RESUMEN
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Asunto(s)
Regeneración Ósea , Mesodermo , Odontogénesis , Ingeniería de Tejidos , Pérdida de Diente , Diente , Diente/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Humanos , Animales , Mesodermo/crecimiento & desarrollo , Pérdida de Diente/terapiaRESUMEN
Living mammal groups exhibit rapid juvenile growth with a cessation of growth in adulthood1. Understanding the emergence of this pattern in the earliest mammaliaforms (mammals and their closest extinct relatives) is hindered by a paucity of fossils representing juvenile individuals. We report exceptionally complete juvenile and adult specimens of the Middle Jurassic docodontan Krusatodon, providing anatomical data and insights into the life history of early diverging mammaliaforms. We used synchrotron X-ray micro-computed tomography imaging of cementum growth increments in the teeth2-4 to provide evidence of pace of life in a Mesozoic mammaliaform. The adult was about 7 years and the juvenile 7 to 24 months of age at death and in the process of replacing its deciduous dentition with its final, adult generation. When analysed against a dataset of life history parameters for extant mammals5, the relative sequence of adult tooth eruption was already established in Krusatodon and in the range observed in extant mammals but this development was prolonged, taking place during a longer period as part of a significantly longer maximum lifespan than extant mammals of comparable adult body mass (156 g or less). Our findings suggest that early diverging mammaliaforms did not experience the same life histories as extant small-bodied mammals and the fundamental shift to faster growth over a shorter lifespan may not have taken place in mammaliaforms until during or after the Middle Jurassic.
Asunto(s)
Envejecimiento , Fósiles , Rasgos de la Historia de Vida , Longevidad , Mamíferos , Animales , Envejecimiento/fisiología , Cemento Dental/anatomía & histología , Historia Antigua , Mamíferos/anatomía & histología , Mamíferos/crecimiento & desarrollo , Sincrotrones , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Erupción Dental/fisiología , Microtomografía por Rayos X , Longevidad/fisiologíaRESUMEN
The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.
Asunto(s)
Adhesión Celular , Movimiento Celular , Proteínas Hedgehog , Miosina Tipo II , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adhesión Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimiento Celular/genética , Epitelio/metabolismo , Morfogénesis/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación del Desarrollo de la Expresión GénicaRESUMEN
How the dorsal-ventral axis of the vertebrate jaw, particularly the position of tooth initiation site, is established remains a critical and unresolved question. Tooth development starts with the formation of the dental lamina, a localized thickened strip within the maxillary and mandibular epithelium. To identify transcriptional regulatory networks (TRN) controlling the specification of dental lamina from the naïve mandibular epithelium, we utilized Laser Microdissection coupled low-input RNA-seq (LMD-RNA-seq) to profile gene expression of different domains of the mandibular epithelium along the dorsal-ventral axis. We comprehensively identified transcription factors (TFs) and signaling pathways that are differentially expressed along mandibular epithelial domains (including the dental lamina). Specifically, we found that the TFs Sox2 and Tfap2 (Tfap2a/Tfap2b) formed complimentary expression domains along the dorsal-ventral axis of the mandibular epithelium. Interestingly, both classic and novel dental lamina specific TFs-such as Pitx2, Ascl5 and Zfp536-were found to localize near the Sox2:Tfap2a/Tfap2b interface. To explore the functional significance of these domain specific TFs, we next examined loss-of-function mouse models of these domain specific TFs, including the dental lamina specific TF, Pitx2, and the ventral surface ectoderm specific TFs Tfap2a and Tfap2b. We found that disruption of domain specific TFs leads to an upregulation and expansion of the alternative domain's TRN. The importance of this cross-repression is evident by the ectopic expansion of Pitx2 and Sox2 positive dental lamina structure in Tfap2a/Tfap2b ectodermal double knockouts and the emergence of an ectopic tooth in the ventral surface ectoderm. Finally, we uncovered an unappreciated interface of mesenchymal SHH and WNT signaling pathways, at the site of tooth initiation, that were established by the epithelial domain specific TFs including Pitx2 and Tfap2a/Tfap2b. These results uncover a previously unknown molecular mechanism involving cross-repression of domain specific TFs including Pitx2 and Tfap2a/Tfap2b in patterning the dorsal-ventral axis of the mouse mandible, specifically the regulation of tooth initiation site.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína del Homeodomínio PITX2 , Proteínas de Homeodominio , Mandíbula , Factores de Transcripción SOXB1 , Factor de Transcripción AP-2 , Factores de Transcripción , Animales , Ratones , Linaje de la Célula/genética , Epitelio/metabolismo , Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mandíbula/metabolismo , Odontogénesis/genética , Transducción de Señal , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Diente/embriología , Factor de Transcripción AP-2/metabolismo , Factor de Transcripción AP-2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Keratins are typical intermediate filament proteins of the epithelium that exhibit highly specific expression patterns related to the epithelial type and stage of cellular differentiation. They are important for cytoplasmic stability and epithelial integrity and are involved in various intracellular signaling pathways. Several keratins are associated with enamel formation. However, information on their expression patterns during tooth development remains lacking. In this study, we analyzed the spatiotemporal expression of keratin family members during tooth development using single-cell RNA-sequencing (scRNA-seq) and microarray analysis. scRNA-seq datasets from postnatal Day 1 mouse molars revealed that several keratins are highly expressed in the dental epithelium, indicating the involvement of keratin family members in cellular functions. Among various keratins, keratin 5 (Krt5), keratin 14 (Krt14), and keratin 17 (Krt17) are highly expressed in the tooth germ; KRT17 is specifically expressed in the stratum intermedium (SI) and stellate reticulum (SR). Depletion of Krt17 did not affect cell proliferation in the dental epithelial cell line SF2 but suppressed their differentiation ability. These results suggest that Krt17 is essential for SI cell differentiation. Furthermore, scRNA-seq results indicated that Krt5, Krt14, and Krt17 exhibited distinct expression patterns in ameloblast, SI, and SR cells. Our findings contribute to the elucidation of novel mechanisms underlying tooth development.
Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Queratina-17 , Odontogénesis , Animales , Diferenciación Celular/genética , Queratina-17/genética , Queratina-17/metabolismo , Ratones , Odontogénesis/genética , Germen Dentario/metabolismo , Germen Dentario/crecimiento & desarrollo , Queratinas/metabolismo , Queratinas/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Diente/crecimiento & desarrollo , Diente/metabolismo , Línea CelularRESUMEN
BACKGROUND: Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Bank and prairie voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars while retaining similar size and shape, providing alternative models for studying roots. RESULTS: We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. Bulk transcriptomics comparisons of embryonic molar development between bank voles and mice demonstrated overall conservation of gene expression levels, with species-specific differences corresponding to the accelerated and more extensive patterning of the vole molar. We leverage convergent evolution of unrooted molars across the clade to examine changes that may underlie the evolution of unrooted molars. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. CONCLUSIONS: Our results support ongoing evolution of dental genes across Glires and identify candidate genes for mechanistic studies of root formation. Comparative research using the bank vole as a model species can reveal the complex evolutionary background of convergent evolution for ever-growing molars.
Asunto(s)
Arvicolinae , Genómica , Animales , Arvicolinae/genética , Ratones , Diente/crecimiento & desarrollo , Diente/metabolismo , Filogenia , Diente Molar/crecimiento & desarrollo , Diente Molar/metabolismo , Evolución Molecular , Evolución Biológica , Odontogénesis/genética , GenomaRESUMEN
The timing of dental development in ethnic Finns and Somalis, who were born and living in Finland, was compared, with efforts to minimize environmental bias. The developmental status of seven lower left permanent teeth were staged according to Demirjian et al., using panoramic radiographs from 2,100 Finnish and 808 Somali females and males, aged 2 to 23 years. For each tooth, a continuation-ratio model was constructed to analyze the allocated stages as a function of sex and ethnic origin. Several statistically significant differences in mean age of certain tooth developmental stage transitions were revealed. While Somalis generally displayed stage transitions at younger age, none of the seven teeth consistently showed earlier stage transitions in Somalis compared to Finns. Within each tooth, the lowest (or highest) mean age of stage transition varied without any discernible pattern between the two ethnic groups. Overall, the observed differences in mean age of stage transition between the groups was minimal, suggesting a low impact on clinical and forensic age assessment practice. In conclusion, the studied ethnic Finn and Somali groups with equal nutritional and /or environmental conditions exhibit similar timing in the development of all lower left permanent teeth.
Asunto(s)
Determinación de la Edad por los Dientes , Radiografía Panorámica , Humanos , Masculino , Femenino , Adolescente , Determinación de la Edad por los Dientes/métodos , Niño , Adulto Joven , Finlandia , Preescolar , Somalia/etnología , Etnicidad , Dentición Permanente , Diente/crecimiento & desarrollo , Diente/diagnóstico por imagenRESUMEN
OBJECTIVES: The aim of this study was to investigate the impact of birth weight on tooth development in children aged 7-8 years. MATERIALS AND METHODS: This retrospective cohort study comprised 75 children born at Bint Al-Huda Hospital, Bojnurd, in 2013-2014. The children were categorized into three groups based on their birth weight: Normal Birth Weight (NBW), Low Birth Weight (LBW), and Very Low Birth Weight (VLBW). Panoramic radiographs were taken for orthodontic examination, and Demirjian's 8-teeth method was employed to determine dental age. The study compared dental and chronological age within each group. Data analysis utilized SPSS software version 26, employing One-way ANOVA and chi-square tests. Statistical significance was set at P ≤ 0.05. RESULTS: The mean difference in dental and chronological age for Very Low Birth Weight (VLBW) children was 0.22 ± 0.44 years, for Low Birth Weight (LBW) children it was 0.19 ± 0.45 years, and for Normal Birth Weight (NBW) children, it was 0.08 ± 0.46 years. Although the mean difference decreased with increasing birth weight, this trend did not achieve statistical significance (P = 0.55). Furthermore, no significant differences were observed between the weight groups (P = 0.529) or genders (P = 0.191).
Asunto(s)
Peso al Nacer , Radiografía Panorámica , Humanos , Femenino , Estudios Retrospectivos , Masculino , Niño , Determinación de la Edad por los Dientes/métodos , Recién Nacido de Bajo Peso , Recién Nacido , Diente/crecimiento & desarrollo , Diente/diagnóstico por imagenRESUMEN
BACKGROUND: This study aims to evaluate the performance of a deep learning system for the evaluation of tooth development stages on images obtained from panoramic radiographs from child patients. METHODS: The study collected a total of 1500 images obtained from panoramic radiographs from child patients between the ages of 5 and 14 years. YOLOv5, a convolutional neural network (CNN)-based object detection model, was used to automatically detect the calcification states of teeth. Images obtained from panoramic radiographs from child patients were trained and tested in the YOLOv5 algorithm. True-positive (TP), false-positive (FP), and false-negative (FN) ratios were calculated. A confusion matrix was used to evaluate the performance of the model. RESULTS: Among the 146 test group images with 1022 labels, there were 828 TPs, 308 FPs, and 1 FN. The sensitivity, precision, and F1-score values of the detection model of the tooth stage development model were 0.99, 0.72, and 0.84, respectively. CONCLUSIONS: In conclusion, utilizing a deep learning-based approach for the detection of dental development on pediatric panoramic radiographs may facilitate a precise evaluation of the chronological correlation between tooth development stages and age. This can help clinicians make treatment decisions and aid dentists in finding more accurate treatment options.
Asunto(s)
Algoritmos , Aprendizaje Profundo , Radiografía Panorámica , Humanos , Niño , Adolescente , Preescolar , Femenino , Masculino , Inteligencia Artificial , Diente/crecimiento & desarrollo , Diente/diagnóstico por imagen , Determinación de la Edad por los Dientes/métodos , Redes Neurales de la ComputaciónRESUMEN
Country-specific systematic reviews and meta-analyses have been proposed to compile the available literature and rank methods based on their performance for a target population. India is a country with a vast scientific literature on dental age estimation. This systematic review aimed to provide evidence to help the decision of experts regarding the method of choice for dental age estimation in India. The research protocol was registered in Open Science Framework. Literature Search was performed in Embase, LILACS, MedLine (via PubMed), SciELO, Scopus and Web of Science. Grey Literature was searched in Google Scholar and ProQuest. Observational cross-sectional studies that compared chronological and estimated ages using Demirjian (original [DEM] and Chaillet's modification [modified-DEM]) and Acharya (ACH) methods were included. JBI tool was used to assess the risk of bias. The search detected 9799 studies, out of which 56 were eligible (n=13,107 panoramic radiographs of Indian individuals). Low risk of bias was registered for 48 studies, while 8 presented a moderate risk of bias. The meta-analysis showed a standardized mean difference between chronological and estimated ages of -0.11 (95%CI: -0.29; 0.07), 0.74 (95%CI: 0.39; 1.09), and -0.01 (95%CI: -0.23; 0.22) years for DEM, modified-DEM and ACH, respectively. High heterogeneity (I2=88-93%) was observed across studies for all the methods, including subgroup analyses based on sex. This study ranked ACH, DEM and modified-DEM (from the best to the worse) performances in the Indian population.
Asunto(s)
Determinación de la Edad por los Dientes , Humanos , India , Determinación de la Edad por los Dientes/métodos , Niño , Adolescente , Radiografía Panorámica , Estudios Transversales , Femenino , Diente/diagnóstico por imagen , Diente/crecimiento & desarrollo , Diente/anatomía & histología , MasculinoRESUMEN
Craniomaxillofacial development involves a series of highly ordered temporal-spatial cellular differentiation processes in which a variety of cell signaling factors, such as fibroblast growth factors, play important regulatory roles. As a classic fibroblast growth factor, fibroblast growth factor 7 (FGF7) serves a wide range of regulatory functions. Previous studies have demonstrated that FGF7 regulates the proliferation and migration of epithelial cells, protects them, and promotes their repair. Furthermore, recent findings indicate that epithelial cells are not the only ones subjected to the broad and powerful regulatory capacity of FGF7. It has potential effects on skeletal system development as well. In addition, FGF7 plays an important role in the development of craniomaxillofacial organs, such as the palate, the eyes, and the teeth. Nonetheless, the role of FGF7 in oral craniomaxillofacial development needs to be further elucidated. In this paper, we summarized the published research on the role of FGF7 in oral craniomaxillofacial development to demonstrate the overall understanding of FGF7 and its potential functions in oral craniomaxillofacial development.
Asunto(s)
Factor 7 de Crecimiento de Fibroblastos , Humanos , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/genética , Animales , Cráneo/crecimiento & desarrollo , Cráneo/metabolismo , Desarrollo Maxilofacial/fisiología , Diente/metabolismo , Diente/crecimiento & desarrolloRESUMEN
Dental age estimation is a crucial aspect and one of the ways to accomplish forensic age estimation, and imaging technology is an important technique for dental age estimation. In recent years, some studies have preliminarily confirmed the feasibility of magnetic resonance imaging (MRI) in evaluating dental development, providing a new perspective and possibility for the evaluation of dental development, suggesting that MRI is expected to be a safer and more accurate tool for dental age estimation. However, further research is essential to verify its accuracy and feasibility. This article reviews the current state, challenges and limitations of MRI in dental development and age estimation, offering reference for the research of dental age assessment based on MRI technology.
Asunto(s)
Determinación de la Edad por los Dientes , Imagen por Resonancia Magnética , Diente , Humanos , Determinación de la Edad por los Dientes/métodos , Imagen por Resonancia Magnética/métodos , Diente/diagnóstico por imagen , Diente/crecimiento & desarrollo , Odontología Forense/métodosRESUMEN
OBJECTIVES: To investigate the application value of combining the Demirjian's method with machine learning algorithms for dental age estimation in northern Chinese Han children and adolescents. METHODS: Oral panoramic images of 10 256 Han individuals aged 5 to 24 years in northern China were collected. The development of eight permanent teeth in the left mandibular was classified into different stages using the Demirjian's method. Various machine learning algorithms, including support vector regression (SVR), gradient boosting regression (GBR), linear regression (LR), random forest regression (RFR), and decision tree regression (DTR) were employed. Age estimation models were constructed based on total, female, and male samples respectively using these algorithms. The fitting performance of different machine learning algorithms in these three groups was evaluated. RESULTS: SVR demonstrated superior estimation efficiency among all machine learning models in both total and female samples, while GBR showed the best performance in male samples. The mean absolute error (MAE) of the optimal age estimation model was 1.246 3, 1.281 8 and 1.153 8 years in the total, female and male samples, respectively. The optimal age estimation model exhibited varying levels of accuracy across different age ranges, which provided relatively accurate age estimations in individuals under 18 years old. CONCLUSIONS: The machine learning model developed in this study exhibits good age estimation efficiency in northern Chinese Han children and adolescents. However, its performance is not ideal when applied to adult population. To improve the accuracy in age estimation, the other variables can be considered.
Asunto(s)
Determinación de la Edad por los Dientes , Algoritmos , Aprendizaje Automático , Radiografía Panorámica , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven , Determinación de la Edad por los Dientes/métodos , China/etnología , Árboles de Decisión , Pueblos del Este de Asia , Etnicidad , Mandíbula , Radiografía Panorámica/métodos , Máquina de Vectores de Soporte , Diente/diagnóstico por imagen , Diente/crecimiento & desarrolloRESUMEN
To understand the mechanisms underlying tooth morphogenesis, we examined the developmental roles of important posttranslational modification, O-GlcNAcylation, which regulates protein stability and activity by the addition and removal of a single sugar (O-GlcNAc) to the serine or threonine residue of the intracellular proteins. Tissue and developmental stage-specific immunostaining results against O-GlcNAc and O-GlcNAc transferase (OGT) in developing tooth germs would suggest that O-GlcNAcylation is involved in tooth morphogenesis, particularly in the cap and secretory stage. To evaluate the developmental function of OGT-mediated O-GlcNAcylation, we employed an in vitro tooth germ culture method at E14.5, cap stage before secretory stage, for 1 and 2 days, with or without OSMI-1, a small molecule OGT inhibitor. To examine the mineralization levels and morphological changes, we performed renal capsule transplantation for one and three weeks after 2 days of in vitro culture at E14.5 with OSMI-1 treatment. After OGT inhibition, morphological and molecular alterations were examined using histology, immunohistochemistry, real-time quantitative polymerase chain reaction, in situ hybridization, scanning electron microscopy, and ground sectioning. Overall, inhibition of OGT resulted in altered cellular physiology, including proliferation, apoptosis, and epithelial rearrangements, with significant changes in the expression patterns of ß-catenin, fibroblast growth factor 4 (fgf4), and sonic hedgehog (Shh). Moreover, renal capsule transplantation and immunolocalizations of Amelogenin and Nestin results revealed that OGT-inhibited tooth germs at cap stage exhibited with structural changes in cuspal morphogenesis, amelogenesis, and dentinogenesis of the mineralized tooth. Overall, we suggest that OGT-mediated O-GlcNAcylation regulates cell signaling and physiology in primary enamel knot during tooth development, thus playing an important role in mouse molar morphogenesis.
Asunto(s)
N-Acetilglucosaminiltransferasas , Diente , Animales , Ratones , Apoptosis/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Diente/crecimiento & desarrollo , Diente/metabolismoRESUMEN
Epithelial signaling centers control epithelial invagination and organ development, but how these centers are specified remains unclear. We report that Pitx2 (the first transcriptional marker for tooth development) controls the embryonic formation and patterning of epithelial signaling centers during incisor development. We demonstrate using Krt14Cre /Pitx2flox/flox (Pitx2cKO ) and Rosa26CreERT/Pitx2flox/flox mice that loss of Pitx2 delays epithelial invagination, and decreases progenitor cell proliferation and dental epithelium cell differentiation. Developmentally, Pitx2 regulates formation of the Sox2+ labial cervical loop (LaCL) stem cell niche in concert with two signaling centers: the initiation knot and enamel knot. The loss of Pitx2 disrupted the patterning of these two signaling centers, resulting in tooth arrest at E14.5. Mechanistically, Pitx2 transcriptional activity and DNA binding is inhibited by Sox2, and this interaction controls gene expression in specific Sox2 and Pitx2 co-expression progenitor cell domains. We demonstrate new transcriptional mechanisms regulating signaling centers by Pitx2, Sox2, Lef1 and Irx1.
Asunto(s)
Células Epiteliales/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Esmalte Dental/metabolismo , Embrión de Mamíferos/metabolismo , Células Epiteliales/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Ratones Noqueados , Odontogénesis , Factores de Transcripción SOXB1/genética , Nicho de Células Madre , Células Madre/citología , Células Madre/metabolismo , Diente/citología , Diente/crecimiento & desarrollo , Diente/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Proteína del Homeodomínio PITX2RESUMEN
To explain the evolutionary origin of vertebrate teeth from odontodes, it has been proposed that competent epithelium spread into the oropharyngeal cavity via the mouth and other possible channels such as the gill slits [Huysseune et al., 2009, J. Anat. 214, 465-476]. Whether tooth formation deep inside the pharynx in extant vertebrates continues to require external epithelia has not been addressed so far. Using zebrafish we have previously demonstrated that cells derived from the periderm penetrate the oropharyngeal cavity via the mouth and via the endodermal pouches and connect to periderm-like cells that subsequently cover the entire endoderm-derived pharyngeal epithelium [Rosa et al., 2019, Sci. Rep. 9, 10082]. We now provide conclusive evidence that the epithelial component of pharyngeal teeth in zebrafish (the enamel organ) is derived from medial endoderm, as hitherto assumed based on position deep in the pharynx. Yet, dental morphogenesis starts only after the corresponding endodermal pouch (pouch 6) has made contact with the skin ectoderm, and only after periderm-like cells have covered the prospective tooth-forming endodermal epithelium. Manipulation of signaling pathways shown to adversely affect tooth development indicates they act downstream of these events. We demonstrate that pouch-ectoderm contact and the presence of a periderm-like layer are both required, but not sufficient, for tooth initiation in the pharynx. We conclude that the earliest interactions to generate pharyngeal teeth encompass those between different epithelial populations (skin ectoderm, endoderm, and periderm-like cells in zebrafish), in addition to the epithelial-mesenchymal interactions that govern the formation of all vertebrate teeth.
Asunto(s)
Epitelio/fisiología , Estratos Germinativos , Odontogénesis/fisiología , Faringe/fisiología , Diente/crecimiento & desarrollo , Animales , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/citología , Estratos Germinativos/fisiología , Transducción de Señal/fisiología , Pez CebraRESUMEN
Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.
Asunto(s)
Amelogénesis Imperfecta/genética , Proteínas de Unión al ADN/genética , Proteínas del Esmalte Dental/genética , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Ameloblastos/metabolismo , Ameloblastos/patología , Amelogénesis Imperfecta/patología , Proteínas Relacionadas con la Autofagia/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Esmalte Dental/crecimiento & desarrollo , Esmalte Dental/patología , Femenino , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , Masculino , Mutación Missense/genética , Linaje , Regiones Promotoras Genéticas/genética , Diente/crecimiento & desarrollo , Diente/patología , Secuenciación del ExomaRESUMEN
The teeth of gnathostomes (jawed vertebrates) show rigidly patterned, unidirectional replacement that may or may not be associated with a shedding mechanism. These mechanisms, which are critical for the maintenance of the dentition, are incongruently distributed among extant gnathostomes. Although a permanent tooth-generating dental lamina is present in all chondrichthyans, many tetrapods and some teleosts, it is absent in the non-teleost actinopterygians. Tooth-shedding by basal hard tissue resorption occurs in most osteichthyans (including tetrapods) but not in chondrichthyans. Here we report a three-dimensional virtual dissection of the dentition of a 424-million-year-old stem osteichthyan, Andreolepis hedei, using propagation phase-contrast synchrotron microtomography, with a reconstruction of its growth history. Andreolepis, close to the common ancestor of all extant osteichthyans, shed its teeth by basal resorption but probably lacked a permanent dental lamina. This is the earliest documented instance of resorptive tooth shedding and may represent the primitive osteichthyan mode of tooth replacement.