Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 88: 191-220, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30883196

RESUMEN

Programmable nucleases and deaminases, which include zinc-finger nucleases, transcription activator-like effector nucleases, CRISPR RNA-guided nucleases, and RNA-guided base editors, are now widely employed for the targeted modification of genomes in cells and organisms. These gene-editing tools hold tremendous promise for therapeutic applications. Importantly, these nucleases and deaminases may display off-target activity through the recognition of near-cognate DNA sequences to their target sites, resulting in collateral damage to the genome in the form of local mutagenesis or genomic rearrangements. For therapeutic genome-editing applications with these classes of programmable enzymes, it is essential to measure and limit genome-wide off-target activity. Herein, we discuss the key determinants of off-target activity for these systems. We describe various cell-based and cell-free methods for identifying genome-wide off-target sites and diverse strategies that have been developed for reducing the off-target activity of programmable gene-editing enzymes.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Ingeniería de Proteínas/métodos , ARN Guía de Kinetoplastida/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Artefactos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Técnicas de Transferencia de Gen , Genoma Humano , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Programas Informáticos
2.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849372

RESUMEN

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Asunto(s)
Desaminasas APOBEC/genética , Neoplasias/genética , Desaminasas APOBEC/metabolismo , Línea Celular , Línea Celular Tumoral , ADN/metabolismo , Análisis Mutacional de ADN/métodos , Bases de Datos Genéticas , Exoma , Genoma Humano/genética , Xenoinjertos , Humanos , Mutagénesis , Mutación/genética , Tasa de Mutación , Retroelementos , Secuenciación del Exoma/métodos
3.
Nature ; 630(8017): 752-761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867045

RESUMEN

Mutations accumulate in the genome of every cell of the body throughout life, causing cancer and other diseases1,2. Most mutations begin as nucleotide mismatches or damage in one of the two strands of the DNA before becoming double-strand mutations if unrepaired or misrepaired3,4. However, current DNA-sequencing technologies cannot accurately resolve these initial single-strand events. Here we develop a single-molecule, long-read sequencing method (Hairpin Duplex Enhanced Fidelity sequencing (HiDEF-seq)) that achieves single-molecule fidelity for base substitutions when present in either one or both DNA strands. HiDEF-seq also detects cytosine deamination-a common type of DNA damage-with single-molecule fidelity. We profiled 134 samples from diverse tissues, including from individuals with cancer predisposition syndromes, and derive from them single-strand mismatch and damage signatures. We find correspondences between these single-strand signatures and known double-strand mutational signatures, which resolves the identity of the initiating lesions. Tumours deficient in both mismatch repair and replicative polymerase proofreading show distinct single-strand mismatch patterns compared to samples that are deficient in only polymerase proofreading. We also define a single-strand damage signature for APOBEC3A. In the mitochondrial genome, our findings support a mutagenic mechanism occurring primarily during replication. As double-strand DNA mutations are only the end point of the mutation process, our approach to detect the initiating single-strand events at single-molecule resolution will enable studies of how mutations arise in a variety of contexts, especially in cancer and ageing.


Asunto(s)
Disparidad de Par Base , Daño del ADN , ADN de Cadena Simple , Análisis de Secuencia de ADN , Imagen Individual de Molécula , Humanos , Envejecimiento/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Disparidad de Par Base/genética , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Citosina/metabolismo , Desaminación , Daño del ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , ADN de Cadena Simple/genética , Genoma Mitocondrial/genética , Mutación , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Imagen Individual de Molécula/métodos , Masculino , Femenino
4.
Nature ; 602(7897): 510-517, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140399

RESUMEN

Clustered somatic mutations are common in cancer genomes and previous analyses reveal several types of clustered single-base substitutions, which include doublet- and multi-base substitutions1-5, diffuse hypermutation termed omikli6, and longer strand-coordinated events termed kataegis3,7-9. Here we provide a comprehensive characterization of clustered substitutions and clustered small insertions and deletions (indels) across 2,583 whole-genome-sequenced cancers from 30 types of cancer10. Clustered mutations were highly enriched in driver genes and associated with differential gene expression and changes in overall survival. Several distinct mutational processes gave rise to clustered indels, including signatures that were enriched in tobacco smokers and homologous-recombination-deficient cancers. Doublet-base substitutions were caused by at least 12 mutational processes, whereas most multi-base substitutions were generated by either tobacco smoking or exposure to ultraviolet light. Omikli events, which have previously been attributed to APOBEC3 activity6, accounted for a large proportion of clustered substitutions; however, only 16.2% of omikli matched APOBEC3 patterns. Kataegis was generated by multiple mutational processes, and 76.1% of all kataegic events exhibited mutational patterns that are associated with the activation-induced deaminase (AID) and APOBEC3 family of deaminases. Co-occurrence of APOBEC3 kataegis and extrachromosomal DNA (ecDNA), termed kyklonas (Greek for cyclone), was found in 31% of samples with ecDNA. Multiple distinct kyklonic events were observed on most mutated ecDNA. ecDNA containing known cancer genes exhibited both positive selection and kyklonic hypermutation. Our results reveal the diversity of clustered mutational processes in human cancer and the role of APOBEC3 in recurrently mutating and fuelling the evolution of ecDNA.


Asunto(s)
Neoplasias , Desaminasas APOBEC/genética , Genoma , Humanos , Mutación INDEL , Mutagénesis/genética , Mutación , Neoplasias/genética
5.
Nature ; 607(7920): 799-807, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859169

RESUMEN

The APOBEC3 family of cytosine deaminases has been implicated in some of the most prevalent mutational signatures in cancer1-3. However, a causal link between endogenous APOBEC3 enzymes and mutational signatures in human cancer genomes has not been established, leaving the mechanisms of APOBEC3 mutagenesis poorly understood. Here, to investigate the mechanisms of APOBEC3 mutagenesis, we deleted implicated genes from human cancer cell lines that naturally generate APOBEC3-associated mutational signatures over time4. Analysis of non-clustered and clustered signatures across whole-genome sequences from 251 breast, bladder and lymphoma cancer cell line clones revealed that APOBEC3A deletion diminished APOBEC3-associated mutational signatures. Deletion of both APOBEC3A and APOBEC3B further decreased APOBEC3 mutation burdens, without eliminating them. Deletion of APOBEC3B increased APOBEC3A protein levels, activity and APOBEC3A-mediated mutagenesis in some cell lines. The uracil glycosylase UNG was required for APOBEC3-mediated transversions, whereas the loss of the translesion polymerase REV1 decreased overall mutation burdens. Together, these data represent direct evidence that endogenous APOBEC3 deaminases generate prevalent mutational signatures in human cancer cells. Our results identify APOBEC3A as the main driver of these mutations, indicate that APOBEC3B can restrain APOBEC3A-dependent mutagenesis while contributing its own smaller mutation burdens and dissect mechanisms that translate APOBEC3 activities into distinct mutational signatures.


Asunto(s)
Desaminasas APOBEC , Mutagénesis , Neoplasias , Desaminasas APOBEC/deficiencia , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Línea Celular Tumoral , ADN Polimerasa Dirigida por ADN/metabolismo , Eliminación de Gen , Genoma Humano , Humanos , Mutagénesis/genética , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Uracil-ADN Glicosidasa/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(17): e2312330121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625936

RESUMEN

The apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide (APOBEC) family is composed of nucleic acid editors with roles ranging from antibody diversification to RNA editing. APOBEC2, a member of this family with an evolutionarily conserved nucleic acid-binding cytidine deaminase domain, has neither an established substrate nor function. Using a cellular model of muscle differentiation where APOBEC2 is inducibly expressed, we confirmed that APOBEC2 does not have the attributed molecular functions of the APOBEC family, such as RNA editing, DNA demethylation, and DNA mutation. Instead, we found that during muscle differentiation APOBEC2 occupied a specific motif within promoter regions; its removal from those regions resulted in transcriptional changes. Mechanistically, these changes reflect the direct interaction of APOBEC2 with histone deacetylase (HDAC) transcriptional corepressor complexes. We also found that APOBEC2 could bind DNA directly, in a sequence-specific fashion, suggesting that it functions as a recruiter of HDAC to specific genes whose promoters it occupies. These genes are normally suppressed during muscle cell differentiation, and their suppression may contribute to the safeguarding of muscle cell fate. Altogether, our results reveal a unique role for APOBEC2 within the APOBEC family.


Asunto(s)
Cromatina , Proteínas Musculares , Desaminasas APOBEC/genética , Desaminasas APOBEC-1/genética , Diferenciación Celular/genética , Cromatina/genética , Citidina Desaminasa/metabolismo , ADN , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , Animales , Ratones
7.
Mol Cell ; 67(3): 361-373.e4, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28757211

RESUMEN

Activation-induced cytidine deaminase (AID) initiates both class switch recombination (CSR) and somatic hypermutation (SHM) in antibody diversification. Mechanisms of AID targeting and catalysis remain elusive despite its critical immunological roles and off-target effects in tumorigenesis. Here, we produced active human AID and revealed its preferred recognition and deamination of structured substrates. G-quadruplex (G4)-containing substrates mimicking the mammalian immunoglobulin switch regions are particularly good AID substrates in vitro. By solving crystal structures of maltose binding protein (MBP)-fused AID alone and in complex with deoxycytidine monophosphate, we surprisingly identify a bifurcated substrate-binding surface that explains structured substrate recognition by capturing two adjacent single-stranded overhangs simultaneously. Moreover, G4 substrates induce cooperative AID oligomerization. Structure-based mutations that disrupt bifurcated substrate recognition or oligomerization both compromise CSR in splenic B cells. Collectively, our data implicate intrinsic preference of AID for structured substrates and uncover the importance of G4 recognition and oligomerization of AID in CSR.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN/metabolismo , Cambio de Clase de Inmunoglobulina , Región de Cambio de la Inmunoglobulina , Recombinación Genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , Diversidad de Anticuerpos , Linfocitos B/enzimología , Linfocitos B/inmunología , Citidina Desaminasa/química , Citidina Desaminasa/genética , ADN/química , ADN/genética , Humanos , Ratones , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Bazo/enzimología , Bazo/inmunología , Relación Estructura-Actividad , Especificidad por Sustrato
8.
Trends Genet ; 37(11): 1028-1043, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34353635

RESUMEN

APOBEC proteins can deaminate cytosine residues in DNA and RNA. This can lead to somatic mutations, DNA breaks, RNA modifications, or DNA demethylation in a selective manner. APOBECs function in various cellular compartments and recognize different nucleic acid motifs and structures. They orchestrate a wide array of genomic and epigenomic modifications, thereby affecting various cellular functions positively or negatively, including immune editing, viral and retroelement restriction, DNA damage responses, DNA demethylation, gene expression, and tissue homeostasis. Furthermore, the cumulative increase in genomic and epigenomic editing with aging could also, at least in part, be attributed to APOBEC function. We synthesize our cumulative understanding of APOBEC activity in a unifying overview and discuss their genomic and epigenomic impact in physiological, pathological, and technological contexts.


Asunto(s)
Desaminasas APOBEC , Epigenómica , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Genoma , Genómica , Retroelementos
9.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34518866

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has triggered an unprecedented international effort to sequence complete viral genomes. We leveraged this wealth of information to characterize the substitution spectrum of SARS-CoV-2 and to compare it with those of other human and animal coronaviruses. We show that, once nucleotide composition is taken into account, human and most animal coronaviruses display a mutation spectrum dominated by C to U and G to U substitutions, a feature that is not shared by other positive-sense RNA viruses. However, the proportions of C to U and G to U substitutions tend to decrease as divergence increases, suggesting that, whatever their origin, a proportion of these changes is subsequently eliminated by purifying selection. Analysis of the sequence context of C to U substitutions showed little evidence of apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-mediated editing and such contexts were similar for SARS-CoV-2 and Middle East respiratory syndrome coronavirus sampled from different hosts, despite different repertoires of APOBEC3 proteins in distinct species. Conversely, we found evidence that C to U and G to U changes affect CpG dinucleotides at a frequency higher than expected. Whereas this suggests ongoing selective reduction of CpGs, this effect alone cannot account for the substitution spectra. Finally, we show that, during the first months of SARS-CoV-2 pandemic spread, the frequency of both G to U and C to U substitutions increased. Our data suggest that the substitution spectrum of SARS-CoV-2 is determined by an interplay of factors, including intrinsic biases of the replication process, avoidance of CpG dinucleotides and other constraints exerted by the new host.


Asunto(s)
COVID-19/genética , Evolución Molecular , Genoma Viral , Mutación , Pandemias , SARS-CoV-2/genética , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , COVID-19/epidemiología , Humanos , Filogenia , SARS-CoV-2/metabolismo
10.
RNA Biol ; 21(1): 1-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38090878

RESUMEN

In mammals, RNA editing events involve the conversion of adenosine (A) in inosine (I) by ADAR enzymes or the hydrolytic deamination of cytosine (C) in uracil (U) by the APOBEC family of enzymes, mostly APOBEC1. RNA editing has a plethora of biological functions, and its deregulation has been associated with various human disorders. While the large-scale detection of A-to-I is quite straightforward using the Illumina RNAseq technology, the identification of C-to-U events is a non-trivial task. This difficulty arises from the rarity of such events in eukaryotic genomes and the challenge of distinguishing them from background noise. Direct RNA sequencing by Oxford Nanopore Technology (ONT) permits the direct detection of Us on sequenced RNA reads. Surprisingly, using ONT reads from wild-type (WT) and APOBEC1-knock-out (KO) murine cell lines as well as in vitro synthesized RNA without any modification, we identified a systematic error affecting the accuracy of the Cs call, thereby leading to incorrect identifications of C-to-U events. To overcome this issue in direct RNA reads, here we introduce a novel machine learning strategy based on the isolation Forest (iForest) algorithm in which C-to-U editing events are considered as sequencing anomalies. Using in vitro synthesized and human ONT reads, our model optimizes the signal-to-noise ratio improving the detection of C-to-U editing sites with high accuracy, over 90% in all samples tested. Our results suggest that iForest, known for its rapid implementation and minimal memory requirements, is a promising tool to denoise ONT reads and reliably identify RNA modifications.


Asunto(s)
Edición de ARN , ARN , Ratones , Animales , Humanos , ARN/genética , Secuencia de Bases , Desaminasas APOBEC/genética , Mamíferos/genética , Análisis de Secuencia de ARN
11.
Nucleic Acids Res ; 50(21): 12039-12057, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36444883

RESUMEN

The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.


Asunto(s)
ADN de Cadena Simple , Proteína de Replicación A , Humanos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , ADN de Cadena Simple/genética , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Replicación del ADN/genética , Citosina/metabolismo , ADN/metabolismo , Uracilo/metabolismo , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Desaminación
12.
Eur J Immunol ; 52(8): 1273-1284, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35503749

RESUMEN

Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c-MYC translocation and Epstein-Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation-induced cytidine deaminase (AID), an enzyme involved in the IGH/c-MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c-MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV- and P. falciparum-directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.


Asunto(s)
Desaminasas APOBEC , Linfoma de Burkitt , Citidina Desaminasa , Infecciones por Virus de Epstein-Barr , Malaria Falciparum , Desaminasas APOBEC/genética , Desaminasa APOBEC-3G , Linfoma de Burkitt/enzimología , Linfoma de Burkitt/genética , Citidina Desaminasa/genética , Infecciones por Virus de Epstein-Barr/enzimología , Infecciones por Virus de Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4 , Humanos , Malaria Falciparum/enzimología , Malaria Falciparum/genética , Antígenos de Histocompatibilidad Menor , Mutágenos
13.
J Antimicrob Chemother ; 78(12): 2995-3002, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930812

RESUMEN

BACKGROUND: Hypermutated viruses induced by APOBEC3 (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3) proteins comprise some of the defective viruses in the HIV reservoir. Here, we assessed the proportion of APOBEC3-induced defective proviruses in HIV-positive patients before and after receiving dolutegravir + lamivudine dual therapy. METHODS: PBMCs of virologically suppressed patients enrolled in the ANRS 167 LAMIDOL trial, evaluating a switch from triple therapy to dolutegravir + lamivudine, were collected 8 weeks before (W-8) and 48 weeks after (W48) dual-therapy initiation. The Vif and RT regions were subject to next-generation sequencing. Bioinformatic algorithms were developed to identify APOBEC3-defective sequences and APOBEC3-related drug resistance mutations (APOMuts). All hypermutated sequences and those containing at least one stop codon were considered as defective. RESULTS: One hundred and four patients were enrolled (median virological suppression duration: 4.2 years; IQR: 2.0-9.1). Proviral defective reads at W-8 and W48 were detected in Vif in 22% and 29% of patients, respectively, and in RT in 38% and 42% of patients, respectively. At least one APOMut was present in proviruses of 27% and 38% of patients at W-8 and W48, respectively. The ratio of APOMuts/number of potential APOMut sites was significantly higher at W48 (16.5%) than at W-8 (9.8%, P = 0.007). The presence of APOBEC3-defective viruses at W-8 was not associated with HIV total DNA level, nor with the third drug class received prior to switching to dolutegravir + lamivudine, nor with the duration of virological suppression. CONCLUSIONS: Whereas no significant change in the proportion of patients with APOBEC3-defective proviruses was evidenced after 1 year of dolutegravir + lamivudine maintenance, enrichment in APOMuts was observed. Further longer-term studies are needed to assess the other forms of defective viruses with dual-therapy.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Fármacos Anti-VIH/uso terapéutico , Desaminasas APOBEC/genética , ADN/uso terapéutico , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Lamivudine/uso terapéutico , Piridonas/uso terapéutico , Carga Viral
14.
J Virol ; 96(17): e0055522, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35950859

RESUMEN

Apolipoprotein B mRNA-editing catalytic polypeptide-like 3 family members (APOBEC3s) are host restriction factors that inhibit viral replication. Viral infectivity factor (Vif), a human immunodeficiency virus type 1 (HIV-1) accessory protein, mediates the degradation of APOBEC3s by forming the Vif-E3 complex, in which core-binding factor beta (CBFß) is an essential molecular chaperone. Here, we screened nonfunctional Vif mutants with high affinity for CBFß to inhibit HIV-1 in a dominant negative manner. We applied the yeast surface display technology to express Vif random mutant libraries, and mutants showing high CBFß affinity were screened using flow cytometry. Most of the screened Vif mutants containing random mutations of different frequencies were able to rescue APOBEC3G (A3G). In the subsequent screening, three of the mutants restricted HIV-1, recovered G-to-A hypermutation, and rescued APOBEC3s. Among them, Vif-6M showed a cross-protection effect toward APOBEC3C, APOBEC3F, and African green monkey A3G. Stable expression of Vif-6M in T lymphocytes inhibited the viral replication in newly HIV-1-infected cells and the chronically infected cell line H9/HXB2. Furthermore, the expression of Vif-6M provided a survival advantage to T lymphocytes infected with HIV-1. These results suggest that dominant negative Vif mutants acting on the Vif-CBFß target potently restrict HIV-1. IMPORTANCE Antiviral therapy cannot eliminate HIV and exhibits disadvantages such as drug resistance and toxicity. Therefore, novel strategies for inhibiting viral replication in patients with HIV are urgently needed. APOBEC3s in host cells are able to inhibit viral replication but are antagonized by HIV-1 Vif-mediated degradation. Therefore, we screened nonfunctional Vif mutants with high affinity for CBFß to compete with the wild-type Vif (wtVif) as a potential strategy to assist with HIV-1 treatment. Most screened mutants rescued the expression of A3G in the presence of wtVif, especially Vif-6M, which could protect various APOBEC3s and improve the incorporation of A3G into HIV-1 particles. Transduction of Vif-6M into T lymphocytes inhibited the replication of the newly infected virus and the chronically infected virus. These data suggest that Vif mutants targeting the Vif-CBFß interaction may be promising in the development of a new AIDS therapeutic strategy.


Asunto(s)
Subunidad beta del Factor de Unión al Sitio Principal , Infecciones por VIH , VIH-1 , Productos del Gen vif del Virus de la Inmunodeficiencia Humana , Desaminasas APOBEC/genética , Desaminasas APOBEC/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Subunidad beta del Factor de Unión al Sitio Principal/genética , VIH-1/genética , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Linfocitos T/virología , Replicación Viral , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
15.
PLoS Pathog ; 17(6): e1009523, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170969

RESUMEN

The APOBEC3 (A3) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3s found in primates. These include three single deaminase domain A3s (A3A, A3C, and A3H) and four double deaminase domain A3s (A3B, A3D, A3F, and A3G). The most potent of the A3 proteins against HIV-1 is A3G. However, it is not clear if double deaminase domain A3s have a generalized functional advantage to restrict HIV-1. In order to test whether superior restriction factors could be created by genetically linking single A3 domains into synthetic double domains, we linked A3C and A3H single domains in novel combinations. We found that A3C/A3H double domains acquired enhanced antiviral activity that is at least as potent, if not better than, A3G. Although these synthetic double domain A3s package into budding virions more efficiently than their respective single domains, this does not fully explain their gain of antiviral potency. The antiviral activity is conferred both by cytidine-deaminase dependent and independent mechanisms, with the latter correlating to an increase in RNA binding affinity. T cell lines expressing this A3C-A3H super restriction factor are able to control replicating HIV-1ΔVif infection to similar levels as A3G. Together, these data show that novel combinations of A3 domains are capable of gaining potent antiviral activity to levels similar to the most potent genome-encoded A3s, via a primarily non-catalytic mechanism.


Asunto(s)
Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Infecciones por VIH/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Desaminación , VIH-1 , Humanos , Células Jurkat
16.
J Med Virol ; 95(6): e28799, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37342884

RESUMEN

A large outbreak of Monkeypox virus (MPXV) infections has arisen in May 2022 in nonendemic countries. Here, we performed DNA metagenomics using next-generation sequencing with Illumina or Nanopore technologies for clinical samples from MPXV-infected patients diagnosed between June and July 2022. Classification of the MPXV genomes and determination of their mutational patterns were performed using Nextclade. Twenty-five samples from 25 patients were studied. A MPXV genome was obtained for 18 patients, essentially from skin lesions and rectal swabbing. All 18 genomes were classified in clade IIb, lineage B.1, and we identified four B.1 sublineages (B.1.1, B.1.10, B.1.12, B.1.14). We detected a high number of mutations (range, 64-73) relatively to a 2018 Nigerian genome (genome GenBank Accession no. NC_063383.1), which were harbored by a large part of a set of 3184 MPXV genomes of lineage B.1 recovered from GenBank and Nextstrain; and we detected 35 mutations relatively to genome ON563414.3 (a B.1 lineage reference genome). Nonsynonymous mutations occurred in genes encoding central proteins, among which transcription factors and core and envelope proteins, and included two mutations that would truncate a RNA polymerase subunit and a phospholipase d-like protein, suggesting an alternative start codon and gene inactivation, respectively. A large majority (94%) of nucleotide substitutions were G > A or C > U, suggesting the action of human APOBEC3 enzymes. Finally, >1000 reads were identified as from Staphylococcus aureus and Streptococcus pyogenes for 3 and 6 samples, respectively. These findings warrant a close genomic monitoring of MPXV to get a better picture of the genetic micro-evolution and mutational patterns of this virus, and a close clinical monitoring of skin bacterial superinfection in monkeypox patients.


Asunto(s)
Mpox , Sobreinfección , Humanos , Monkeypox virus/genética , Genoma Viral , Silenciador del Gen , Desaminasas APOBEC/genética
17.
Proc Natl Acad Sci U S A ; 117(1): 610-618, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31843890

RESUMEN

APOBEC3 (A3) genes are members of the AID/APOBEC gene family that are found exclusively in mammals. A3 genes encode antiviral proteins that restrict the replication of retroviruses by inducing G-to-A mutations in their genomes and have undergone extensive amplification and diversification during mammalian evolution. Endogenous retroviruses (ERVs) are sequences derived from ancient retroviruses that are widespread mammalian genomes. In this study we characterize the A3 repertoire and use the ERV fossil record to explore the long-term history of coevolutionary interaction between A3s and retroviruses. We examine the genomes of 160 mammalian species and identify 1,420 AID/APOBEC-related genes, including representatives of previously uncharacterized lineages. We show that A3 genes have been amplified in mammals and that amplification is positively correlated with the extent of germline colonization by ERVs. Moreover, we demonstrate that the signatures of A3-mediated mutation can be detected in ERVs found throughout mammalian genomes and show that in mammalian species with expanded A3 repertoires, ERVs are significantly enriched for G-to-A mutations. Finally, we show that A3 amplification occurred concurrently with prominent ERV invasions in primates. Our findings establish that conflict with retroviruses is a major driving force for the rapid evolution of mammalian A3 genes.


Asunto(s)
Desaminasas APOBEC/genética , Retrovirus Endógenos/genética , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Mamíferos/genética , Desaminasas APOBEC/metabolismo , Animales , Retrovirus Endógenos/inmunología , Fósiles/virología , Interacciones Huésped-Patógeno/inmunología , Mamíferos/inmunología , Mamíferos/virología , Mutación , Filogenia , Edición de ARN/inmunología , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/inmunología , ARN Viral/metabolismo
18.
BMC Biol ; 20(1): 117, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597990

RESUMEN

BACKGROUND: The APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypeptide 3) family of cytidine deaminases is responsible for two mutational signatures (SBS2 and SBS13) found in cancer genomes. APOBEC3 enzymes are activated in response to viral infection, and have been associated with increased mutation burden and TP53 mutation. In addition to this, it has been suggested that APOBEC3 activity may be responsible for mutations that do not fall into the classical APOBEC3 signatures (SBS2 and SBS13), through generation of double strand breaks.Previous work has mainly focused on the effects of APOBEC3 within individual tumour types using exome sequencing data. Here, we use whole genome sequencing data from 2451 primary tumours from 39 different tumour types in the Pan-Cancer Analysis of Whole Genomes (PCAWG) data set to investigate the relationship between APOBEC3 and genomic instability (GI). RESULTS AND CONCLUSIONS: We found that the number of classical APOBEC3 signature mutations correlates with increased mutation burden across different tumour types. In addition, the number of APOBEC3 mutations is a significant predictor for six different measures of GI. Two GI measures (INDELs attributed to INDEL signatures ID6 and ID8) strongly suggest the occurrence and error prone repair of double strand breaks, and the relationship between APOBEC3 mutations and GI remains when SNVs attributed to kataegis are excluded.We provide evidence that supports a model of cancer genome evolution in which APOBEC3 acts as a causative factor in the development of diverse and widespread genomic instability through the generation of double strand breaks. This has important implications for treatment approaches for cancers that carry APOBEC3 mutations, and challenges the view that APOBECs only act opportunistically at sites of single stranded DNA.


Asunto(s)
Desaminasas APOBEC , Neoplasias , Desaminasas APOBEC/genética , ADN de Cadena Simple , Inestabilidad Genómica , Humanos , Mutación , Neoplasias/genética
19.
J Biol Chem ; 297(2): 100889, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181944

RESUMEN

APOBEC3s are innate single-stranded DNA cytidine-to-uridine deaminases that catalyze mutations in both pathogen and human genomes with significant roles in human disease. However, how APOBEC3s mutate a single-stranded DNA that is available momentarily during DNA transcription or replication in vivo remains relatively unknown. In this study, utilizing hepatitis B virus (HBV) viral mutations, we evaluated the mutational characteristics of individual APOBEC3s with reference to the HBV replication process through HBV whole single-strand (-)-DNA genome mutation analyses. We found that APOBEC3s induced C-to-T mutations from the HBV reverse transcription start site continuing through the whole (-)-DNA transcript to the termination site with variable efficiency, in an order of A3B >> A3G > A3H-II or A3C. A3B had a 3-fold higher mutation efficiency than A3H-II or A3C with up to 65% of all HBV genomic cytidines being converted into uridines in a single mutation event, consistent with the A3B localized hypermutation signature in cancer, namely, kataegis. On the other hand, A3C expression led to a 3-fold higher number of mutation-positive HBV genome clones, although each individual clone had a lower number of C-to-T mutations. Like A3B, A3C preferred both 5'-TC and 5'-CC sequences, but to a lesser degree. The APOBEC3-induced HBV mutations were predominantly detected in the HBV rcDNA but were not detectable in other intermediates including HBV cccDNA and pgRNA by primer extension of their PCR amplification products. These data demonstrate that APOBEC3-induced HBV genome mutations occur predominantly when the HBV RNA genome was reversely transcribed into (-)-DNA in the viral capsid.


Asunto(s)
Desaminasas APOBEC/metabolismo , ADN Viral/genética , Virus de la Hepatitis B/genética , Hepatitis B/virología , Mutación , ARN Viral/genética , Desaminasas APOBEC/genética , Línea Celular Tumoral , Genoma Viral , Hepatitis B/patología , Virus de la Hepatitis B/aislamiento & purificación , Virus de la Hepatitis B/patogenicidad , Humanos , ARN Viral/metabolismo , Transcripción Reversa
20.
J Biol Chem ; 297(2): 100909, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171358

RESUMEN

The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.


Asunto(s)
Desaminasas APOBEC/química , Desaminasas APOBEC/metabolismo , ADN de Cadena Simple/química , Mutación , Neoplasias/patología , Desaminasas APOBEC/genética , Desaminasas APOBEC/inmunología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Modelos Moleculares , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Unión Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA