanos , Mano , Retroalimentación Sensorial , Antebrazo
20.
J Neurophysiol ; 132(1): 259-276, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38863425

RESUMEN

How humans coordinate digit forces to perform dexterous manipulation is not well understood. This gap is due to the use of tasks devoid of dexterity requirements and/or the use of analytical techniques that cannot isolate the roles that digit forces play in preventing object slip and controlling object position and orientation (pose). In our recent work, we used a dexterous manipulation task and decomposed digit forces into FG, the internal force that prevents object slip, and FM, the force responsible for object pose control. Unlike FG, FM was modulated from object lift onset to hold, suggesting their different sensitivity to sensory feedback acquired during object lift. However, the extent to which FG and FM can be controlled independently remains to be determined. Importantly, how FG and FM change as a function of object property is mathematically indeterminate and therefore requires active modulation. To address this gap, we systematically changed either object mass or external torque. The FM normal component responsible for object orientation control was modulated to changes in object torque but not mass. In contrast, FG was distinctly modulated to changes in object mass and torque. These findings point to a differential sensitivity of FG and FM to task requirements and provide novel insights into the neural control of dexterous manipulation. Importantly, our results indicate that the proposed digit force decomposition has the potential to capture important differences in how sensory inputs are processed and integrated to simultaneously ensure grasp stability and dexterous object pose control.NEW & NOTEWORTHY Successful dexterous object manipulation requires simultaneous prevention of object slip and object pose control. How these two task goals are attained can be investigated by decomposing digit forces into grasp and manipulation forces, respectively. We found that these forces were characterized by differential sensitivity to changes in object properties (mass and torque). This finding suggests the involvement of distinct sensorimotor mechanisms that, combined, simultaneously ensure grasp stability and dexterous control of object pose.


Asunto(s)
Fuerza de la Mano , Humanos , Fuerza de la Mano/fisiología , Masculino , Femenino , Adulto , Desempeño Psicomotor/fisiología , Dedos/fisiología , Fenómenos Biomecánicos/fisiología , Adulto Joven , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA