RESUMEN
A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.
Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Receptores de Calcitriol/metabolismo , Factores de Transcripción/metabolismo , Vitamina D/farmacología , Animales , Calcitriol/análogos & derivados , Calcitriol/farmacología , Ensamble y Desensamble de Cromatina , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mutagénesis Sitio-Dirigida , Fosforilación Oxidativa/efectos de los fármacos , Unión Proteica , Interferencia de ARN , ARN Guía de Kinetoplastida/genética , ARN Interferente Pequeño/metabolismo , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacosRESUMEN
The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.
Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrización de Heridas , Animales , Ratones , Comunicación Autocrina , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Eferocitosis , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/metabolismo , Músculo Esquelético , Canal de Sodio Activado por Voltaje NAV1.8/deficiencia , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicación Paracrina , Enfermedades del Sistema Nervioso Periférico/complicaciones , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Regeneración/efectos de los fármacos , Piel , Trombospondina 1/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/inmunología , Humanos , Masculino , FemeninoRESUMEN
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock-in mice, in which either four or all seven phosphorylation sites in the C-terminal region of pRb, respectively, have been abolished by Ser/Thr-to-Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin-sensitive and associated with failure of quiescent pancreatic ß-cells to re-enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence-associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre-treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re-entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK-inhibitor therapeutics, diabetes, and longevity.
Asunto(s)
Envejecimiento/fisiología , Ácido Ascórbico/farmacología , Diabetes Mellitus Experimental/prevención & control , Proteína de Retinoblastoma/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factor de Transcripción E2F1/metabolismo , Desarrollo Embrionario/genética , Femenino , Fibroblastos/efectos de los fármacos , Técnicas de Sustitución del Gen , Células Secretoras de Insulina/patología , Ratones , Fosforilación , Embarazo , Proteína de Retinoblastoma/genética , Telómero/genéticaRESUMEN
Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.
Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Evasión Inmune , Islotes Pancreáticos/citología , Islotes Pancreáticos/inmunología , Organoides/citología , Organoides/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Epigénesis Genética , Femenino , Glucosa/metabolismo , Rechazo de Injerto , Xenoinjertos , Homeostasis , Humanos , Tolerancia Inmunológica , Secreción de Insulina , Trasplante de Islotes Pancreáticos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/trasplante , Linfocitos T/citología , Linfocitos T/inmunología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacologíaRESUMEN
Adenosine deaminase (ADA) catalyzes the irreversible deamination of adenosine (ADO) to inosine and regulates ADO concentration. ADA ubiquitously expresses in various tissues to mediate ADO-receptor signaling. A significant increase in plasma ADA activity has been shown to be associated with the pathogenesis of type 2 diabetes mellitus. Here, we show that elevated plasma ADA activity is a compensated response to high level of ADO in type 2 diabetes mellitus and plays an essential role in the regulation of glucose homeostasis. Supplementing with more ADA, instead of inhibiting ADA, can reduce ADO levels and decrease hepatic gluconeogenesis. ADA restores a euglycemic state and recovers functional islets in db/db and high-fat streptozotocin diabetic mice. Mechanistically, ADA catabolizes ADO and increases Akt and FoxO1 phosphorylation independent of insulin action. ADA lowers blood glucose at a slower rate and longer duration compared to insulin, delaying or blocking the incidence of insulinogenic hypoglycemia shock. Finally, ADA suppresses gluconeogenesis in fasted mice and insulin-deficient diabetic mice, indicating the ADA regulating gluconeogenesis is a universal biological mechanism. Overall, these results suggest that ADA is expected to be a new therapeutic target for diabetes.
Asunto(s)
Adenosina Desaminasa , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Gluconeogénesis , Animales , Masculino , Ratones , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Insulina/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genéticaRESUMEN
Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas Sprague-Dawley , Animales , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Ratas , Humanos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Segmento Anterior del Ojo/patología , Humor Acuoso/metabolismo , Catarata/patología , Catarata/metabolismo , Cristalino/patología , Cristalino/metabolismo , Cristalino/ultraestructura , Cuerpo Ciliar/patología , Cuerpo Ciliar/metabolismo , Dieta Alta en Grasa/efectos adversosRESUMEN
Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.
Asunto(s)
Retinopatía Diabética , Ferroptosis , Especies Reactivas de Oxígeno , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Animales , Humanos , Ratones , Masculino , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Microvasos/patología , Microvasos/metabolismo , Hierro/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologíaRESUMEN
Diabetic nephropathy (DN) is a major healthcare challenge for individuals with diabetes and associated with increased cardiovascular morbidity and mortality. The existing rodent models do not fully represent the complex course of the human disease. Hence, developing a translational model of diabetes that reproduces both the early and the advanced characteristics of DN and faithfully recapitulates the overall human pathology is an unmet need. Here, we introduce the Nile grass rat (NGR) as a novel model of DN and characterize key pathologies underlying DN. NGRs spontaneously developed insulin resistance, reactive hyperinsulinemia, and hyperglycemia. Diabetic NGRs evolved DN and the key histopathological aspects of the human advanced DN, including glomerular hypertrophy, infiltration of mononuclear cells, tubular dilatation, and atrophy. Enlargement of the glomerular tufts and the Bowman's capsule areas accompanied the expansion of the Bowman's space. Glomerular sclerosis, renal arteriolar hyalinosis, Kimmelsteil-Wilson nodular lesions, and protein cast formations in the kidneys of diabetic NGR occurred with DN. Diabetic kidneys displayed interstitial and glomerular fibrosis, key characteristics of late human pathology as well as thickening of the glomerular basement membrane and podocyte effacement. Signs of injury included glomerular lipid accumulation, significantly more apoptotic cells, and expression of KIM-1. Diabetic NGRs became hypertensive, a known risk factor for kidney dysfunction, and showed decreased glomerular filtration rate. Diabetic NGRs recapitulate the breadth of human DN pathology and reproduce the consequences of chronic kidney disease, including injury and loss of function of the kidney. Hence, NGR represents a robust model for studying DN-related complications and provides a new foundation for more detailed mechanistic studies of the genesis of nephropathy, and the development of new therapeutic approaches.
Asunto(s)
Nefropatías Diabéticas , Modelos Animales de Enfermedad , Animales , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Ratas , Masculino , Humanos , Resistencia a la Insulina , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Riñón/patología , Riñón/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/metabolismoRESUMEN
Diabetic retinopathy (DR) is associated with ocular inflammation leading to retinal barrier breakdown, vascular leakage, macular edema, and vision loss. DR is not only a microvascular disease but also involves retinal neurodegeneration, demonstrating that pathological changes associated with neuroinflammation precede microvascular injury in early DR. Macrophage activation plays a central role in neuroinflammation. During DR, the inflammatory response depends on the polarization of retinal macrophages, triggering pro-inflammatory (M1) or anti-inflammatory (M2) activity. This study aimed to determine the role of macrophages in vascular leakage through the tight junction complexes of retinal pigment epithelium, which is the outer blood-retinal barrier (BRB). Furthermore, we aimed to assess whether interleukin-10 (IL-10), a representative M2-inducer, can decrease inflammatory macrophages and alleviate outer-BRB disruption. We found that modulation of macrophage polarization affects the structural and functional integrity of ARPE-19 cells in a co-culture system under high-glucose conditions. Furthermore, we demonstrated that intravitreal IL-10 injection induces an increase in the ratio of anti-inflammatory macrophages and effectively suppresses outer-BRB disruption and vascular leakage in a mouse model of early-stage streptozotocin-induced diabetes. Our results suggest that modulation of macrophage polarization by IL-10 administration during early-stage DR has a promising protective effect against outer-BRB disruption and vascular leakage. This finding provides valuable insights for early intervention in DR.
Asunto(s)
Barrera Hematorretinal , Diabetes Mellitus Experimental , Retinopatía Diabética , Interleucina-10 , Macrófagos , Animales , Humanos , Masculino , Ratones , Barrera Hematorretinal/metabolismo , Barrera Hematorretinal/patología , Polaridad Celular/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , EstreptozocinaRESUMEN
Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.
Asunto(s)
Nefropatías Diabéticas , Células Madre Mesenquimatosas , Proteína Smad2 , Proteína smad3 , Animales , Humanos , Ratones , Adenosina/metabolismo , Adenosina/análogos & derivados , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfopiruvato Hidratasa/metabolismoRESUMEN
Diabetic retinopathy (DR) is a common microvascular complication that causes visual impairment or loss. Aquaporin 4 (AQP4) is a regulatory protein involved in water transport and metabolism. In previous studies, we found that AQP4 is related to hypoxia injury in Muller cells. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a non-selective cation channel protein involved in the regulation of a variety of ophthalmic diseases. However, the effects of AQP4 and TRPV4 on ferroptosis and oxidative stress in high glucose (HG)-treated Muller cells are unclear. In this study, we investigated the functions of AQP4 and TRPV4 in DR. HG was used to treat mouse Muller cells. Reverse transcription quantitative polymerase chain reaction was used to measure AQP4 mRNA expression. Western blotting was used to detect the protein levels of AQP4, PTGS2, GPX4, and TRPV4. Cell count kit-8, flow cytometry, 5,5',6,6'-tetrachloro-1,1,3,3'-tetraethylbenzimidazolyl carbocyanine iodide staining, and glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) kits were used to evaluate the function of the Muller cells. Streptozotocin was used to induce DR in rats. Haematoxylin and eosin staining was performed to stain the retina of rats. GSH, SOD, and MDA detection kits, immunofluorescence, and flow cytometry assays were performed to study the function of AQP4 and TRPV4 in DR rats. Results found that AQP4 and TRPV4 were overexpressed in HG-induced Muller cells and streptozotocin-induced DR rats. AQP4 inhibition promoted proliferation and cell cycle progression, repressed cell apoptosis, ferroptosis, and oxidative stress, and alleviated retinal injury in DR rats. Mechanistically, AQP4 positively regulated TRPV4 expression. Overexpression of TRPV4 enhanced ferroptosis and oxidative stress in HG-treated Muller cells, and inhibition of TRPV4 had a protective effect on DR-induced retinal injury in rats. In conclusion, inhibition of AQP4 inhibits the ferroptosis and oxidative stress in Muller cells by downregulating TRPV4, which may be a potential target for DR therapy.
Asunto(s)
Acuaporina 4 , Retinopatía Diabética , Células Ependimogliales , Ferroptosis , Estrés Oxidativo , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Ratas , Acuaporina 4/metabolismo , Acuaporina 4/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/genética , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Glucosa/metabolismo , Glucosa/farmacología , Ratones Endogámicos C57BL , Ratas Sprague-Dawley , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genéticaRESUMEN
Heterotopic ossification (HO) occurs as a common complication after injury, while its risk factor and mechanism remain unclear, which restricts the development of pharmacological treatment. Clinical research suggests that diabetes mellitus (DM) patients are prone to developing HO in the tendon, but solid evidence and mechanical research are still needed. Here, we combined the clinical samples and the DM mice model to identify that disordered glycolipid metabolism aggravates the senescence of tendon-derived stem cells (TSCs) and promotes osteogenic differentiation. Then, combining the RNA-seq results of the aging tendon, we detected the abnormally activated autocrine CXCL13-CXCR5 axis in TSCs cultured in a high fat, high glucose (HFHG) environment and also in the aged tendon. Genetic inhibition of CXCL13 successfully alleviated HO formation in DM mice, providing a potential therapeutic target for suppressing HO formation in DM patients after trauma or surgery.
Asunto(s)
Quimiocina CXCL13 , Glucolípidos , Osificación Heterotópica , Osteogénesis , Receptores CXCR5 , Animales , Osificación Heterotópica/metabolismo , Osificación Heterotópica/patología , Osificación Heterotópica/genética , Ratones , Humanos , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Glucolípidos/metabolismo , Receptores CXCR5/metabolismo , Receptores CXCR5/genética , Células Madre/metabolismo , Tendones/metabolismo , Tendones/patología , Masculino , Ratones Endogámicos C57BL , Diferenciación Celular , Senescencia Celular , Transducción de Señal , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologíaRESUMEN
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
Asunto(s)
Nefropatías Diabéticas , Proteína HMGB1 , Células Mesangiales , FN-kappa B , Transducción de Señal , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Mesangiales/metabolismo , Células Mesangiales/patología , Ratones , FN-kappa B/metabolismo , Masculino , Proliferación Celular , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Citosol/metabolismo , Humanos , Inflamación/patología , Inflamación/metabolismoRESUMEN
Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.NEW & NOTEWORTHY The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, t tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.
Asunto(s)
Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Masculino , Costameras/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/fisiopatología , Ratas , Microscopía de Fuerza Atómica , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Ratas Wistar , ElasticidadRESUMEN
Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.
Asunto(s)
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucosa de Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocondrias , Animales , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Ratones , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Glucosa/metabolismo , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Type 2 diabetes (T2D) constitutes a major public health problem, and despite prevention efforts, this pandemic disease is one of the deadliest diseases in the world. In 2022, 6.7 million patients with T2D died prematurely from vascular complications. Indeed, diabetes increases the risk of myocardial infarction or stroke eightfold. The identification of the molecular factors involved in the occurrence of cardiovascular complications and their prevention are therefore major axes. Our hypothesis is that factors brought into play during physiological aging appear prematurely with diabetes progression. Our study focused on the aging of the extracellular matrix (ECM), a major element in the maintenance of vascular homeostasis. We characterized the morphological and functional aspects of aorta, with a focus on the collagen and elastic fibers of diabetic mice aged from 6 mo to nondiabetic mice aged 6 mo and 20 mo. The comparison with the two nondiabetic models (young and old) highlighted an exacerbated activity of proteases, which could explain a disturbance in the collagen accumulation and an excessive degradation of elastic fibers. Moreover, the generation of circulating elastin-derived peptides reflects premature aging of the ECM. These extracellular elements contribute to the appearance of vascular rigidity, often the origin of pathologies such as hypertension and atherosclerosis. In conclusion, we show that diabetic mice aged 6 mo present the same characteristics of ECM wear as those observed in mice aged 20 mo. This accelerated aortic wall remodeling could then explain the early onset of cardiovascular diseases and, therefore, the premature death of patients with T2D.NEW & NOTEWORTHY Aortic elastic fibers of young (6-mo old) individuals with diabetes degrade prematurely and exhibit an appearance like that found in aged (20-mo old) nondiabetic mice. Exacerbated elastolysis and elastin-derived peptide production are characteristic elements, contributing to early aortic wall rigidity and hypertension development. Therefore, limiting this early aging could be a judicious therapeutic approach to reduce cardiovascular complications and premature death in patients with diabetes.
Asunto(s)
Aorta , Tejido Elástico , Matriz Extracelular , Síndrome Metabólico , Ratones Endogámicos C57BL , Rigidez Vascular , Animales , Tejido Elástico/metabolismo , Tejido Elástico/patología , Rigidez Vascular/fisiología , Ratones , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Elastina/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Envejecimiento/patología , Envejecimiento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Envejecimiento Prematuro/fisiopatologíaRESUMEN
Diabetes-related bone loss represents a significant complication that persistently jeopardizes the bone health of individuals with diabetes. Primary cilia proteins have been reported to play a vital role in regulating osteoblast differentiation in diabetes-related bone loss. However, the specific contribution of KIAA0753, a primary cilia protein, in bone loss induced by diabetes remains unclear. In this investigation, we elucidated the pivotal role of KIAA0753 as a promoter of osteoblast differentiation in diabetes. RNA sequencing demonstrated a marked downregulation of KIAA0753 expression in pro-bone MC3T3 cells exposed to a high glucose environment. Diabetes mouse models further validated the downregulation of KIAA0753 protein in the femur. Diabetes was observed to inhibit osteoblast differentiation in vitro, evidenced by downregulating the protein expression of OCN, OPN and ALP, decreasing primary cilia biosynthesis, and suppressing the Hedgehog signalling pathway. Knocking down KIAA0753 using shRNA methods was found to shorten primary cilia. Conversely, overexpression KIAA0753 rescued these changes. Additional insights indicated that KIAA0753 effectively restored osteoblast differentiation by directly interacting with SHH, OCN and Gli2, thereby activating the Hedgehog signalling pathway and mitigating the ubiquitination of Gli2 in diabetes. In summary, we report a negative regulatory relationship between KIAA0753 and diabetes-related bone loss. The clarification of KIAA0753's role offers valuable insights into the intricate mechanisms underlying diabetic bone complications.
Asunto(s)
Diferenciación Celular , Proteínas Asociadas a Microtúbulos , Osteoblastos , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Línea Celular , Cilios/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteogénesis/genética , Proteínas Asociadas a Microtúbulos/metabolismoRESUMEN
Podocyte apoptosis exerts a crucial role in the pathogenesis of DN. Recently, long noncoding RNAs (lncRNAs) have been gradually identified to be functional in a variety of different mechanisms associated with podocyte apoptosis. This study aimed to investigate whether lncRNA Glis2 could regulate podocyte apoptosis in DN and uncover the underlying mechanism. The apoptosis rate was detected by flow cytometry. Mitochondrial membrane potential (ΔΨM) was measured using JC-1 staining. Mitochondrial morphology was detected by MitoTracker Deep Red staining. Then, the histopathological and ultrastructure changes of renal tissues in diabetic mice were observed using periodic acid-Schiff (PAS) staining and transmission electron microscopy. We found that lncRNA Glis2 was significantly downregulated in high-glucose cultured podocytes and renal tissues of db/db mice. LncRNA Glis2 overexpression was found to alleviate podocyte mitochondrial dysfunction and apoptosis. The direct interaction between lncRNA Glis2 and miR-328-5p was confirmed by dual luciferase reporter assay. Furthermore, lncRNA Glis2 overexpression alleviated podocyte apoptosis in diabetic mice. Taken together, this study demonstrated that lncRNA Glis2, acting as a competing endogenous RNA (ceRNA) of miRNA-328-5p, regulated Sirt1-mediated mitochondrial dysfunction and podocyte apoptosis in DN.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , Enfermedades Mitocondriales , Podocitos , ARN Largo no Codificante , Ratones , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , ARN Largo no Codificante/genética , MicroARNs/genética , Podocitos/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Factores de Transcripción , Apoptosis/genética , Enfermedades Mitocondriales/patología , GlucosaRESUMEN
Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.
Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteogénesis , Especies Reactivas de Oxígeno , Transducción de Señal , Células Madre , Tendones , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Células Madre/citología , Ratas , Tendones/metabolismo , Tendones/patología , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Ratas Sprague-Dawley , Hiperoxia/metabolismo , Acetilcisteína/farmacologíaRESUMEN
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.