Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.341
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850024

RESUMEN

We describe the development of OncoFAP, an ultra-high-affinity ligand of fibroblast activation protein (FAP) for targeting applications with pan-tumoral potential. OncoFAP binds to human FAP with affinity in the subnanomolar concentration range and cross-reacts with the murine isoform of the protein. We generated various fluorescent and radiolabeled derivatives of OncoFAP in order to study biodistribution properties and tumor-targeting performance in preclinical models. Fluorescent derivatives selectively localized in FAP-positive tumors implanted in nude mice with a rapid and homogeneous penetration within the neoplastic tissue. Quantitative in vivo biodistribution studies with a lutetium-177-labeled derivative of OncoFAP revealed a preferential localization in tumors at doses of up to 1,000 nmol/kg. More than 30% of the injected dose had already accumulated in 1 g of tumor 10 min after intravenous injection and persisted for at least 3 h with excellent tumor-to-organ ratios. OncoFAP also served as a modular component for the generation of nonradioactive therapeutic products. A fluorescein conjugate mediated a potent and FAP-dependent tumor cell killing activity in combination with chimeric antigen receptor (CAR) T cells specific to fluorescein. Similarly, a conjugate of OncoFAP with the monomethyl auristatin E-based Vedotin payload was well tolerated and cured tumor-bearing mice in combination with a clinical-stage antibody-interleukin-2 fusion. Collectively, these data support the development of OncoFAP-based products for tumor-targeting applications in patients with cancer.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Endopeptidasas/química , Endopeptidasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Endopeptidasas/fisiología , Fibroblastos , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Marcaje Isotópico , Ligandos , Lutecio/química , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Quinolinas/química , Radioisótopos/química , Radiofármacos , Distribución Tisular/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
Plant Cell ; 31(11): 2789-2804, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548254

RESUMEN

Compartmentation is a key strategy enacted by plants for the storage of specialized metabolites. The saffron spice owes its red color to crocins, a complex mixture of apocarotenoid glycosides that accumulate in intracellular vacuoles and reach up to 10% of the spice dry weight. We developed a general approach, based on coexpression analysis, heterologous expression in yeast (Saccharomyces cerevisiae), and in vitro transportomic assays using yeast microsomes and total plant metabolite extracts, for the identification of putative vacuolar metabolite transporters, and we used it to identify Crocus sativus transporters mediating vacuolar crocin accumulation in stigmas. Three transporters, belonging to both the multidrug and toxic compound extrusion and ATP binding cassette C (ABCC) families, were coexpressed with crocins and/or with the gene encoding the first dedicated enzyme in the crocin biosynthetic pathway, CsCCD2. Two of these, belonging to the ABCC family, were able to mediate transport of several crocins when expressed in yeast microsomes. CsABCC4a was selectively expressed in C. sativus stigmas, was predominantly tonoplast localized, transported crocins in vitro in a stereospecific and cooperative way, and was able to enhance crocin accumulation when expressed in Nicotiana benthamiana leaves.plantcell;31/11/2789/FX1F1fx1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Carotenoides/metabolismo , Crocus/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Vías Biosintéticas , Clonación Molecular , Crocus/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Cinética , Extractos Vegetales , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Distribución Tisular/fisiología , Nicotiana/genética , Nicotiana/metabolismo
3.
Toxicol Appl Pharmacol ; 434: 115796, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785274

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has required the urgent development of new therapies, among which passive immunotherapy is contemplated. CoviFab (INM005) is a RBD-specific F(ab')2 fragment derived from equine polyclonal antibodies. We investigate their preclinical security and biodistribution by in vivo and ex vivo NIR imaging after intravenous administration of a dose of 4 mg/kg at time 0 and 48 h. Images were taken at 1, 12, 24, 36, 48, 49, 60, 72, 84, 96, 108, 120, 132 and 144 h after the first intravenous injection. At 96 and 144 h, mice were sacrificed for haematology, serum chemistry, clinical pathology, histopathology and ex vivo imaging. The biodistribution profile was similar in all organs studied, with the highest fluorescence at 1 h after each injection, gradually decreasing after that each one and until the end of the study (144 h). The toxicology study revealed no significant changes in the haematology and serum chemistry parameters. Further, there were no changes in the gross and histological examination of organs. Nonclinical data of the current study confirm that CoviFab is safe, without observable adverse effects in mice. Furthermore, we confirm that bioimaging studies are a useful approach in preclinical trials to determine biodistribution.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Tratamiento Farmacológico de COVID-19 , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , Administración Intravenosa , Animales , Anticuerpos Antivirales/administración & dosificación , Anticuerpos Antivirales/efectos adversos , COVID-19/metabolismo , COVID-19/prevención & control , Células HEK293 , Caballos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptores Inmunológicos/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , SARS-CoV-2/efectos de los fármacos , Espectroscopía Infrarroja Corta/métodos , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35216348

RESUMEN

Tunneling nanotubes (TNTs), discovered in 2004, are thin, long protrusions between cells utilized for intercellular transfer and communication. These newly discovered structures have been demonstrated to play a crucial role in homeostasis, but also in the spreading of diseases, infections, and metastases. Gaining much interest in the medical research field, TNTs have been shown to transport nanomedicines (NMeds) between cells. NMeds have been studied thanks to their advantageous features in terms of reduced toxicity of drugs, enhanced solubility, protection of the payload, prolonged release, and more interestingly, cell-targeted delivery. Nevertheless, their transfer between cells via TNTs makes their true fate unknown. If better understood, TNTs could help control NMed delivery. In fact, TNTs can represent the possibility both to improve the biodistribution of NMeds throughout a diseased tissue by increasing their formation, or to minimize their formation to block the transfer of dangerous material. To date, few studies have investigated the interaction between NMeds and TNTs. In this work, we will explain what TNTs are and how they form and then review what has been published regarding their potential use in nanomedicine research. We will highlight possible future approaches to better exploit TNT intercellular communication in the field of nanomedicine.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Nanomedicina/métodos , Nanotubos , Distribución Tisular/fisiología
5.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35886958

RESUMEN

Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2's spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Distribución Tisular , Internalización del Virus , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/virología , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Mamíferos/metabolismo , Ratones , SARS-CoV-2/metabolismo , Sindecanos/metabolismo , Distribución Tisular/fisiología
6.
J Hepatol ; 74(5): 1038-1052, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248168

RESUMEN

BACKGROUND & AIMS: Lactate has recently been reported to accumulate in the livers of patients progressing from simple steatosis to non-alcoholic steatohepatitis (NASH). However, the underlying mechanism(s) of lactate accumulation and the role of lactate in the progression of non-alcoholic fatty liver disease (NAFLD) are essentially unknown. METHODS: We compared the acetylome in liver samples taken from healthy individuals, patients with simple steatosis and patients with NASH to identify potential targets of acetylation with a role in lactate metabolism. Interactions between the acetylated target and acetyltransferases were measured in multiple cell lines. An acetyltransferase inhibitor was injected into high-fat diet (HFD)-fed mice to determine the role of lactate on NAFLD progression in vivo. RESULTS: Hyperacetylation of lactate dehydrogenase B (LDHB) was found to be associated with lactate accumulation in NAFL and NASH livers in humans and mice. P300/CBP-associated factor (PCAF)-mediated acetylation of LDHB K82 was found to significantly decrease LDHB activity and impair hepatic lactate clearance, resulting in lactate accumulation. Acetylated LDHB induced lactate accumulation which exacerbated lipid deposition and inflammatory responses by activating histone hyperacetylation in HFD-induced NASH. The administration of embelin, a PCAF inhibitor, and the generation of an acetylation-deficient mutant of LDHB ameliorated NASH. CONCLUSION: PCAF-dependent LDHB acetylation plays a key role in hepatic lipid accumulation and inflammatory responses by impairing lactate clearance; this process might be a potential therapeutic target for the treatment of NASH. LAY SUMMARY: Lactate is known to accumulate in the livers of patients during the progression of non-alcoholic fatty liver disease (NAFLD); however, the underlying mechanism(s) of this accumulation and its importance in disease progression are unknown. Herein, we show that the acetylation of an enzyme involved in lactate metabolism leads to impaired lactate clearance and exacerbates NAFLD progression.


Asunto(s)
Acetiltransferasas , Eliminación Hepatobiliar/fisiología , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Distribución Tisular/fisiología , Acetilación , Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/metabolismo , Animales , Línea Celular , Progresión de la Enfermedad , Humanos , Isoenzimas/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Factores de Transcripción p300-CBP/metabolismo
7.
J Pharmacol Exp Ther ; 379(2): 134-146, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34413198

RESUMEN

Conjugation of small interfering RNA (siRNA) to tris N-acetylgalactosamine [(GalNAc)3] can enable highly selective, potent, and durable knockdown of targeted proteins in the liver. However, potential knowledge gaps between in vitro experiments, preclinical species, and clinical scenarios remain. A minimal physiologically based pharmacokinetic-pharmacodynamic model for GalNAc-conjugated siRNA (GalNAc-siRNA) was developed using published data for fitusiran (ALN-AT3), an investigational compound targeting liver antithrombin (AT), to delineate putative determinants governing the whole-body-to-cellular pharmacokinetic (PK) and pharmacodynamic (PD) properties of GalNAc-siRNA and facilitate preclinical-to-clinical translation. The model mathematically linked relevant mechanisms: 1) hepatic biodistribution, 2) tris-GalNAc binding to asialoglycoprotein receptors (ASGPRs) on hepatocytes, 3) ASGPR endocytosis and recycling, 4) endosomal transport and escape of siRNA, 5) cytoplasmic RNA-induced silencing complex (RISC) loading, 6) degradation of target mRNA by bound RISC, and 7) knockdown of protein. Physiologic values for 36 out of 48 model parameters were obtained from the literature. Kinetic parameters governing (GalNAc)3-ASGPR binding and internalization were derived from published studies of uptake in hepatocytes. The proposed model well characterized reported pharmacokinetics, RISC dynamics, and knockdown of AT mRNA and protein by ALN-AT3 in mice. The model bridged multiple PK-PD data sets in preclinical species (mice, rat, monkey) and successfully captured reported plasma pharmacokinetics and AT knockdown in a phase I ascending-dose study. Estimates of in vivo potency were similar (∼2-fold) across species. Subcutaneous absorption and serum AT degradation rate constants scaled across species by body weight with allometric exponents of -0.29 and -0.22. The proposed mechanistic modeling framework characterizes the unique PK-PD properties of GalNAc-siRNA. SIGNIFICANCE STATEMENT: Tris N-acetylgalactosamine (GalNAc)3-conjugated small interfering RNA (siRNA) therapeutics enable liver-targeted gene therapy and precision medicine. Using a translational and systems-based minimal physiologically based pharmacokinetic-pharmacodynamic (mPBPK-PD) modeling approach, putative determinants influencing GalNAc-conjugated siRNA (GalNAc-siRNA) functionality in three preclinical species and humans were investigated. The developed model successfully integrated and characterized relevant published in vitro-derived biomeasures, mechanistic PK-PD profiles in animals, and observed clinical PK-PD responses for an investigational GalNAc-siRNA (fitusiran). This modeling effort delineates the disposition and liver-targeted pharmacodynamics of GalNAc-siRNA.


Asunto(s)
Acetilgalactosamina/farmacocinética , Silenciador del Gen/fisiología , Modelos Biológicos , ARN Interferente Pequeño/farmacocinética , Acetilgalactosamina/genética , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Haplorrinos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Ratones , ARN Interferente Pequeño/genética , Ratas , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
8.
Drug Metab Dispos ; 49(9): 743-749, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34162687

RESUMEN

Aldehyde oxidase (AOX) is a soluble, cytosolic enzyme that metabolizes various N-heterocyclic compounds and organic aldehydes. It has wide tissue distribution with highest levels found in liver, kidney, and lung. Human clearance projections of AOX substrates by in vitro assessments in isolated liver fractions (cytosol, S9) and even hepatocytes have been largely underpredictive of clinical outcomes. Various hypotheses have been suggested as to why this is the case. One explanation is that extrahepatic AOX expression contributes measurably to AOX clearance and is at least partially responsible for the often observed underpredictions. Although AOX expression has been confirmed in several extrahepatic tissues, activities therein and potential contribution to overall human clearance have not been thoroughly studied. In this work, the AOX enzyme activity using the S9 fractions of select extrahepatic human tissues (kidney, lung, vasculature, and intestine) were measured using carbazeran as a probe substrate. Measured activities were scaled to a whole-body clearance using best-available parameters and compared with liver S9 fractions. Here, the combined scaled AOX clearance obtained from the kidney, lung, vasculature, and intestine is very low and amounted to <1% of liver. This work suggests that AOX metabolism from extrahepatic sources plays little role in the underprediction of activity in human. One of the notable outcomes of this work has been the first direct demonstration of AOX activity in human vasculature. SIGNIFICANCE STATEMENT: This work demonstrates aldehyde oxidase (AOX) activity is measurable in a variety of extrahepatic human tissues, including vasculature, yet activities and potential contributions to human clearance are relatively low and insignificant when compared with the liver. Additionally, the modeling of the tissue-specific in vitro kinetic data suggests that AOX may be influenced by the tissue it resides in and thus show different affinity, activity, and modified activity over time.


Asunto(s)
Aldehído Oxidasa/metabolismo , Vasos Sanguíneos/enzimología , Intestinos/enzimología , Riñón/enzimología , Pulmón/enzimología , Aldehídos/metabolismo , Correlación de Datos , Pruebas de Enzimas/métodos , Compuestos Heterocíclicos/metabolismo , Humanos , Hígado/enzimología , Tasa de Depuración Metabólica , Distribución Tisular/fisiología
9.
Drug Metab Dispos ; 49(1): 53-61, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148688

RESUMEN

Physiologically based pharmacokinetic modeling has become a standard tool to predict drug distribution in early stages of drug discovery; however, this does not currently encompass lysosomal trapping. For basic lipophilic compounds, lysosomal sequestration is known to potentially influence intracellular as well as tissue distribution. The aim of our research was to reliably predict the lysosomal drug content and ultimately integrate this mechanism into pharmacokinetic prediction models. First, we further validated our previously presented method to predict the lysosomal drug content (Schmitt et al., 2019) for a larger set of compounds (n = 41) showing a very good predictivity. Using the lysosomal marker lipid bis(monoacylglycero)phosphate, we estimated the lysosomal volume fraction for all major tissues in the rat, ranging from 0.03% for adipose up to 5.3% for spleen. The pH-driven lysosomal trapping was then estimated and fully integrated into the mechanistic distribution model published by Rodgers et al. (2005) Predictions of Kpu improved for all lysosome-rich tissues. For instance, Kpu increased for nicotine 4-fold (spleen) and 2-fold (lung and kidney) and for quinidine 1.8-fold (brain), although for most other drugs the effects were much less (≤7%). Overall, the effect was strongest for basic compounds with a lower lipophilicity, such as nicotine, for which the unbound volume of distribution at steady-state prediction changed from 1.34 to 1.58 l/kg. For more lipophilic (basic) compounds or those that already show strong interactions with acidic phospholipids, the additional contribution of lysosomal trapping was less pronounced. Nevertheless, lysosomal trapping will also affect intracellular distribution of such compounds. SIGNIFICANCE STATEMENT: The estimation of the lysosomal content in all body tissues facilitated the incorporation of lysosomal sequestration into a general physiologically based pharmacokinetic model, leading to improved predictions as well as elucidating its influence on tissue and subcellular distribution in the rat.


Asunto(s)
Desarrollo de Medicamentos/métodos , Lisosomas , Preparaciones Farmacéuticas/metabolismo , Distribución Tisular/fisiología , Animales , Lisosomas/química , Lisosomas/efectos de los fármacos , Lisosomas/fisiología , Lisosomas/ultraestructura , Modelos Biológicos , Farmacocinética , Ratas , Solubilidad
10.
Drug Metab Dispos ; 49(6): 434-441, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33762296

RESUMEN

Disulfiram, an antialcoholism drug, could potentially be repurposed as an anticancer drug because of the formation of copper(II) diethyldithiocarbamate (CuET) from dithiocarb (DTC, a reduced metabolite of disulfiram) and Cu2+ CuET exhibited preferential distribution to tumor tissues. This study investigated the mechanism of CuET accumulation in tumor tissues by employing MDA-MB-231 human breast cancer cells. The concentration of CuET in cells treated with DTC and Cu2+ in acidic culture medium (pH 6.8) was significantly higher than that of the control group (pH 7.4). Subsequently, the effects of pH on the uptake of DTC, Cu2+, and CuET were investigated separately. The acidic environment significantly increased the uptake rate of DTC and Cu2+ but had no effect on CuET. MDA-MB-231 cells overexpressing copper transporter hCTR1 were constructed to evaluate its intermediate role in CuET accumulation. After treatment with CuCl2 followed by DTC for 15 minutes, the levels of CuET and Cu2+ in hCTR1-overexpressed cells were 2.5 times as much as those of vector group. In the tumors of cancer xenograft models constructed by hCTR1-MDA-MB-231 cells, the concentrations of CuET and Cu were also significantly higher than those of control group. In conclusion, the acidic microenvironment of tumors can promote the enrichment of CuET in tumors through dual action. On the one hand, it can promote transmembrane transport of DTC by converting ionic DTC into molecular state. On the other hand, it enhances Cu2+ uptake by activating hCTR1, which ultimately leads to the enrichment of CuET. SIGNIFICANCE STATEMENT: Increasing evidence suggests that the antitumor activity of disulfiram is related to the formation of a copper(II) diethyldithiocarbamate (CuET) of its reducing metabolite dithiocarb with copper(II) ion, which is preferentially distributed in tumor tissues. We showed that the acidic microenvironment, a common feature of many solid tumor tissues, could promote intracellular CuET accumulation through dual action without changing CuET uptake. This result is helpful for the formulation of clinical dosage regimens of disulfiram in cancer treatment.


Asunto(s)
Disulfiram/farmacología , Neoplasias , Distribución Tisular , Microambiente Tumoral , Inhibidores del Acetaldehído Deshidrogenasa/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Cobre/metabolismo , Transportador de Cobre 1/metabolismo , Reposicionamiento de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Oligoelementos/farmacología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
11.
Drug Metab Dispos ; 49(4): 330-336, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33531412

RESUMEN

Volume of distribution (Vd) is a primary pharmacokinetic parameter used to calculate the half-life and plasma concentration-time profile of drugs. Numerous models have been relatively successful in predicting Vd, but the model developed by Korzekwa and Nagar is of particular interest because it utilizes plasma protein binding and microsomal binding data, both of which are readily available in vitro parameters. Here, Korzekwa and Nagar's model was validated and expanded upon using external and internal data sets. Tissue binding, plasma protein binding, Vd, physiochemical, and physiologic data sets were procured from literature and Genentech's internal data base. First, we investigated the hypothesis that tissue binding is primarily governed by passive processes that depend on the lipid composition of the tissue type. The fraction unbound in tissues (futissue) was very similar across human, rat, and mouse. In addition, we showed that dilution factors could be generated from nonlinear regression so that one futissue value could be used to estimate another one regardless of species. More importantly, results suggested that microsomes could serve as a surrogate for tissue binding. We applied the parameters from Korzekwa and Nagar's Vd model to two distinct liver microsomal data sets and found remarkably close statistical results. Brain and lung data sets also accurately predicted Vd, further validating the model. Vd prediction accuracy for compounds with log D7.4 > 1 significantly outperformed that of more hydrophilic compounds. Finally, human Vd predictions from Korzekwa and Nagar's model appear to be as accurate as rat allometry and slightly less accurate than dog and cynomolgus allometry. SIGNIFICANCE STATEMENT: This study shows that tissue binding is comparable across five species and can be interconverted with a dilution factor. In addition, we applied internal and external data sets to the volume of distribution model developed by Korzekwa and Nagar and found comparable Vd prediction accuracy between the Vd model and single-species allometry. These findings could potentially accelerate the drug research and development process by reducing the amount of resources associated with in vitro binding and animal experiments.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Pulmón/metabolismo , Microsomas Hepáticos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Distribución Tisular/fisiología , Animales , Encéfalo/efectos de los fármacos , Bases de Datos Factuales , Perros , Predicción , Humanos , Pulmón/efectos de los fármacos , Macaca fascicularis , Ratones , Microsomas Hepáticos/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Ratas , Especificidad de la Especie , Distribución Tisular/efectos de los fármacos
12.
Toxicol Appl Pharmacol ; 428: 115679, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400196

RESUMEN

It is known that, as the vast majority of the anthropogenically emitted mercury can be found in aquatic ecosystems, where several methylating bacteria are present, fish consumption represents the most critical intake source of the most toxic form of mercury, the methylmercury (MeHg). The aim of this work is to predict MeHg levels in the fish muscles which, being the edible portion, are part of the human diet. A physiologically based toxicokinetics model was developed to evaluate the kinetics of MeHg in red mullets. Fishes were described by means of a multi-compartment model including stomach, gut, blood, muscles and an additional compartment virtually encompassing all the remaining organs. Absorption, distribution and excretion were modelled considering different MeHg routes of administration and excretion: intake by ingestion of contaminated food, intake and elimination through inhalation-exhalation and excretion through feces. The model has been firstly validated on Terapon jarbua fish (using the weighted least squares method for parameter estimation) to be subsequently readapted to predict methylmercury concentrations in the muscle of red mullets (using an approximate Bayesian computation approach). This simple multicompartmental model could be considered part, a link in the chain, of a wider more complex project aiming at tracking the fate of MeHg from polluted seawater to the human end consumer. The present study could be useful to surveillance organizations in order to carry out a more comprehensive and informed risk assessment analysis and to take appropriate preventive measures by evaluating possible new MeHg concentration thresholds to minimize public health hazards.


Asunto(s)
Compuestos de Metilmercurio/farmacocinética , Compuestos de Metilmercurio/toxicidad , Smegmamorpha/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad , Animales , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Toxicocinética
13.
Mol Pharm ; 18(3): 787-795, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33480702

RESUMEN

Most oligonucleotides fail to enter a cell and cannot escape from endosomes after endocytosis because of their negative charge and large molecular weight. More efficient cellular delivery of oligonucleotides should be developed for the widespread implementation of antisense imaging. The purpose of this study was to construct a novel antisense nanoprobe, 99mTc-labeled anti-miRNA oligonucleotides/cell-penetrating peptide PepFect6 (99mTc-AMO/PF6), and to evaluate its efficacy for imaging the miRNA-21 expression in A549 lung adenocarcinoma xenografts. Naked AMO and commercial Lipofectamine 2000-based nanoparticles (AMO/LIP) were used for comparison. The cellular delivery efficiency of AMO/PF6 was first investigated by laser confocal scanning microscopy using Cy5.5-labeled probes and further validated by in vivo fluorescence imaging. Then, the probes were labeled with 99mTc via hydrazinonicotinamide (HYNIC). The cytotoxicity assay, cellular uptake, and retention kinetics of the probes were evaluated in vitro. The biodistribution of the probes was investigated in A549 lung cancer xenografts, and SPECT imaging was performed in vivo. AMO/PF6 showed lower cytotoxicity than AMO/LIP (P < 0.05) but showed no significant difference with naked AMO. Fluorescence microscopy demonstrated more extensive and scattered signal distribution inside the A549 cells by AMO/PF6 than AMO/LIP. The labeling efficiency of 99mTc-AMO/PF6 was 72.6 ± 1.42%, and the specific activity was 11.6 ± 0.13 MBq/ng. The cellular uptake of 99mTc-PF6/AMO peaked at 12 h, with the uptake of 11.24 ± 0.12 mol/cell × 10-16, and the cellular retention of 99mTc-AMO/PF6 was 3.92 ± 0.15 mol/cell × 10-16 at 12 h after interrupted incubation. AMO/PF6 showed higher cellular uptake and retention than naked AMO and AMO/LIP. The biodistribution study showed that the tumor had the highest radioactivity accumulation, with the uptake ratio of tumor/muscle (T/M) increasing from 14.59 ± 0.67 to 21.76 ± 0.98 between 1 and 6 h after injection, followed by the uptake in the kidneys and the liver. The results of in vivo fluorescence and SPECT imaging were consistent with the results of the biodistribution. The tumor was visualized at 6 h after injection of AMO/PF6 with the highest T/M ratio among these probes (P < 0.05). PF6 improves cellular delivery of antisense oligonucleotides via noncovalent nanoparticles. 99mTc-AMO/PF6 shows favorable imaging properties and is promising for miRNAs imaging in vivo.


Asunto(s)
Péptidos de Penetración Celular/metabolismo , MicroARNs/metabolismo , Oligonucleótidos Antisentido/metabolismo , Células A549 , Animales , Línea Celular Tumoral , Humanos , Marcaje Isotópico/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Radiofármacos/metabolismo , Distribución Tisular/fisiología , Tomografía Computarizada de Emisión de Fotón Único/métodos
14.
Mol Pharm ; 18(3): 966-975, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33472371

RESUMEN

The expression of carbonic anhydrase-IX (CA-IX) in tumors can lead to a poor prognosis; thus, CA-IX has attracted much attention as a target molecule for cancer diagnosis and treatment. An 111In-labeled imidazothiadiazole sulfonamide (IS) derivative, [111In]In-DO3A-IS1, exhibited marked tumor accumulation but also marked renal accumulation, raising concerns about it producing a low signal/background ratio and a high radiation burden on the kidneys. In this study, four 111In-labeled IS derivatives, IS-[111In]In-DO2A-ALB1-4, which contained four different kinds of albumin binder (ALB) moieties, were designed and synthesized with the aim of improving the pharmacokinetics of [111In]In-DO3A-IS1. Their utility for imaging tumors that strongly express CA-IX was evaluated in mice. An in vitro binding assay of cells that strongly expressed CA-IX (HT-29 cells) was performed using acetazolamide as a competitor against CA-IX, and IS-[111In]In-DO2A-ALB1-4 did not exhibit reduced binding to HT-29 cells compared with [111In]In-DO3A-IS1. In contrast, IS-[111In]In-DO2A-ALB1-4 showed a greater ability to bind to human serum albumin than [111In]In-DO3A-IS1 in vitro. In an in vivo biodistribution study, the introduction of an ALB moiety into the 111In-labeled IS derivative markedly decreased renal accumulation and increased HT-29 tumor accumulation and blood retention. The pharmacokinetics of the IS derivatives varied depending on the substituted group within the ALB moiety. Single-photon emission computed tomography imaging with IS-[111In]In-DO2A-ALB1, which showed the highest tumor/kidney ratio in the biodistribution study, facilitated clear HT-29 tumor imaging, and no strong signals were observed in the normal organs. These results indicate that IS-[111In]In-DO2A-ALB1 may be an effective CA-IX imaging probe and that the introduction of ALB moieties may improve the pharmacokinetics of CA-IX ligands.


Asunto(s)
Albúminas/metabolismo , Inhibidores de Anhidrasa Carbónica/farmacocinética , Anhidrasas Carbónicas/metabolismo , Acetazolamida/metabolismo , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Línea Celular Tumoral , Células HT29 , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Sulfonamidas/metabolismo , Distribución Tisular/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
15.
Mol Pharm ; 18(3): 1317-1326, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33506680

RESUMEN

Heart transplantation (HT) is an effective treatment for end-stage heart disease. However, acute rejection (AR) is still the main cause of death within one year after HT. AR is an acute immune response mediated by T lymphocytes, mainly CD4+ T lymphocytes. This study innovatively develops a radiolabeled probe 99mTc-HYNIC-mAbCD4 for noninvasive visualization of CD4+ T lymphocyte infiltration and detection of AR. The 99mTc-HYNIC-mAbCD4 and its isotype control 99mTc-HYNIC-IgG were successfully prepared and characterized. The specificity and affinity of the probe in vitro were assessed by cell-binding experiments. Binding of 99mTc-HYNIC-mAbCD4 to CD4+ T lymphocytes was higher than that of the macrophages and IgG probe groups, and mAbCD4 was effective in the blockade of the binding reaction. The biodistribution data confirmed the SPECT/CT images, with significantly higher levels of 99mTc-HYNIC-mAbCD4 observed in allografts compared to allograft treatment (10 mg/kg/d Cyclosporin A subcutaneously for 5 consecutive days after surgery), isografts, or in rats which received allografts injected with 99mTc-HYNIC-IgG. Histological examination confirmed more CD4+ T lymphocyte infiltration in the allograft hearts than other groups. In summary, 99mTc-HYNIC-mAbCD4 achieved high affinity and specificity of binding to CD4+ T lymphocytes and accumulation in the transplanted heart. Radionuclide molecular imaging with 99mTc-HYNIC-mAbCD4 may be a potential diagnostic method for acute cardiac rejection.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Rechazo de Injerto/diagnóstico por imagen , Corazón/diagnóstico por imagen , Radioisótopos/administración & dosificación , Radiofármacos/administración & dosificación , Animales , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Rechazo de Injerto/metabolismo , Trasplante de Corazón/métodos , Masculino , Imagen Molecular/métodos , Compuestos de Organotecnecio/administración & dosificación , Ratas , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Distribución Tisular/fisiología , Tomografía Computarizada de Emisión de Fotón Único/métodos
16.
Mol Pharm ; 18(1): 386-402, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33296217

RESUMEN

To overcome the challenges of systemic toxicity and weak tumor selectivity caused by traditional antitumor drugs, numerous nanocarrier systems have been developed in recent decades, and their therapeutic effect has been improved to varying degrees. However, because of the drug resistance effect and metastasis involved in tumor recurrence, a single chemotherapy can no longer satisfy the diversified treatment needs. Recently, the application of chemotherapy in combination with thermotherapy as a synergistic approach has been proven to be more effective, and it provides a new strategy for cancer therapy. In this work, by utilizing the unique properties of erythrocytes, a surface-modified erythrocyte membrane was constructed as a novel nanocarrier system (DOX and ICG-PLGA@RBC nanoparticles, DIRNPs for short) for the simultaneous transportation of chemotherapeutic drugs (doxorubicin, DOX) and photothermal agents (indocyanine green, ICG) to achieve the effects of long-term circulation, active tumor targeting, and triggered drug release. The results indicated that DIRNPs have a nanoscale particle size of 158.4 nm with a narrow size distribution and a negative surface charge of -5.79 mV. No particle aggregation or remarkable drug leakage was observed during the 30 day storage test, and because of the excellent photothermal conversion ability of ICG, the local temperature of DIRNPs could dramatically increase from 33.7 to 49.8 °C in 10 min under near-infrared (NIR) laser irradiation. The in vitro drug dissolution data demonstrated that the DOX release from the DIRNPs was pH-dependent and NIR-triggered. Folic acid modifications of the erythrocyte membrane effectively facilitated the intracellular uptake of DIRNPs by HepG2 cells and, as a result, it significantly inhibited tumor cell growth, promoted reactive oxygen species levels, induced cell apoptosis, and restricted cell recovery and migration. In vivo pharmacokinetics and biodistribution studies indicated that the DIRNPs prolonged the half-life of DOX from 6.03 to 17.6 h and remarkably reduced the DOX level in the heart to avoid drug-related cardiotoxicity. More importantly, the DIRNPs exerted excellent in vivo antitumor efficacy against H22 tumors with superior safety. In conclusion, utilizing the advantageous properties of erythrocytes to construct a tumor-targeted biomimetic nanocarrier for codelivery of chemotherapeutics and photothermal agents to produce synergistic effects is considered an effective method for cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Membrana Eritrocítica/efectos de los fármacos , Ácido Fólico/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Terapia Combinada/métodos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Células Hep G2 , Humanos , Hipertermia Inducida/métodos , Verde de Indocianina/metabolismo , Ratones , Nanopartículas/administración & dosificación , Fototerapia/métodos , Ratas , Ratas Sprague-Dawley , Distribución Tisular/fisiología
17.
Anesthesiology ; 135(4): 724-727, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499097

RESUMEN

The Solubility of Halothane in Blood and Tissue Homogenates. By Larson CP, Eger EI, Severinghaus JW. Anesthesiology 1962; 23:349-55. Measured samples of human and bovine blood, human hemoglobin, and tissue homogenates from human fat and both human and bovine liver, kidney, muscle, whole brain, and separated gray and white cortex were added to stoppered 2,000-ml Erlenmeyer flasks. To each flask, 0.1 ml of liquid halothane was added under negative pressure using a calibrated micropipette. After the flask was agitated for 2 to 4 h to achieve equilibrium between the gas and blood or tissue contents, a calibrated infrared halothane analyzer was used to measure the concentration of halothane vapor. Calculated partition coefficients ranged from 0.7 for water to 2.3 for blood and from 3.5 for human or bovine kidney to 6 for human whole brain or liver and 8 for human muscle. Human peritoneal fat had a value of 138. The human blood-gas partition coefficient of 2.3 as determined by this equilibration method was well below the previously published value of 3.6.


Asunto(s)
Anestésicos por Inhalación/metabolismo , Investigación Biomédica/normas , Halotano/metabolismo , Anestésicos por Inhalación/química , Animales , Bovinos , Halotano/química , Humanos , Solubilidad/efectos de los fármacos , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
18.
Acta Pharmacol Sin ; 42(7): 1195-1200, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33041326

RESUMEN

Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study. After intravenous administration of 20 mg/kg RDV in mice, the concentrations of the parent drug, nucleotide monophosphate (RMP) and triphosphate (RTP), as well as nucleoside (RN), in the blood, heart, liver, lung, kidney, testis, and small intestine were quantified. In blood, RDV was rapidly and completely metabolized and was barely detected at 0.5 h, similar to RTP, while its metabolites RMP and RN exhibited higher blood levels with increased residence times. The area under the concentration versus time curve up to the last measured point in time (AUC0-t) values of RMP and RN were 4558 and 136,572 h∙nM, respectively. The maximum plasma concentration (Cmax) values of RMP and RN were 2896 nM and 35,819 nM, respectively. Moreover, RDV presented an extensive distribution, and the lung, liver and kidney showed high levels of the parent drug and metabolites. The metabolic stabilities of RDV and RMP were also evaluated using lung, liver, and kidney microsomes. RDV showed higher clearances in the liver and kidney than in the lung, with intrinsic clearance (CLint) values of 1740, 1253, and 127 mL/(min∙g microsomal protein), respectively.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Nucleósidos/metabolismo , Nucleótidos/metabolismo , Polifosfatos/metabolismo , Distribución Tisular/fisiología , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Alanina/farmacocinética , Alanina/farmacología , Animales , Antivirales/farmacocinética , Antivirales/farmacología , COVID-19/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
19.
Anesth Analg ; 132(1): 110-118, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32118620

RESUMEN

BACKGROUND: Propofol can be measured in exhaled gas. Exhaled and plasma propofol concentrations correlate well, but the relationship with tissue concentrations remains unknown. We thus evaluated the relationship between exhaled, plasma, and various tissue propofol concentrations. Because the drug acts in the brain, we focused on the relationship between exhaled and brain tissue propofol concentrations. METHODS: Thirty-six male Sprague-Dawley rats were anesthetized with propofol, ketamine, and rocuronium for 6 hours. Animals were randomly assigned to propofol infusions at 20, 40, or 60 mg·kg·h (n = 12 per group). Exhaled propofol concentrations were measured at 15-minute intervals by multicapillary column-ion mobility spectrometry. Arterial blood samples, 110 µL each, were collected 15, 30, and 45 minutes, and 1, 2, 4, and 6 hours after the propofol infusion started. Propofol concentrations were measured in brain, lung, liver, kidney, muscle, and fat tissue after 6 hours. The last exhaled and plasma concentrations were used for linear regression analyses with tissue concentrations. RESULTS: The correlation of exhaled versus plasma concentrations (R = 0.71) was comparable to the correlation of exhaled versus brain tissue concentrations (R = 0.75) at the end of the study. In contrast, correlations between plasma and lung and between lung and exhaled propofol concentrations were poor. Less than a part-per-thousand of propofol was exhaled over 6 hours. CONCLUSIONS: Exhaled propofol concentrations correlate reasonably well with brain tissue and plasma concentrations in rats, and may thus be useful to estimate anesthetic drug effect. The equilibration between plasma propofol and exhaled gas is apparently independent of lung tissue concentration. Only a tiny fraction of administered propofol is eliminated via the lungs, and exhaled quantities thus have negligible influence on plasma concentrations.


Asunto(s)
Anestésicos Intravenosos/metabolismo , Encéfalo/metabolismo , Plasma/metabolismo , Propofol/metabolismo , Anestésicos Intravenosos/administración & dosificación , Animales , Encéfalo/efectos de los fármacos , Pruebas Respiratorias/métodos , Espiración/efectos de los fármacos , Masculino , Plasma/efectos de los fármacos , Propofol/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología
20.
Biol Pharm Bull ; 44(1): 1-6, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390535

RESUMEN

Protein affinity reagents are widely used for basic research, diagnostics, and disease therapy. Antibodies and their fragments are known as the most common protein affinity reagents. They specifically and strongly bind to target molecules and inhibit their functions. Thus, antibody drugs have increased in the recent two decades for disease therapy, such as cancer. These strong protein-protein interactions are composed of a nexus of multiple weak interactions. Synthetic polymers that bind to target molecules have been developed by the imitation of protein-protein interactions. These polymers show nanomolar affinity for the target and neutralize their functions; thus, they are of significant interest as a cost-effective protein affinity reagent. We have been developing synthetic polymer nanoparticles (NPs) that bind to target peptides and proteins by the inclusion of several functional monomers, such as charged and hydrophobic monomers. In this review, the focus is on the design of synthetic polymer NPs that bind to target molecules for disease therapy. We succeeded in neutralization of toxic peptides and signaling proteins both in vitro and in vivo. Additionally, linear polymers were modified on a lipid nanoparticle surface to improve polymer biodistribution. Our recent findings should provide useful information for the development of abiotic protein affinity reagents.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/síntesis química , Diseño de Fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Neoplasias/metabolismo , Polímeros/administración & dosificación , Polímeros/síntesis química , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA