Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.150
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(1): 1-3, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995512

RESUMEN

Psychiatric disease is one of the greatest health challenges of our time. The pipeline for conceptually novel therapeutics remains low, in part because uncovering the biological mechanisms of psychiatric disease has been difficult. We asked experts researching different aspects of psychiatric disease: what do you see as the major urgent questions that need to be addressed? Where are the next frontiers, and what are the current hurdles to understanding the biological basis of psychiatric disease?


Asunto(s)
Antidepresivos/uso terapéutico , Ciencia de los Datos/métodos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo , Genómica/métodos , Medicina de Precisión/métodos , Investigación Biomédica Traslacional/métodos , Animales , Depresión/genética , Trastorno Depresivo/genética , Humanos , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Resultado del Tratamiento
2.
Nature ; 622(7984): 802-809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853123

RESUMEN

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Asunto(s)
Antidepresivos , Depresión , Habénula , Ketamina , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Antidepresivos/administración & dosificación , Antidepresivos/metabolismo , Antidepresivos/farmacocinética , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Habénula/efectos de los fármacos , Habénula/metabolismo , Semivida , Ketamina/administración & dosificación , Ketamina/metabolismo , Ketamina/farmacocinética , Ketamina/farmacología , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Unión Proteica
3.
Annu Rev Neurosci ; 43: 355-374, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32109184

RESUMEN

Opioid addiction and overdose are at record levels in the United States. This is driven, in part, by their widespread prescription for the treatment of pain, which also increased opportunity for diversion by sensation-seeking users. Despite considerable research on the neurobiology of addiction, treatment options for opioid abuse remain limited. Mood disorders, particularly depression, are often comorbid with both pain disorders and opioid abuse. The endogenous opioid system, a complex neuromodulatory system, sits at the neurobiological convergence point of these three comorbid disease states. We review evidence for dysregulation of the endogenous opioid system as a mechanism for the development of opioid addiction and/or mood disorder. Specifically, individual differences in opioid system function may underlie differences in vulnerability to opioid addiction and mood disorders. We also review novel research, which promises to provide more detailed understanding of individual differences in endogenous opioid neurobiology and its contribution to opioid addiction susceptibility.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastornos Relacionados con Opioides/tratamiento farmacológico , Animales , Sobredosis de Droga/tratamiento farmacológico , Humanos , Medicina de Precisión/métodos
4.
Cell ; 149(5): 1152-63, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632977

RESUMEN

Our understanding of current treatments for depression, and the development of more specific therapies, is limited by the complexity of the circuits controlling mood and the distributed actions of antidepressants. Although the therapeutic efficacy of serotonin-specific reuptake inhibitors (SSRIs) is correlated with increases in cortical activity, the cell types crucial for their action remain unknown. Here we employ bacTRAP translational profiling to show that layer 5 corticostriatal pyramidal cells expressing p11 (S100a10) are strongly and specifically responsive to chronic antidepressant treatment. This response requires p11 and includes the specific induction of Htr4 expression. Cortex-specific deletion of p11 abolishes behavioral responses to SSRIs, but does not lead to increased depression-like behaviors. Our data identify corticostriatal projection neurons as critical for the response to antidepressants, and suggest that the regulation of serotonergic tone in this single cell type plays a pivotal role in antidepressant therapy.


Asunto(s)
Antidepresivos/metabolismo , Depresión/tratamiento farmacológico , Neuronas/citología , Corteza Prefrontal/citología , Inhibidores Selectivos de la Recaptación de Serotonina/metabolismo , Animales , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
5.
Nature ; 589(7842): 474-479, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299186

RESUMEN

The psychedelic alkaloid ibogaine has anti-addictive properties in both humans and animals1. Unlike most medications for the treatment of substance use disorders, anecdotal reports suggest that ibogaine has the potential to treat addiction to various substances, including opiates, alcohol and psychostimulants. The effects of ibogaine-like those of other psychedelic compounds-are long-lasting2, which has been attributed to its ability to modify addiction-related neural circuitry through the activation of neurotrophic factor signalling3,4. However, several safety concerns have hindered the clinical development of ibogaine, including its toxicity, hallucinogenic potential and tendency to induce cardiac arrhythmias. Here we apply the principles of function-oriented synthesis to identify the key structural elements of the potential therapeutic pharmacophore of ibogaine, and we use this information to engineer tabernanthalog-a water-soluble, non-hallucinogenic, non-toxic analogue of ibogaine that can be prepared in a single step. In rodents, tabernanthalog was found to promote structural neural plasticity, reduce alcohol- and heroin-seeking behaviour, and produce antidepressant-like effects. This work demonstrates that, through careful chemical design, it is possible to modify a psychedelic compound to produce a safer, non-hallucinogenic variant that has therapeutic potential.


Asunto(s)
Conducta Adictiva/tratamiento farmacológico , Diseño de Fármacos , Ibogaína/análogos & derivados , Ibogaína/efectos adversos , Alcoholismo/tratamiento farmacológico , Animales , Antidepresivos/farmacología , Arritmias Cardíacas/inducido químicamente , Técnicas de Química Sintética , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Femenino , Alucinógenos/efectos adversos , Dependencia de Heroína/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Seguridad del Paciente , Receptor de Serotonina 5-HT2A/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Natación , Tabernaemontana/química
6.
Annu Rev Med ; 75: 129-143, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37729028

RESUMEN

Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ketamina/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antidepresivos/uso terapéutico , Aminas/uso terapéutico
7.
N Engl J Med ; 389(14): 1298-1309, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37792613

RESUMEN

BACKGROUND: In treatment-resistant depression, commonly defined as a lack of response to two or more consecutive treatments during the current depressive episode, the percentage of patients with remission is low and the percentage with relapse is high. The efficacy and safety of esketamine nasal spray as compared with extended-release quetiapine augmentation therapy, both in combination with ongoing treatment with a selective serotonin reuptake inhibitor (SSRI) or a serotonin-norepinephrine reuptake inhibitor (SNRI), in patients with treatment-resistant depression are unknown. METHODS: In an open-label, single-blind (with raters unaware of group assignments), multicenter, phase 3b, randomized, active-controlled trial, we assigned patients, in a 1:1 ratio, to receive flexible doses (according to the summary of product characteristics) of esketamine nasal spray (esketamine group) or extended-release quetiapine (quetiapine group), both in combination with an SSRI or SNRI. The primary end point was remission, defined as a score of 10 or less on the Montgomery-Åsberg Depression Rating Scale (MADRS), at week 8 (scores range from 0 to 60, with higher scores indicating more severe depression). The key secondary end point was no relapse through week 32 after remission at week 8. All patients were included in the analysis; patients who discontinued the trial treatment were considered as having had an unfavorable outcome (i.e., they were grouped with patients who did not have remission or who had a relapse). Analyses of the primary and key secondary end points were adjusted for age and number of treatment failures. RESULTS: Overall, 336 patients were assigned to the esketamine group and 340 to the quetiapine group. More patients in the esketamine group than in the quetiapine group had remission at week 8 (91 of 336 patients [27.1%] vs. 60 of 340 patients [17.6%]; P = 0.003) and had no relapse through week 32 after remission at week 8 (73 of 336 patients [21.7%] vs. 48 of 340 patients [14.1%]). Over 32 weeks of follow-up, the percentage of patients with remission, the percentage of patients with a treatment response, and the change in the MADRS score from baseline favored esketamine nasal spray. The adverse events were consistent with the established safety profiles of the trial treatments. CONCLUSIONS: In patients with treatment-resistant depression, esketamine nasal spray plus an SSRI or SNRI was superior to extended-release quetiapine plus an SSRI or SNRI with respect to remission at week 8. (Funded by Janssen EMEA; ESCAPE-TRD ClinicalTrials.gov number, NCT04338321.).


Asunto(s)
Antidepresivos , Trastorno Depresivo Resistente al Tratamiento , Ketamina , Fumarato de Quetiapina , Inhibidores Selectivos de la Recaptación de Serotonina , Inhibidores de Captación de Serotonina y Norepinefrina , Humanos , Antidepresivos/administración & dosificación , Antidepresivos/efectos adversos , Antidepresivos/uso terapéutico , Preparaciones de Acción Retardada , Depresión/tratamiento farmacológico , Quimioterapia Combinada , Rociadores Nasales , Fumarato de Quetiapina/administración & dosificación , Fumarato de Quetiapina/efectos adversos , Fumarato de Quetiapina/uso terapéutico , Recurrencia , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Inhibidores de Captación de Serotonina y Norepinefrina/administración & dosificación , Inhibidores de Captación de Serotonina y Norepinefrina/efectos adversos , Inhibidores de Captación de Serotonina y Norepinefrina/uso terapéutico , Método Simple Ciego , Resultado del Tratamiento , Ketamina/administración & dosificación , Ketamina/efectos adversos , Ketamina/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico
8.
Nat Chem Biol ; 20(7): 857-866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38355723

RESUMEN

Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.


Asunto(s)
Antidepresivos , Canales de Potasio de Rectificación Interna , Antidepresivos/farmacología , Antidepresivos/química , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Ratones , Masculino , Ratas , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/química
9.
Proc Natl Acad Sci U S A ; 120(49): e2305772120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011560

RESUMEN

Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.


Asunto(s)
Ketamina , Ketamina/farmacología , Ketamina/uso terapéutico , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
10.
Proc Natl Acad Sci U S A ; 120(49): e2305776120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011563

RESUMEN

Individuals with a history of early-life stress (ELS) tend to have an altered course of depression and lower treatment response rates. Research suggests that ELS alters brain development, but the molecular changes in the brain following ELS that may mediate altered antidepressant response have not been systematically studied. Sex and gender also impact the risk of depression and treatment response. Here, we leveraged existing RNA sequencing datasets from 1) blood samples from depressed female- and male-identifying patients treated with escitalopram or desvenlafaxine and assessed for treatment response or failure; 2) the nucleus accumbens (NAc) of female and male mice exposed to ELS and/or adult stress; and 3) the NAc of mice after adult stress, antidepressant treatment with imipramine or ketamine, and assessed for treatment response or failure. We find that transcriptomic signatures of adult stress after a history of ELS correspond with transcriptomic signatures of treatment nonresponse, across species and multiple classes of antidepressants. Transcriptomic correspondence with treatment outcome was stronger among females and weaker among males. We next pharmacologically tested these predictions in our mouse model of early-life and adult social defeat stress and treatment with either chronic escitalopram or acute ketamine. Among female mice, the strongest predictor of behavior was an interaction between ELS and ketamine treatment. Among males, however, early experience and treatment were poor predictors of behavior, mirroring our bioinformatic predictions. These studies provide neurobiological evidence for molecular adaptations in the brain related to sex and ELS that contribute to antidepressant treatment response.


Asunto(s)
Experiencias Adversas de la Infancia , Ketamina , Humanos , Masculino , Femenino , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/genética , Escitalopram , Ketamina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Resultado del Tratamiento , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/genética
11.
J Neurosci ; 44(13)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38378273

RESUMEN

Patients with chronic pain often develop comorbid depressive symptoms, which makes the pain symptoms more complicated and refractory. However, the underlying mechanisms are poorly known. Here, in a repeated complete Freund's adjuvant (CFA) male mouse model, we reported a specific regulatory role of the paraventricular thalamic nucleus (PVT) glutamatergic neurons, particularly the anterior PVT (PVA) neurons, in mediating chronic pain and depression comorbidity (CDC). Our c-Fos protein staining observed increased PVA neuronal activity in CFA-CDC mice. In wild-type mice, chemogenetic activation of PVA glutamatergic neurons was sufficient to decrease the 50% paw withdrawal thresholds (50% PWTs), while depressive-like behaviors evaluated with immobile time in tail suspension test (TST) and forced swim test (FST) could only be achieved by repeated chemogenetic activation. Chemogenetic inhibition of PVA glutamatergic neurons reversed the decreased 50% PWTs in CFA mice without depressive-like symptoms and the increased TST and FST immobility in CFA-CDC mice. Surprisingly, in CFA-CDC mice, chemogenetically inhibiting PVA glutamatergic neurons failed to reverse the decrease of 50% PWTs, which could be restored by rapid-onset antidepressant S-ketamine. Further behavioral tests in chronic restraint stress mice and CFA pain mice indicated that PVA glutamatergic neuron inhibition and S-ketamine independently alleviate sensory and affective pain. Molecular profiling and pharmacological studies revealed the 5-hydroxytryptamine receptor 1D (Htr1d) in CFA pain-related PVT engram neurons as a potential target for treating CDC. These findings identified novel CDC neuronal and molecular mechanisms in the PVT and provided insight into the complicated pain neuropathology under a comorbid state with depression and related drug development.


Asunto(s)
Dolor Crónico , Ketamina , Humanos , Ratones , Masculino , Animales , Dolor Crónico/metabolismo , Depresión/tratamiento farmacológico , Tálamo , Neuronas/metabolismo , Comorbilidad
12.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050173

RESUMEN

Selective serotonin (5-HT) reuptake inhibitors are only 30% effective for remission in subjects with major depression, and the best treatments for SSRI-resistant patients remain unclear. To model SSRI resistance, we used cF1ko mice with conditional deletion of the repressor Freud-1/CC2D1A in adult 5-HT neurons. Within weeks, this deletion leads to overexpression of 5-HT1A autoreceptors, reduced serotonergic activity, and fluoxetine-resistant anxiety-depression phenotype. We hypothesized that desipramine (DES), which targets norepinephrine (NE), may be effective in cF1ko mice. The actions of chronic DES treatment on behavior, chronic cellular activation, and NE projections were examined in both sexes of cF1ko and WT mice. In contrast to fluoxetine, chronic DES reversed the behavioral phenotypes in cF1ko mice, while in WT littermates DES slightly increased anxiety and depression-like behaviors. Deficits in FosB+ cell counts were seen in the entorhinal cortex, hippocampal CA2/3 layer, and BLA of cF1ko mice and were reversed by chronic DES treatment, especially in GABAergic neurons. In cF1ko mice, widespread reductions were seen in NE axons, varicosities, and especially 30-60% reductions in NE synaptic and triadic contacts, particularly to inhibitory gephyrin-positive sites. DES treatment also reversed these reductions in NE innervation. These results indicate the dynamic plasticity of the adult noradrenergic system within weeks of altering serotonergic function that can be normalized by DES treatment. Accompanying these changes, DES but not fluoxetine reversed the behavioral alterations in cF1ko mice, suggesting a key role for noradrenergic plasticity in antidepressant response in this model of reduced serotonin activity.


Asunto(s)
Depresión , Fluoxetina , Masculino , Femenino , Humanos , Ratones , Animales , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Depresión/tratamiento farmacológico , Desipramina/farmacología , Desipramina/uso terapéutico , Norepinefrina , Serotonina , Ansiedad/tratamiento farmacológico , Fenotipo
13.
N Engl J Med ; 387(18): 1637-1648, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36322843

RESUMEN

BACKGROUND: Psilocybin is being studied for use in treatment-resistant depression. METHODS: In this phase 2 double-blind trial, we randomly assigned adults with treatment-resistant depression to receive a single dose of a proprietary, synthetic formulation of psilocybin at a dose of 25 mg, 10 mg, or 1 mg (control), along with psychological support. The primary end point was the change from baseline to week 3 in the total score on the Montgomery-Åsberg Depression Rating Scale (MADRS; range, 0 to 60, with higher scores indicating more severe depression). Secondary end points included response at week 3 (≥50% decrease from baseline in the MADRS total score), remission at week 3 (MADRS total score ≤10), and sustained response at 12 weeks (meeting response criteria at week 3 and all subsequent visits). RESULTS: A total of 79 participants were in the 25-mg group, 75 in the 10-mg group, and 79 in the 1-mg group. The mean MADRS total score at baseline was 32 or 33 in each group. Least-squares mean changes from baseline to week 3 in the score were -12.0 for 25 mg, -7.9 for 10 mg, and -5.4 for 1 mg; the difference between the 25-mg group and 1-mg group was -6.6 (95% confidence interval [CI], -10.2 to -2.9; P<0.001) and between the 10-mg group and 1-mg group was -2.5 (95% CI, -6.2 to 1.2; P = 0.18). In the 25-mg group, the incidences of response and remission at 3 weeks, but not sustained response at 12 weeks, were generally supportive of the primary results. Adverse events occurred in 179 of 233 participants (77%) and included headache, nausea, and dizziness. Suicidal ideation or behavior or self-injury occurred in all dose groups. CONCLUSIONS: In this phase 2 trial involving participants with treatment-resistant depression, psilocybin at a single dose of 25 mg, but not 10 mg, reduced depression scores significantly more than a 1-mg dose over a period of 3 weeks but was associated with adverse effects. Larger and longer trials, including comparison with existing treatments, are required to determine the efficacy and safety of psilocybin for this disorder. (Funded by COMPASS Pathfinder; EudraCT number, 2017-003288-36; ClinicalTrials.gov number, NCT03775200.).


Asunto(s)
Antidepresivos , Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Psilocibina , Adulto , Humanos , Antidepresivos/efectos adversos , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/psicología , Método Doble Ciego , Psilocibina/efectos adversos , Psilocibina/uso terapéutico , Resultado del Tratamiento , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/psicología
14.
Mol Psychiatry ; 29(4): 1114-1127, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177353

RESUMEN

The discovery that subanesthetic doses of (R, S)-ketamine (ketamine) and (S)-ketamine (esketamine) rapidly induce antidepressant effects and promote sustained actions following drug clearance in depressed patients who are treatment-resistant to other therapies has resulted in a paradigm shift in the conceptualization of how rapidly and effectively depression can be treated. Consequently, the mechanism(s) that next generation antidepressants may engage to improve pathophysiology and resultant symptomology are being reconceptualized. Impaired excitatory glutamatergic synapses in mood-regulating circuits are likely a substantial contributor to the pathophysiology of depression. Metaplasticity is the process of regulating future capacity for plasticity by priming neurons with a stimulation that alters later neuronal plasticity responses. Accordingly, the development of treatment modalities that specifically modulate the duration, direction, or magnitude of glutamatergic synaptic plasticity events such as long-term potentiation (LTP), defined here as metaplastogens, may be an effective approach to reverse the pathophysiology underlying depression and improve depression symptoms. We review evidence that the initiating mechanisms of pharmacologically diverse rapid-acting antidepressants (i.e., ketamine mimetics) converge on consistent downstream molecular mediators that facilitate the expression/maintenance of increased synaptic strength and resultant persisting antidepressant effects. Specifically, while the initiating mechanisms of these therapies may differ (e.g., cell type-specificity, N-methyl-D-aspartate receptor (NMDAR) subtype-selective inhibition vs activation, metabotropic glutamate receptor 2/3 antagonism, AMPA receptor potentiation, 5-HT receptor-activating psychedelics, etc.), the sustained therapeutic mechanisms of putative rapid-acting antidepressants will be mediated, in part, by metaplastic effects that converge on consistent molecular mediators to enhance excitatory neurotransmission and altered capacity for synaptic plasticity. We conclude that the convergence of these therapeutic mechanisms provides the opportunity for metaplasticity processes to be harnessed as a druggable plasticity mechanism by next-generation therapeutics. Further, targeting metaplastic mechanisms presents therapeutic advantages including decreased dosing frequency and associated diminished adverse responses by eliminating the requirement for the drug to be continuously present.


Asunto(s)
Antidepresivos , Ketamina , Plasticidad Neuronal , Humanos , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Ketamina/farmacología , Ketamina/uso terapéutico , Animales , Depresión/tratamiento farmacológico , Potenciación a Largo Plazo/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
16.
Cell Mol Life Sci ; 81(1): 105, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413417

RESUMEN

Administration of multiple subanesthetic doses of ketamine increases the duration of antidepressant effects relative to a single ketamine dose, but the mechanisms mediating this sustained effect are unclear. Here, we demonstrate that ketamine's rapid and sustained effects on affective behavior are mediated by separate and temporally distinct mechanisms. The rapid effects of a single dose of ketamine result from increased activity of immature neurons in the hippocampal dentate gyrus without an increase in neurogenesis. Treatment with six doses of ketamine over two weeks doubled the duration of behavioral effects after the final ketamine injection. However, unlike ketamine's rapid effects, this more sustained behavioral effect did not correlate with increased immature neuron activity but instead correlated with increased numbers of calretinin-positive and doublecortin-positive immature neurons. This increase in neurogenesis was associated with a decrease in bone morphogenetic protein (BMP) signaling, a known inhibitor of neurogenesis. Injection of a BMP4-expressing lentivirus into the dentate gyrus maintained BMP signaling in the niche and blocked the sustained - but not the rapid - behavioral effects of ketamine, indicating that decreased BMP signaling is necessary for ketamine's sustained effects. Thus, although the rapid effects of ketamine result from increased activity of immature neurons in the dentate gyrus without requiring an increase in neurogenesis, ketamine's sustained effects require a decrease in BMP signaling and increased neurogenesis along with increased neuron activity. Understanding ketamine's dual mechanisms of action should help with the development of new rapid-acting therapies that also have safe, reliable, and sustained effects.


Asunto(s)
Ketamina , Ketamina/farmacología , Ketamina/metabolismo , Ketamina/uso terapéutico , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Neuronas/metabolismo , Transducción de Señal
17.
Am J Respir Crit Care Med ; 209(3): 299-306, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37890129

RESUMEN

Rationale: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) has been shown to be safe and efficacious in people with cystic fibrosis (pwCF) aged 2 years and older with at least one F508del-CFTR allele or more. After U.S. approval in 2019, reports emerged of depression-related adverse events in pwCF treated with ELX/TEZ/IVA. Objectives: To review available evidence on depression-related events in pwCF treated with ELX/TEZ/IVA in the context of background epidemiology in pwCF. Methods: Safety data from 14 ELX/TEZ/IVA clinical trials and 10 trials of CF transmembrane conductance regulator (CFTR) modulators in which placebo was administered, along with data from CF registries in the United States and Germany and cumulative postmarketing adverse event data from 61,499 pwCF who initiated ELX/TEZ/IVA after initial approval in the United States (October 2019) through October 2022, were reviewed and used to calculate exposure-adjusted rates of depression-related adverse events and prevalence of depression. In addition, a scientific literature review was conducted to identify ELX/TEZ/IVA publications reporting depression-related events or changes in depressive symptoms after treatment initiation. Measurements and Main Results: In clinical trials, the exposure-adjusted rate of any depression-related adverse event was 3.32/100 person years (PY) in the pooled ELX/TEZ/IVA group (n = 1,711) and 3.24/100 PY in the pooled placebo group (n = 1,369). The exposure-adjusted rates of suicidal ideation and suicide attempt were also similar between the pooled ELX/TEZ/IVA group and pooled placebo group (ideation: 0.23/100 PY vs. 0.28/100 PY; attempt: 0.08/100 PY vs. 0.14/100 PY). In the postmarketing setting, the exposure-adjusted reporting rates of depression-related events were low in context of the background prevalence in pwCF (all depression-related events: 1.29/PY; suicidal ideation: 0.12/100 PY; and suicide attempt: 0.05/100 PY). Assessments of individual case reports were confounded by preexisting mental health conditions, intercurrent psychosocial stressors (including coronavirus disease [COVID-19] lockdowns), and the heterogeneous and fluctuating nature of depression. Data from CF registries in the United States and Germany showed that patterns of depression prevalence in pwCF exposed to ELX/TEZ/IVA did not change after treatment initiation. Published studies utilizing the nine-item Patient Health Questionnaire did not show evidence of worsening depression symptoms in pwCF treated with ELX/TEZ/IVA. Conclusions: Our review of data from clinical trials, postmarketing reports, an ongoing registry-based ELX/TEZ/IVA postauthorization safety study, and peer-reviewed literature suggests that depression symptoms and depression-related events reported in pwCF treated with ELX/TEZ/IVA are generally consistent with background epidemiology of these events in the CF population and do not suggest a causal relationship with ELX/TEZ/IVA treatment.


Asunto(s)
Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Indoles , Pirazoles , Piridinas , Pirrolidinas , Quinolonas , Humanos , Depresión/tratamiento farmacológico , Fibrosis Quística/tratamiento farmacológico
18.
J Neurosci ; 43(6): 1038-1050, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36596696

RESUMEN

Ketamine is a well-characterized NMDA receptor (NMDAR) antagonist, although the relevance of this pharmacology to its rapid (within hours of administration) antidepressant actions, which depend on mechanisms convergent with strengthening of excitatory synapses, is unclear. Activation of synaptic NMDARs is necessary for the induction of canonical long-term potentiation (LTP) leading to a sustained expression of increased synaptic strength. We tested the hypothesis that induction of rapid antidepressant effects requires NMDAR activation, by using behavioral pharmacology, western blot quantification of hippocampal synaptoneurosomal protein levels, and ex vivo hippocampal slice electrophysiology in male mice. We found that ketamine exerts an inverted U-shaped dose-response in antidepressant-sensitive behavioral tests, suggesting that an excessive NMDAR inhibition can prevent ketamine's antidepressant effects. Ketamine's actions to induce antidepressant-like behavioral effects, up-regulation of hippocampal AMPAR subunits GluA1 and GluA2, as well as metaplasticity measured ex vivo using electrically-stimulated LTP, were abolished by pretreatment with other non-antidepressant NMDAR antagonists, including MK-801 and CPP. Similarly, the antidepressant-like actions of other putative rapid-acting antidepressant drugs (2R,6R)-hydroxynorketamine (ketamine metabolite), MRK-016 (GABAAα5 negative allosteric modulator), and LY341495 (mGlu2/3 receptor antagonist) were blocked by NMDAR inhibition. Ketamine acted synergistically with an NMDAR positive allosteric modulator to exert antidepressant-like behavioral effects and activation of the NMDAR subunit GluN2A was necessary and sufficient for such relevant effects. We conclude rapid-acting antidepressant compounds share a common downstream NMDAR-activation dependent effector mechanism, despite variation in initial pharmacological targets. Promoting NMDAR signaling or other approaches that enhance NMDAR-dependent LTP-like synaptic potentiation may be an effective antidepressant strategy.SIGNIFICANCE STATEMENT The anesthetic and antidepressant drug ketamine is well-characterized as an NMDA receptor (NMDAR) antagonist; though, the relevance and full impact of this pharmacology to its antidepressant actions is unclear. We found that NMDAR activation, which occurs downstream of their initial actions, is necessary for the beneficial effects of ketamine and several other putative antidepressant compounds. As such, promoting NMDAR signaling, or other approaches that enhance NMDAR-dependent long-term potentiation (LTP)-like synaptic potentiation in vivo may be an effective antidepressant strategy directly, or acting synergistically with other drug or interventional treatments.


Asunto(s)
Ketamina , Masculino , Ratones , Animales , Ketamina/farmacología , N-Metilaspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Depresión/tratamiento farmacológico , Antidepresivos/farmacología
19.
J Cell Mol Med ; 28(7): e18190, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494844

RESUMEN

Systemic lupus erythematosus (SLE), a multifactorial autoimmune disease, can affect the brain and cause neuropsychiatric dysfunction, also named neuropsychiatric lupus (NPSLE). Microglial activation is observed in NPSLE patients. However, the mechanisms regulating microglia-mediated neurotoxicity in NPSLE remain elusive. Here, we showed that M1-like proinflammatory cytokine levels were increased in the cerebrospinal fluid (CSF) of SLE patients, especially those with neuropsychiatric symptoms. We also demonstrated that MRL/lpr lupus mice developed anxiety-like behaviours and cognitive deficits in the early and active phases of lupus, respectively. An increase in microglial number was associated with upregulation of proinflammatory cytokines in the MRL/lpr mouse brain. RNA sequencing revealed that genes associated with phagocytosis and M1 polarization were upregulated in microglia from lupus mice. Functionally, activated microglia induced synaptic stripping in vivo and promoted neuronal death in vitro. Finally, tofacitinib ameliorated neuropsychiatric disorders in MRL/lpr mice, as evidenced by reductions in microglial number and synaptic/neuronal loss and alleviation of behavioural abnormalities. Thus, our results indicated that classically activated (M1) microglia play a crucial role in NPSLE pathogenesis. Minocycline and tofacitinib were found to alleviate NPSLE by inhibiting micrglial activation, providing a promising therapeutic strategy.


Asunto(s)
Lupus Eritematoso Sistémico , Vasculitis por Lupus del Sistema Nervioso Central , Humanos , Ratones , Animales , Microglía , Depresión/tratamiento farmacológico , Ratones Endogámicos MRL lpr , Encéfalo , Lupus Eritematoso Sistémico/genética , Citocinas
20.
J Cell Mol Med ; 28(8): e18285, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597406

RESUMEN

Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1ß, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.


Asunto(s)
Antidepresivos , Flavonoles , Glicósidos , Microglía , Ratones , Animales , Microglía/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/etiología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA