Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101647, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101451

RESUMEN

The dual leucine zipper kinase (DLK) is a key regulator of axon regeneration and degeneration in response to neuronal injury; however, regulatory mechanisms of the DLK function via its interacting proteins are largely unknown. To better understand the molecular mechanism of DLK function, we performed yeast two-hybrid screening analysis and identified FK506-binding protein-like (FKBPL, also known as WAF-1/CIP1 stabilizing protein 39) as a DLK-binding protein. FKBPL binds to the kinase domain of DLK and inhibits its kinase activity. In addition, FKBPL induces DLK protein degradation through ubiquitin-dependent pathways. We further assessed other members in the FKBP protein family and found that FK506-binding protein 8 (FKBP8) also induced DLK degradation. We identified the lysine 271 residue in the kinase domain as a major site of DLK ubiquitination and SUMO3 conjugation and was thus responsible for regulating FKBP8-mediated proteasomal degradation that was inhibited by the substitution of the lysine 271 to arginine. FKBP8-mediated degradation of DLK is mediated by autophagy pathway because knockdown of Atg5 inhibited DLK destabilization. We show that in vivo overexpression of FKBP8 delayed the progression of axon degeneration and suppressed neuronal death after axotomy in sciatic and optic nerves. Taken together, this study identified FKBPL and FKBP8 as novel DLK-interacting proteins that regulate DLK stability via the ubiquitin-proteasome and lysosomal protein degradation pathways.


Asunto(s)
Axones , Quinasas Quinasa Quinasa PAM , Degeneración Nerviosa , Proteínas de Unión a Tacrolimus , Axones/enzimología , Axones/metabolismo , Axones/patología , Leucina Zippers , Lisina/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Regeneración Nerviosa , Proteínas de Unión a Tacrolimus/metabolismo , Ubiquitina/metabolismo
2.
Mol Cell Neurosci ; 112: 103602, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33581237

RESUMEN

Ubiquitination is a key posttranslational modification for the controlled protein degradation and proteostasis. The substrate specificity is determined by a family of E3 ubiquitin ligases, which are encoded by more than 600 genes in the mammalian genome. Gain- or loss-of-function of a number of E3 genes results in neurodegeneration or neurodevelopmental disorders, affecting synapse function. This implies that the specific ubiquitination of synaptic substrates are of crucial importance for the normal neuronal network. In this review, we will summarize the history, current topics, and challenges in the field of ubiquitination-dependent regulations of synaptogenesis and synaptic transmission.


Asunto(s)
Encéfalo/enzimología , Proteínas del Tejido Nervioso/fisiología , Sinapsis/enzimología , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Animales , Encéfalo/patología , Humanos , Ratones , Familia de Multigenes , Degeneración Nerviosa/enzimología , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal , Enfermedad de Parkinson/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteostasis , Dominios RING Finger , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/genética
3.
Front Neuroendocrinol ; 56: 100816, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786088

RESUMEN

Aromatase is the requisite and limiting enzyme in the production of estrogens from androgens. Estrogens synthesized centrally have more recently emerged as potent neuroprotectants in the vertebrate brain. Studies in rodents and songbirds have identified key mechanisms that underlie both; the injury-dependent induction of central aromatization, and the protective effects of centrally synthesized estrogens. Injury-induced aromatase expression in astrocytes occurs following a broad range of traumatic brain damage including excitotoxic, penetrating, and concussive injury. Responses to neural insult such as edema and inflammation involve signaling pathways the components of which are excellent candidates as inducers of this astrocytic response. Finally, estradiol from astrocytes exerts a paracrine neuroprotective influence via the potent inhibition of inflammatory pathways. Taken together, these data suggest a novel role for neural aromatization as a protective mechanism against the threat of inflammation and suggests that central estrogen provision is a wide-ranging neuroprotectant in the vertebrate brain.


Asunto(s)
Aromatasa/metabolismo , Lesiones Encefálicas/enzimología , Encéfalo/enzimología , Animales , Aromatasa/genética , Astrocitos/enzimología , Edema Encefálico/enzimología , Estradiol/fisiología , Femenino , Humanos , Inflamación/enzimología , Masculino , Degeneración Nerviosa/enzimología , Neuroprotección/fisiología , Pájaros Cantores/fisiología , Regulación hacia Arriba
4.
Brain ; 143(5): 1332-1340, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31724708

RESUMEN

Glycosyltransferases represent a large family of enzymes that catalyse the biosynthesis of oligosaccharides, polysaccharides, and glycoconjugates. A number of studies have implicated glycosyltransferases in the pathogenesis of neurodegenerative diseases but differentiating cause from effect has been difficult. We have recently discovered that mutations proximal to the substrate binding site of glycosyltransferase 8 domain containing 1 (GLT8D1) are associated with familial amyotrophic lateral sclerosis (ALS). We demonstrated that ALS-associated mutations reduce activity of the enzyme suggesting a loss-of-function mechanism that is an attractive therapeutic target. Our work is the first evidence that isolated dysfunction of a glycosyltransferase is sufficient to cause a neurodegenerative disease, but connection between neurodegeneration and genetic variation within glycosyltransferases is not new. Previous studies have identified associations between mutations in UGT8 and sporadic ALS, and between ST6GAL1 mutations and conversion of mild cognitive impairment into clinical Alzheimer's disease. In this review we consider potential mechanisms connecting glycosyltransferase dysfunction to neurodegeneration. The most prominent candidates are ganglioside synthesis and impaired addition of O-linked ß-N-acetylglucosamine (O-GlcNAc) groups to proteins important for axonal and synaptic function. Special consideration is given to examples where genetic mutations within glycosyltransferases are associated with neurodegeneration in recognition of the fact that these changes are likely to be upstream causes present from birth.


Asunto(s)
Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Metabolismo de los Lípidos/fisiología , Degeneración Nerviosa/enzimología , Proteínas/metabolismo , Animales , Glicosilación , Humanos , Lípidos , Mutación
5.
Glia ; 66(9): 1960-1971, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29726608

RESUMEN

Myelinating glial cells (MGCs), oligodendrocytes (OLs) in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS), generate myelin sheaths that insulate axons. After myelination is completed in adulthood, MGC functions independent from myelin are required to support axon survival, but the underlying mechanisms are still unclear. Dicer is a key enzyme that is responsible for generating functional micro-RNAs (miRNAs). Despite the importance of Dicer in initiating myelination, the role of Dicer in mature MGCs is still unclear. Here, Dicer was specifically deleted in mature MGCs in 2-month old mice (PLP-CreERT; Dicer fl/fl) by tamoxifen administration. Progressive motor dysfunction was observed in the Dicer conditional knockout mice, which displayed hind limb ataxia at 3 months post recombination that deteriorated into paralysis within 5 months. Massive axonal degeneration/atrophy in peripheral nerves was responsible for this phenomenon, but overt demyelination was not observed in either the CNS or PNS. In contrast to the PNS, signs of axonal degeneration were not observed in the CNS of these animals. We induced a Dicer deletion in oligodendroglia at postnatal day 5 in NG2-CreERT; Dicer fl/fl mice to evaluate whether Dicer expression in OLs is essential for axonal survival. Dicer deletion in oligodendroglia did not cause motor dysfunction at the age of 7 months. Neither axonal atrophy nor demyelination was observed in the CNS. Based on our results, Dicer expression in SCs is required to maintain axon integrity in adult PNS, and Dicer is dispensable for maintaining myelin sheaths in MGCs.


Asunto(s)
Axones/enzimología , ARN Helicasas DEAD-box/deficiencia , Vaina de Mielina/enzimología , Degeneración Nerviosa/enzimología , Ribonucleasa III/deficiencia , Animales , Ataxia/enzimología , Ataxia/patología , Atrofia , Axones/patología , ARN Helicasas DEAD-box/genética , Progresión de la Enfermedad , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Vaina de Mielina/patología , Degeneración Nerviosa/patología , Nervio Óptico/enzimología , Nervio Óptico/patología , Parálisis/enzimología , Parálisis/patología , Ribonucleasa III/genética , Nervio Ciático/enzimología , Nervio Ciático/patología , Médula Espinal/enzimología , Médula Espinal/patología , Sustancia Blanca/enzimología , Sustancia Blanca/patología
6.
EMBO J ; 32(17): 2307-20, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23912815

RESUMEN

Protein ubiquitylation is a post-translational modification that controls all aspects of eukaryotic cell functionality, and its defective regulation is manifested in various human diseases. The ubiquitylation process requires a set of enzymes, of which the ubiquitin ligases (E3s) are the substrate recognition components. Modular CULLIN-RING ubiquitin ligases (CRLs) are the most prevalent class of E3s, comprising hundreds of distinct CRL complexes with the potential to recruit as many and even more protein substrates. Best understood at both structural and functional levels are CRL1 or SCF (SKP1/CUL1/F-box protein) complexes, representing the founding member of this class of multimeric E3s. Another CRL subfamily, called CRL3, is composed of the molecular scaffold CULLIN3 and the RING protein RBX1, in combination with one of numerous BTB domain proteins acting as substrate adaptors. Recent work has firmly established CRL3s as major regulators of different cellular and developmental processes as well as stress responses in both metazoans and higher plants. In humans, functional alterations of CRL3s have been associated with various pathologies, including metabolic disorders, muscle, and nerve degeneration, as well as cancer. In this review, we summarize recent discoveries on the function of CRL3s in both metazoans and plants, and discuss their mode of regulation and specificities.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Cullin/química , Proteínas Cullin/genética , Humanos , Enfermedades Metabólicas/enzimología , Neoplasias/enzimología , Degeneración Nerviosa/enzimología , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Transporte de Proteínas , Transducción de Señal/genética , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cell Tissue Res ; 369(3): 445-454, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28466093

RESUMEN

Myeloperoxidase (MPO) is a key enzyme in inflammatory and degenerative processes, although conflicting reports have been presented concerning its expression in the brain. We studied the cellular localization of MPO and compared numbers of MPO cells in various brain regions between neurologically healthy individuals and patients with Parkinson's disease (PD) or Alzheimer's disease (AD; n = 10-25). We also investigated two rodent PD models. MPO immunoreactivity (ir) was detected in monocytes, perivascular macrophages and amoeboid microglia in the human brain parenchyma, whereas no co-localization with glial fibrillary acidic protein (GFAP) ir was observed. In the midbrain, caudate and putamen, we found a significant increase of MPO-immunoreactive cells in PD compared with control brains, whereas in the cerebellum, no difference was apparent. MPO ir was detected neither in neurons nor in occasional small beta-amyloid-immunoreactive plaques in PD or control cases. In the frontal cortex of AD patients, we found significantly more MPO-immunoreactive cells compared with control cases, together with intense MPO ir in extracellular plaques. In the hippocampus of several AD cases, MPO-like ir was observed in some pyramidal neurons. Neither rapid dopamine depletion in the rat PD model, nor slow degeneration of dopamine neurons in MitoPark mice induced the expression of MPO ir in any brain region. MPO mRNA was not detectable with radioactive in situ hybridization in any human or rodent brain area, although myeloid cells from bone marrow displayed clear MPO signals. Our results indicate significant increases of MPO-immunoreactive cells in brain regions affected by neurodegeneration in PD and AD, supporting investigations of MPO inhibitors in novel treatment strategies.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/enzimología , Encéfalo/patología , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , Peroxidasa/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/enzimología , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Degeneración Nerviosa/enzimología , Enfermedad de Parkinson/enzimología , Ratas Sprague-Dawley
8.
Brain Behav Immun ; 59: 190-199, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27614125

RESUMEN

Traumatic brain injury (TBI), even at mild levels, can activate matrix metalloproteinases (MMPs) and the induction of neuroinflammation that can result in blood brain barrier breakdown and neurodegeneration. MMP2 has a significant role in neuroinflammation and neurodegeneration by modulating the chemokine CXCL12α (stromal cell derived factor SDF-1α) signaling pathway and the induction of apoptosis. SDF-1α is responsible for cell proliferation and differentiation throughout the nervous system and is also implicated in various neurodegenerative illnesses. We hypothesized that TBI leads to MMP2 activation and cleavage of the N-terminal 4 amino acid residues of CXCL12α with generation of the highly neurotoxic fragment SDF-1(5-67). Using an in vitro stretch-injury model of rat neuronal cultures and the in vivo fluid percussion injury (FPI) model in rats, we found that oxidative stress has a significant role in the activation of MMP2. This is initiated by the induction of free radical generating enzyme NADPH oxidase 1 (NOX1). Induction of NOX1 correlated well with the signatures of oxidative stress marker, 4HNE in the injured neuronal cultures and cerebral cortex of rats. Further, using MMP2 siRNA and pharmacological MMP2 inhibitor, ARP100, we established the neurodegenerative role of MMP2 in cleaving SDF-1α to a neurotoxic fragment SDF-1(5-67). By immunofluorescence, western blotting and TUNEL experiments, we show the cleaved form of SDF leads to apoptotic cell death in neurons. This work identifies a new potential therapeutic target to reduce the complications of brain damage in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/enzimología , Quimiocina CXCL12/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/genética , Animales , Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/genética , Caspasa 3/biosíntesis , Caspasa 3/genética , Supervivencia Celular/genética , Células Cultivadas , Quimiocina CXCL12/genética , Activación Enzimática , Técnicas de Silenciamiento del Gen , Metaloproteinasa 2 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , NADPH Oxidasa 1/biosíntesis , NADPH Oxidasa 1/genética , Neuronas/efectos de los fármacos , Estrés Oxidativo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley
9.
Proc Natl Acad Sci U S A ; 111(13): 5036-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24707050

RESUMEN

The pattern of neurodegeneration in Alzheimer's disease (AD) is very distinctive: neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau selectively affect pyramidal neurons of the aging association cortex that interconnect extensively through glutamate synapses on dendritic spines. In contrast, primary sensory cortices have few NFTs, even in late-stage disease. Understanding this selective vulnerability, and why advancing age is such a high risk factor for the degenerative process, may help to reveal disease etiology and provide targets for intervention. Our study has revealed age-related increase in cAMP-dependent protein kinase (PKA) phosphorylation of tau at serine 214 (pS214-tau) in monkey dorsolateral prefrontal association cortex (dlPFC), which specifically targets spine synapses and the Ca(2+)-storing spine apparatus. This increase is mirrored by loss of phosphodiesterase 4A from the spine apparatus, consistent with increase in cAMP-Ca(2+) signaling in aging spines. Phosphorylated tau was not detected in primary visual cortex, similar to the pattern observed in AD. We also report electron microscopic evidence of previously unidentified vesicular trafficking of phosphorylated tau in normal association cortex--in axons in young dlPFC vs. in spines in aged dlPFC--consistent with the transneuronal lesion spread reported in genetic rodent models. pS214-Tau was not observed in normal aged mice, suggesting that it arises with the evolutionary expansion of corticocortical connections in primates, crossing the threshold into NFTs and degeneration in humans. Thus, the cAMP-Ca(2+) signaling mechanisms, needed for flexibly modulating network strength in young association cortex, confer vulnerability to degeneration when dysregulated with advancing age.


Asunto(s)
Envejecimiento/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Corteza Prefrontal/enzimología , Corteza Prefrontal/patología , Proteínas tau/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Macaca mulatta , Ratones , Modelos Biológicos , Fosforilación , Transporte de Proteínas , Vesículas Transportadoras/metabolismo
10.
J Neurosci ; 35(29): 10510-22, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203146

RESUMEN

Neuronal death caused by excessive excitatory signaling, excitotoxicity, plays a central role in neurodegenerative disorders. The mechanisms regulating this process, however, are still incompletely understood. Here we show that the coated vesicle-associated kinase SCYL2/CVAK104 plays a critical role for the normal functioning of the nervous system and for suppressing excitotoxicity in the developing hippocampus. Targeted disruption of Scyl2 in mice caused perinatal lethality in the vast majority of newborn mice and severe sensory-motor deficits in mice that survived to adulthood. Consistent with a neurogenic origin of these phenotypes, neuron-specific deletion of Scyl2 also caused perinatal lethality in the majority of newborn mice and severe neurological defects in adult mice. The neurological deficits in these mice were associated with the degeneration of several neuronal populations, most notably CA3 pyramidal neurons of the hippocampus, which we analyzed in more detail. The loss of CA3 neurons occurred during the functional maturation of the hippocampus and was the result of a BAX-dependent apoptotic process. Excessive excitatory signaling was present at the onset of degeneration, and inhibition of excitatory signaling prevented the degeneration of CA3 neurons. Biochemical fractionation reveals that Scyl2-deficient mice have an altered composition of excitatory receptors at synapses. Our findings demonstrate an essential role for SCYL2 in regulating neuronal function and survival and suggest a role for SCYL2 in regulating excitatory signaling in the developing brain. Significance statement: Here we examine the in vivo function of SCYL2, an evolutionarily conserved and ubiquitously expressed protein pseudokinase thought to regulate protein trafficking along the secretory pathway, and demonstrate its importance for the normal functioning of the nervous system and for suppressing excitatory signaling in the developing brain. Together with recent studies demonstrating a role of SCYL1 in preventing motor neuron degeneration, our findings clearly establish the SCY1-like family of protein pseudokinases as key regulators of neuronal function and survival.


Asunto(s)
Región CA3 Hipocampal/enzimología , Degeneración Nerviosa/enzimología , Neurogénesis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Piramidales/enzimología , Animales , Western Blotting , Muerte Celular/fisiología , Cromatografía Liquida , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Confocal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
11.
J Neurosci ; 35(7): 2927-41, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698732

RESUMEN

Axon degeneration is a programed process that takes place during development, in response to neuronal injury, and as a component of neurodegenerative disease pathology, yet the molecular mechanisms that drive this process remain poorly defined. In this study, we have developed a semi-automated, 384-well format axon degeneration assay in rat dorsal root ganglion (DRG) neurons using a trophic factor withdrawal paradigm. Using this setup, we have screened a library of known drugs and bioactives to identify several previously unappreciated regulators of axon degeneration, including lipoxygenases. Multiple structurally distinct lipoxygenase inhibitors as well as mouse DRG neurons lacking expression of 12/15-lipoxygenase display protection of axons in this context. Retinal ganglion cell axons from 12/15-lipoxygenase-null mice were similarly protected from degeneration following nerve crush injury. Through additional mechanistic studies, we demonstrate that lipoxygenases act cell autonomously within neurons to regulate degeneration, and are required for mitochondrial permeabilization and caspase activation in the axon. These findings suggest that these enzymes may represent an attractive target for treatment of neuropathies and provide a potential mechanism for the neuroprotection observed in various settings following lipoxygenase inhibitor treatment.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Axones/patología , Degeneración Nerviosa/enzimología , Algoritmos , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Axones/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Biblioteca de Genes , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Degeneración Nerviosa/diagnóstico , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedades del Nervio Óptico/complicaciones , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
12.
Proc Natl Acad Sci U S A ; 110(9): 3489-94, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23359680

RESUMEN

Ubiquitin C-terminal hydrolase-L1 (UCHL1), a neuron-specific de-ubiquitinating enzyme, is one of the most abundant proteins in the brain. We describe three siblings from a consanguineous union with a previously unreported early-onset progressive neurodegenerative syndrome featuring childhood onset blindness, cerebellar ataxia, nystagmus, dorsal column dysfuction, and spasticity with upper motor neuron dysfunction. Through homozygosity mapping of the affected individuals followed by whole-exome sequencing of the index case, we identified a previously undescribed homozygous missense mutation within the ubiquitin binding domain of UCHL1 (UCHL1(GLU7ALA)), shared by all affected subjects. As demonstrated by isothermal titration calorimetry, purified UCHL1(GLU7ALA), compared with WT, exhibited at least sevenfold reduced affinity for ubiquitin. In vitro, the mutation led to a near complete loss of UCHL1 hydrolase activity. The GLU7ALA variant is predicted to interfere with the substrate binding by restricting the proper positioning of the substrate for tunneling underneath the cross-over loop spanning the catalytic cleft of UCHL1. This interference with substrate binding, combined with near complete loss of hydrolase activity, resulted in a >100-fold reduction in the efficiency of UCHL1(GLU7ALA) relative to WT. These findings demonstrate a broad requirement of UCHL1 in the maintenance of the nervous system.


Asunto(s)
Genes Recesivos/genética , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Neuronas/enzimología , Neuronas/patología , Ubiquitina Tiolesterasa/genética , Adulto , Edad de Inicio , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Exoma/genética , Femenino , Homocigoto , Humanos , Hidrólisis , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense/genética , Linaje , Unión Proteica , Análisis de Secuencia de ADN , Especificidad por Sustrato , Síndrome , Termodinámica , Ubiquitina/metabolismo , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/metabolismo
13.
Ann Neurol ; 76(1): 66-81, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24841123

RESUMEN

OBJECTIVE: Polymerase gamma (POLG) mutations are a common cause of mitochondrial disease and have also been linked to neurodegeneration and aging. We studied the molecular mechanisms underlying POLG-related neurodegeneration using postmortem tissue from a large number of patients. METHODS: Clinical information was available from all subjects. Formalin-fixed and frozen brain tissue from 15 patients and 23 controls was studied employing a combination of histopathology, immunohistochemistry, and molecular studies of microdissected neurons. RESULTS: The primary consequence of POLG mutation in neurons is mitochondrial DNA depletion. This was already present in infants with little evidence of neuronal loss or mitochondrial dysfunction. With longer disease duration, we found an additional, progressive accumulation of mitochondrial DNA deletions and point mutations accompanied by increasing numbers of complex I-deficient neurons. Progressive neurodegeneration primarily affected the cerebellar systems and dopaminergic cells of the substantia nigra. Superimposed on this chronic process were acute, focal cortical lesions that correlated with epileptogenic foci and that showed massive neuronal loss. INTERPRETATION: POLG mutations appear to compromise neuronal respiration via a combination of early and stable depletion and a progressive somatic mutagenesis of the mitochondrial genome. This leads to 2 distinct but overlapping biological processes: a chronic neurodegeneration reflected clinically by progressive ataxia and cognitive impairment, and an acute focal neuronal necrosis that appears to be related to the presence of epileptic seizures. Our findings offer an explanation of the acute-on-chronic clinical course of this common mitochondrial encephalopathy.


Asunto(s)
ADN Polimerasa Dirigida por ADN/efectos adversos , ADN Polimerasa Dirigida por ADN/genética , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Adolescente , Adulto , Cerebelo/enzimología , Cerebelo/patología , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Niño , ADN Polimerasa gamma , ADN Mitocondrial/genética , Progresión de la Enfermedad , Humanos , Lactante , Persona de Mediana Edad , Encefalomiopatías Mitocondriales/enzimología , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Mutación/genética , Sustancia Negra/enzimología , Sustancia Negra/patología , Adulto Joven
14.
Proc Natl Acad Sci U S A ; 109(52): E3696-705, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23188802

RESUMEN

Axons actively self-destruct following genetic, mechanical, metabolic, and toxic insults, but the mechanism of axonal degeneration is poorly understood. The JNK pathway promotes axonal degeneration shortly after axonal injury, hours before irreversible axon fragmentation ensues. Inhibition of JNK activity during this period delays axonal degeneration, but critical JNK substrates that facilitate axon degeneration are unknown. Here we show that superior cervical ganglion 10 (SCG10), an axonal JNK substrate, is lost rapidly from mouse dorsal root ganglion axons following axotomy. SCG10 loss precedes axon fragmentation and occurs selectively in the axon segments distal to transection that are destined to degenerate. Rapid SCG10 loss after injury requires JNK activity. The JNK phosphorylation sites on SCG10 are required for its rapid degradation, suggesting that direct JNK phosphorylation targets SCG10 for degradation. We present a mechanism for the selective loss of SCG10 distal to the injury site. In healthy axons, SCG10 undergoes rapid JNK-dependent degradation and is replenished by fast axonal transport. Injury blocks axonal transport and the delivery of SCG10, leading to the selective loss of the labile SCG10 distal to the injury site. SCG10 loss is functionally important: Knocking down SCG10 accelerates axon fragmentation, whereas experimentally maintaining SCG10 after injury promotes mitochondrial movement and delays axonal degeneration. Taken together, these data support the model that SCG10 is an axonal-maintenance factor whose loss is permissive for execution of the injury-induced axonal degeneration program.


Asunto(s)
Axones/enzimología , Axones/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Animales , Biomarcadores/metabolismo , Proteínas de Unión al Calcio , Técnicas de Silenciamiento del Gen , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteolisis , Ratas , Estatmina
15.
Proc Natl Acad Sci U S A ; 109(11): E656-64, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22355133

RESUMEN

To investigate the mechanistic basis for central nervous system (CNS) neurodegeneration in the disease ataxia-telangiectasia (A-T), we analyzed flies mutant for the causative gene A-T mutated (ATM). ATM encodes a protein kinase that functions to monitor the genomic integrity of cells and control cell cycle, DNA repair, and apoptosis programs. Mutation of the C-terminal amino acid in Drosophila ATM inhibited the kinase activity and caused neuron and glial cell death in the adult brain and a reduction in mobility and longevity. These data indicate that reduced ATM kinase activity is sufficient to cause neurodegeneration in A-T. ATM kinase mutant flies also had elevated expression of innate immune response genes in glial cells. ATM knockdown in glial cells, but not neurons, was sufficient to cause neuron and glial cell death, a reduction in mobility and longevity, and elevated expression of innate immune response genes in glial cells, indicating that a non-cell-autonomous mechanism contributes to neurodegeneration in A-T. Taken together, these data suggest that early-onset CNS neurodegeneration in A-T is similar to late-onset CNS neurodegeneration in diseases such as Alzheimer's in which uncontrolled inflammatory response mediated by glial cells drives neurodegeneration.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/enzimología , Drosophila melanogaster/inmunología , Inmunidad Innata/inmunología , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/inmunología , Neuroglía/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Encéfalo/patología , Proteínas de Ciclo Celular/metabolismo , Muerte Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Inmunidad Innata/genética , Longevidad , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuroglía/inmunología , Neuroglía/patología , Neuronas/enzimología , Neuronas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Temperatura , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/genética
16.
Bull Exp Biol Med ; 160(1): 96-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26608376

RESUMEN

Adult rats were subjected to 7-day combined stress with stochastic changes of stressors of different modalities (noise, vibration, pulsating bright light) along with mobility restriction and elevated temperature in the chamber during stress exposures (daily 30-min sessions). Circulatory disorders, inhibition of endothelial NO-synthase expression in endothelial cells of the microcirculatory bed, perivascular edema, pronounced degenerative changes, and enhanced expression of inducible NO synthase in CA3 pyramidal neurons in the ventral hippocampus of stressed 12-month-old rats were observed. These findings can attest to the involvement NOdependent mechanisms and different contribution of NO synthase isoforms into the formation of hippocampal neuronal damage.


Asunto(s)
Región CA3 Hipocampal/enzimología , Proteínas del Tejido Nervioso/biosíntesis , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Células Piramidales/enzimología , Estrés Fisiológico , Animales , Animales no Consanguíneos , Edema Encefálico/enzimología , Edema Encefálico/etiología , Edema Encefálico/patología , Región CA3 Hipocampal/irrigación sanguínea , Región CA3 Hipocampal/ultraestructura , Células Endoteliales/enzimología , Inducción Enzimática , Luz/efectos adversos , Masculino , Microcirculación , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/patología , Proteínas del Tejido Nervioso/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo III/genética , Ruido/efectos adversos , Células Piramidales/ultraestructura , Ratas , Restricción Física/efectos adversos , Temperatura , Vibración/efectos adversos
17.
J Neurosci ; 33(31): 12557-68, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23904594

RESUMEN

We addressed the role of nitric oxide (NO) in orexin neuron degeneration that has been observed under various pathological conditions. Administration of an NO donor NOC18 (50 nmol) into the third ventricle of mice resulted in a significant decrease of orexin-immunoreactive (-IR) neurons, in contrast to a modest change in melanin-concentrating hormone-IR neurons. In addition, NOC18 promoted formation of orexin-A-IR aggregates within orexin neurons. An endoplasmic reticulum stress inducer tunicamycin replicated the effect of NOC18 with regard to decrease of orexin-IR neurons and formation of aggregates. We also found that NOC18 caused an increase in S-nitrosation of protein disulfide isomerase (PDI) and a decrease in PDI activity in hypothalamic tissues. Moreover, PDI inhibitors, such as cystamine and securinine, caused a selective decrease of orexin neurons and promoted formation of orexin-A-IR aggregates. Aggregate formation in orexin-IR neurons was also induced by local injection of small interfering RNA targeting PDI. Interestingly, sleep deprivation for 7 consecutive days induced a selective decrease of orexin-IR neurons, which was preceded by aggregate formation in orexin-IR neurons and an increase in S-nitrosated PDI in the hypothalamus. Activity of neuronal NO synthase (nNOS)-positive neurons in the lateral hypothalamus as assessed by c-Fos expression was elevated in response to sleep deprivation. Finally, sleep deprivation-induced decrease of orexin-IR neurons, formation of aggregates, and S-nitrosation of PDI were not observed in nNOS knock-out mice. These results indicate that nNOS-derived NO may mediate specific pathological events in orexin neurons, including neuropeptide misfolding via S-nitrosation and inactivation of PDI.


Asunto(s)
Hipotálamo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Degeneración Nerviosa/enzimología , Neuropéptidos/metabolismo , Óxido Nítrico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Animales , Recuento de Células , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipotálamo/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Deshidrogenasa/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/etiología , Donantes de Óxido Nítrico/toxicidad , Nitrosación/efectos de los fármacos , Nitrosación/genética , Compuestos Nitrosos/toxicidad , Orexinas , Proteína Disulfuro Isomerasas/genética , Factores de Tiempo
18.
Hum Mol Genet ; 21(9): 1954-67, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22262731

RESUMEN

Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.


Asunto(s)
Caspasa 6/fisiología , Degeneración Nerviosa/enzimología , Envejecimiento/patología , Envejecimiento/fisiología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Animales , Apoptosis/fisiología , Secuencia de Bases , Conducta Animal/fisiología , Encéfalo/enzimología , Encéfalo/patología , Caspasa 6/deficiencia , Caspasa 6/genética , Humanos , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuronas/enzimología , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología
19.
J Neuroinflammation ; 11: 179, 2014 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-25326688

RESUMEN

BACKGROUND: Accumulating evidence has shown that the inflammatory process participates in the pathogenesis of amyotrophic lateral sclerosis (ALS), suggesting a therapeutic potential of anti-inflammatory agents. Janus kinase 2 (JAK2), one of the key molecules in inflammation, transduces signals downstream of various inflammatory cytokines, and some Janus kinase inhibitors have already been clinically applied to the treatment of inflammatory diseases. However, the efficacy of JAK2 inhibitors in treatment of ALS remains to be demonstrated. In this study, we examined the role of JAK2 in ALS by administering a selective JAK2 inhibitor, R723, to an animal model of ALS (mSOD1G93A mice). FINDINGS: Orally administered R723 had sufficient access to spinal cord tissue of mSOD1G93A mice and significantly reduced the number of Ly6c positive blood monocytes, as well as the expression levels of IFN-γ and nitric oxide synthase 2, inducible (iNOS) in the spinal cord tissue. R723 treatment did not alter the expression levels of Il-1ß, Il-6, TNF, and NADPH oxidase 2 (NOX2), and suppressed the expression of Retnla, which is one of the markers of neuroprotective M2 microglia. As a result, R723 did not alter disease progression or survival of mSOD1G93A mice. CONCLUSIONS: JAK2 inhibitor was not effective against ALS symptoms in mSOD1G93A mice, irrespective of suppression in several inflammatory molecules. Simultaneous suppression of anti-inflammatory microglia with a failure to inhibit critical other inflammatory molecules might explain this result.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Inhibidores Enzimáticos/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Microglía/efectos de los fármacos , Degeneración Nerviosa/prevención & control , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/inmunología , Médula Espinal/efectos de los fármacos , Médula Espinal/inmunología , Médula Espinal/patología
20.
Proc Natl Acad Sci U S A ; 108(47): 19054-9, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22058226

RESUMEN

Hypoxic-ischemic (H-I) injury to the developing brain is a significant cause of morbidity and mortality in humans. Other than hypothermia, there is no effective treatment to prevent or lessen the consequences of neonatal H-I. Increased expression of the NAD synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1 (Nmnat1) has been shown to be neuroprotective against axonal injury in the peripheral nervous system. To investigate the neuroprotective role of Nmnat1 against acute neurodegeneration in the developing CNS, we exposed wild-type mice and mice overexpressing Nmnat1 in the cytoplasm (cytNmnat1-Tg mice) to a well-characterized model of neonatal H-I brain injury. As early as 6 h after H-I, cytNmnat1-Tg mice had strikingly less injury detected by MRI. CytNmnat1-Tg mice had markedly less injury in hippocampus, cortex, and striatum than wild-type mice as assessed by loss of tissue volume 7 d days after H-I. The dramatic protection mediated by cytNmnat1 is not mediated through modulating caspase3-dependent cell death in cytNmnat1-Tg brains. CytNmnat1 protected neuronal cell bodies and processes against NMDA-induced excitotoxicity, whereas caspase inhibition or B-cell lymphoma-extra large (Bcl-XL) protein overexpression had no protective effects in cultured cortical neurons. These results suggest that cytNmnat1 protects against neonatal HI-induced CNS injury by inhibiting excitotoxicity-induced, caspase-independent injury to neuronal processes and cell bodies. As such, the Nmnat1 protective pathway could be a useful therapeutic target for acute and chronic neurodegenerative insults mediated by excitotoxicity.


Asunto(s)
Muerte Celular/fisiología , Hipoxia-Isquemia Encefálica/complicaciones , Necrosis/metabolismo , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/etiología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Cromatografía Líquida de Alta Presión , Humanos , Hipoxia-Isquemia Encefálica/patología , Inmunohistoquímica , L-Lactato Deshidrogenasa/metabolismo , Imagen por Resonancia Magnética , Ratones , Degeneración Nerviosa/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA