Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(10): e22574, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36165227

RESUMEN

In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.


Asunto(s)
Detergentes , Insulinas , Animales , Antibacterianos/farmacología , Colágeno/metabolismo , ADN/metabolismo , Matriz Extracelular Descelularizada , Detergentes/química , Detergentes/metabolismo , Detergentes/farmacología , Etanol/farmacología , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Cabras , Insulinas/análisis , Insulinas/metabolismo , Insulinas/farmacología , Ratones , Octoxinol/análisis , Octoxinol/metabolismo , Octoxinol/farmacología , Páncreas , Estudios Prospectivos , Dodecil Sulfato de Sodio/análisis , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/farmacología , Porcinos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
2.
AAPS PharmSciTech ; 24(3): 71, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828949

RESUMEN

Lewisite is a highly toxic chemical warfare agent that leads to cutaneous and systemic damage. N-acetylcysteine (NAC) and 4-phenylbutryic acid (4-PBA) are two novel antidotes developed to treat toxicity caused by lewisite and similar arsenicals. Our in vivo studies demonstrated safety and effectiveness of these agents against skin injury caused by surrogate lewisite (Phenylarsine oxide) proving their potential for the treatment of lewisite injury. We further focused on exploring various enhancement strategies for an enhanced delivery of these agents via skin. NAC did not permeate passively from propylene glycol (PG). Iontophoresis as a physical enhancement technique and chemical enhancers were investigated for transdermal delivery of NAC. Application of cathodal and anodal iontophoresis with the current density of 0.2 mA/cm2 for 4 h followed by passive diffusion till 24 h significantly enhanced the delivery of NAC with a total delivery of 65.16 ± 1.95 µg/cm2 and 87.23 ± 7.02 µg/cm2, respectively. Amongst chemical enhancers, screened oleic acid, oleyl alcohol, sodium lauryl ether sulfate, and dimethyl sulfoxide (DMSO) showed significantly enhanced delivery of NAC with DMSO showing highest delivery of 28,370.2 ± 2355.4 µg/cm2 in 24 h. Furthermore, 4-PBA permeated passively from PG with total delivery of 1745.8 ± 443.5 µg/cm2 in 24 h. Amongst the chemical enhancers screened for 4-PBA, oleic acid, oleyl alcohol, and isopropyl myristate showed significantly enhanced delivery with isopropyl myristate showing highest total delivery of 17,788.7 ± 790.2 µg/cm2. These studies demonstrate feasibility of delivering these antidotes via skin and will aid in selection of excipients for the development of topical/transdermal delivery systems of these agents.


Asunto(s)
Arsenicales , Absorción Cutánea , Acetilcisteína/metabolismo , Antídotos , Ácido Oléico/metabolismo , Dimetilsulfóxido/metabolismo , Administración Cutánea , Piel/metabolismo , Arsenicales/metabolismo , Dodecil Sulfato de Sodio/metabolismo
3.
Arch Biochem Biophys ; 699: 108750, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33421379

RESUMEN

Bovine ß-lactoglobulin, an abundant protein in whey, is a promising nanocarrier for peroral administration of drug-like hydrophobic molecules, a process that involves transit through the different acidic conditions of the human digestive tract. Among the several pH-induced conformational rearrangements that this lipocalin undergoes, the Tanford transition is particularly relevant. This transition, which occurs with a midpoint around neutral pH, involves a conformational change of the E-F loop that regulates accessibility to the primary binding site. The effect of this transition on the ligand binding properties of this protein has scarcely been explored. In this study, we carried out an energetic and structural characterization of ß-lactoglobulin molecular recognition at pH values above and below the zone in which the Tanford transition occurs. The combined analysis of crystallographic, calorimetric, and molecular dynamics data sheds new light on the interplay between self-association, ligand binding, and the Tanford pre- and post-transition conformational states, revealing novel aspects underlying the molecular recognition mechanism of this enigmatic lipocalin.


Asunto(s)
Lactoglobulinas/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Ligandos , Simulación de Dinámica Molecular , Transición de Fase , Unión Proteica , Conformación Proteica , Dodecil Sulfato de Sodio/química , Termodinámica
4.
J Wound Ostomy Continence Nurs ; 48(1): 61-67, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33196632

RESUMEN

PURPOSE: The aim of this study was to investigate the permeability of the skin following cleansing activities and its susceptibility to synthetic urine penetration. SUBJECTS AND SETTING: Ten healthy volunteers (aged 22-58 years) participated in the study, which was conducted in a university bioengineering laboratory. METHODS: Tape stripping and sodium lauryl sulfate were used to simulate the physical and chemical irritation exacerbated by frequent cleansing activities, respectively. An untreated site also was selected to evaluate responses of intact skin. Synthetic urine was then applied for a period of 2 hours. Measurements of transepidermal water loss and skin pH were taken at baseline and after each challenge. To quantify the permeability of the skin following exposure, desorption curves of transepidermal water loss were measured and skin surface water loss was calculated. RESULTS: Chemically irritated skin, characterized by increased pH (7.34 ± 0.22), demonstrated an increased permeability to urine, as reflected by a significant increase in mean skin surface water loss (46,209 ± 15,596 g/m2) compared to both the intact (14,631 ± 6164 g/m2) and physically irritated (14,545 ± 4051 g/m2) skin (P = .005 in both cases). In contrast, the differences between the intact and physically irritated skin were not significant (P = .88). CONCLUSION: Permeability of the skin to irritants is influenced by the status of the skin and its acid mantle. These highlight the need to reevaluate the frequency of cleansing activities, along with the choice of product in clinical settings, favoring the use of pH-balanced cleansers.


Asunto(s)
Dermatitis Irritante/metabolismo , Concentración de Iones de Hidrógeno , Irritantes/metabolismo , Piel/metabolismo , Adulto , Femenino , Humanos , Irritantes/farmacología , Masculino , Persona de Mediana Edad , Permeabilidad , Fenómenos Fisiológicos de la Piel , Dodecil Sulfato de Sodio/efectos adversos , Dodecil Sulfato de Sodio/metabolismo , Dodecil Sulfato de Sodio/farmacología , Pérdida Insensible de Agua
5.
Lett Appl Microbiol ; 71(5): 550-556, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32780870

RESUMEN

A series of experiments was conducted to identify the molecular species responsible for surface active emulsification (surfactant) bioactivity in Bacillus subtilis subsp. subtilis strain ATCC PTA-125135, and to describe culture conditions to support the enriched production of said bioactivity in cultured plaque of the strain. The assay for methylene blue active substances (MBAS) was found to be suitable for describing surfactant activity, where a solvent-extracted molecular fraction from the biofilm was found to retain surfactant activity and positively quantified as MBAS. Furthermore, an HPLC-refined protein fraction was found to quantify as MBAS with approximately 1·36-fold or greater surfactant activity per mol than sodium dodecyl sulphate, and a proteomic analysis of solvent extracted residues confirmed that biofilm surface layer protein BslA was a primary constituent of extracted residues. Surfactant bioactivity, quantified as MBAS, was enriched in cultured plaque by the supplementation of culture media with calcium chloride or calcium nitrate.


Asunto(s)
Bacillus/metabolismo , Biopelículas , Calcio/metabolismo , Azul de Metileno/metabolismo , Tensoactivos/metabolismo , Medios de Cultivo/metabolismo , Proteómica , Dodecil Sulfato de Sodio/metabolismo
6.
Pflugers Arch ; 471(2): 357-363, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30206705

RESUMEN

Serotonin plays an essential role in both the invertebrate and vertebrate nervous systems. ADF, an amphid neuron with dual ciliated sensory endings, is considered to be the only serotonergic sensory neuron in the hermaphroditic Caenorhabditis elegans. This neuron is known to be involved in a range of behaviors including pharyngeal pumping, dauer formation, sensory transduction, and memory. However, whether ADF neuron is directly activated by environmental cues and how it processes these information remains unknown. In this study, we found that ADF neuron responds reliably to noxious stimuli such as repulsive odors, copper, sodium dodecyl sulfonate (SDS), and mechanical perturbation. This response is mediated by cell-autonomous and non-cell autonomous mechanisms. Furthermore, we show that ADF can modulate avoidance behaviors by inhibiting ASH, an amphid neuron with single ciliated ending. This work greatly furthers our understanding of 5-HT's contributions to sensory information perception, processing, and the resulting behavioral responses.


Asunto(s)
Reacción de Prevención/fisiología , Caenorhabditis elegans/fisiología , Células Receptoras Sensoriales/fisiología , Neuronas Serotoninérgicas/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cobre/metabolismo , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Transducción de Señal/fisiología , Dodecil Sulfato de Sodio/metabolismo
7.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540990

RESUMEN

Bacteria using toxic chemicals, such as detergents, as growth substrates face the challenge of exposing themselves to cell-damaging effects that require protection mechanisms, which demand energy delivered from catabolism of the toxic compound. Thus, adaptations are necessary for ensuring the rapid onset of substrate degradation and the integrity of the cells. Pseudomonas aeruginosa strain PAO1 can use the toxic detergent sodium dodecyl sulfate (SDS) as a growth substrate and employs, among others, cell aggregation as a protection mechanism. The degradation itself is also a protection mechanism and has to be rapidly induced upon contact to SDS. In this study, gene regulation of the enzymes initiating SDS degradation in strain PAO1 was studied. The gene and an atypical DNA-binding site of the LysR-type regulator SdsB1 were identified and shown to activate expression of the alkylsulfatase SdsA1 initiating SDS degradation. Further degradation of the resulting 1-dodecanol is catalyzed by enzymes encoded by laoCBA, which were shown to form an operon. Expression of this operon is regulated by the TetR-type repressor LaoR. Studies with purified LaoR identified its DNA-binding site and 1-dodecanoyl coenzyme A as the ligand causing detachment of LaoR from the DNA. Transcriptional studies revealed that the sulfate ester detergent sodium lauryl ether sulfate (SLES) induced expression of sdsA1 and the lao operon. Growth experiments revealed an essential involvement of the alkylsulfatase SdsA1 for SLES degradation. This study revealed that the genes for the enzymes initiating the degradation of toxic sulfate-ester detergents are induced stepwise by a positive and a negative regulator in P. aeruginosa strain PAO1.IMPORTANCE Bacterial degradation of toxic compounds is important not only for bioremediation but also for the colonization of hostile anthropogenic environments in which biocides are being used. This study with Pseudomonas aeruginosa expands our knowledge of gene regulation of the enzymes initiating degradation of sulfate ester detergents, which occurs in many hygiene and household products and, consequently, also in wastewater. As an opportunistic pathogen, P. aeruginosa causes severe hygienic problems because of its pronounced biocide resistance and its metabolic versatility, often combined with its pronounced biofilm formation. Knowledge about the regulation of detergent degradation, especially regarding the ligands of DNA-binding regulators, may lead to the rational development of specific inhibitors for restricting growth and biofilm formation of P. aeruginosa in hygienic settings. In addition, it may also contribute to optimizing bioremediation strategies not only for detergents but also for alkanes, which when degraded merge with sulfate ester degradation at the level of long-chain alcohols.


Asunto(s)
Ésteres/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Dodecil Sulfato de Sodio/metabolismo , Sulfatos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Sulfatasas/metabolismo
8.
Microb Pathog ; 129: 224-232, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30769027

RESUMEN

Biosynthesis silver nanoparticles (AgNPs) have received a lot of attention as a cytotoxic and antimicrobial activity against pathogenic bacteria. This study was carried out to evaluate the potential ability of red marine algae Corallina elongata and Gelidium amansii to biosynthesis AgNPs capping with Sodium Dodecyl Sulfate (SDS) and to determine its antibacterial efficacy. Characterization of capping AgNPs were determined by Ultra violet-Visible spectroscopy, Transmission electron microscope (TEM), Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDX), Zeta potential and sizer. The results indicated that there is no variation change between capping AgNPs synthesis by two red algae in plasmon resonance peak and also both stable along 3 weeks. The capping nanoparticles size were range from 8 to 25 nm in the case of G. amansii and 12-20 nm C. elongata. The results were obtained from Fourier transforms infrared spectroscopy (FTIR) indicated that same metals are present in both algae except Vanadium (V) was present with G. amansii. Capping AgNPs biosynthesis by C. elongata had more toxicity to Chlorella vulgaris than that of synthesized by G. amansii. Capping AgNPs by SDS have been shown to enhance antibacterial activity against Micrococcus leutus, Kocuria varians and Escherichia coli ATCC 8739 compared to non-capping AgNPs. The antibacterial activity and toxicity of AgNPs is affected by concentrations of capping agent and the biomaterial (red algae) that used for synthesis.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Nanopartículas del Metal/química , Rhodophyta/metabolismo , Plata/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Antibacterianos/química , Estabilidad de Medicamentos , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica , Análisis Espectral , Resonancia por Plasmón de Superficie
9.
Xenotransplantation ; 26(2): e12464, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30264494

RESUMEN

Pericardial membrane derived from bovine heart tissues is a promising source of material for use in tissue-engineering applications. However, tissue processing is required for its use in humans due to the presence of animal antigens. Therefore, the purpose of this study was to evaluate the structural integrity and biocompatibility of the bovine pericardium (BP) after a soft decellularization process with a 0.1% sodium dodecyl sulfate (SDS) solution, with the aim to remove xenoantigens and preserve extracellular matrix (ECM) bioactivity. The decellularization process promoted a mean reduction of 77% of the amount of DNA in the samples in which cell nuclei staining was undetectable. The ECM content was maintained as mostly preserved after decellularization as well as its biomechanical properties. In addition, the decellularization protocol has proven to be efficient in removing the xenoantigen alpha-gal, which is responsible for immune rejection. The decellularized BP was noncytotoxic in vitro and allowed human adipose-derived stem cell (hASC) adhesion. Finally, after 7 days in culture, the tissue scaffold became repopulated by hASCs, and after 30 days, the ECM protein pro-collagen I was seen in the scaffold. Together, these characteristics indicated that soft BP decellularization with 0.1% SDS solution allows the acquirement of a bioactive scaffold suitable for cell repopulation and potentially useful for regenerative medicine.


Asunto(s)
Matriz Extracelular/inmunología , Pericardio/inmunología , Ingeniería de Tejidos , Andamios del Tejido , Animales , Bovinos , Matriz Extracelular/metabolismo , Humanos , Dodecil Sulfato de Sodio/metabolismo , Ingeniería de Tejidos/métodos , Trasplante Heterólogo/métodos
10.
Med Mycol ; 57(4): 468-477, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010978

RESUMEN

FLC family, a conserved fungus-specific family of integral membrane proteins, has been demonstrated to play important roles in flavin transport, growth, and virulence in several fungi but not yet in Cryptococcus neoformans. In this study, we have identified the single homologue of flavin adenine dinucleotide transporter in the opportunistic pathogen C. neoformans. The computational and phylogenetic analysis confirmed the fungal specificity of cryptococcal Flc1 protein, thus providing a promising drug target for clinical treatment of cryptococcosis. Disruption of FLC1 conferred sensitivity to 1% Congo red and 0.02% SDS, as well as leading to impaired chitin distribution in cell wall as observed with Calcofluor White staining, which collectively indicated the roles of FLC1 in maintenance of cell wall integrity. Further investigations revealed the defects of flc1Δ mutant in resistance to poor nutrition and elevated temperatures, and the ability to undergo invasive growth under nutrient-depleted conditions was reduced as well in flc1Δ mutant, suggesting the roles of Flc1 in response to environmental stresses. More importantly, our results showed that flc1Δ mutant exhibited severe susceptibility to antifungal aminoglycosides (hygromycin B and geneticin) and amphotericin B, but developed multidrug resistance to flucytosine and rapamycin, which provided great hints for therapeutic failure of cryptococcosis in clinic with the standard combination therapy. Finally, typical virulence factors including melanin biosynthesis and capsule formation in flc1Δ mutant were reduced as well, indicating the possible involvement of Flc1 in virulence.


Asunto(s)
Antifúngicos/farmacología , Cryptococcus neoformans/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pared Celular/metabolismo , Quitina/metabolismo , Biología Computacional , Rojo Congo/metabolismo , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Humanos , Proteínas de Transporte de Membrana/genética , Filogenia , Homología de Secuencia , Dodecil Sulfato de Sodio/metabolismo
11.
J Chem Inf Model ; 59(5): 1977-1987, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30844270

RESUMEN

One of the largest commercial applications of enzymes and surfactants is as main components in modern detergents. The high concentration of surfactant compounds usually present in detergents can, however, negatively affect the enzymatic activity. To remedy this drawback, it is of great importance to characterize the interaction between the enzyme and the surfactant molecules at an atomistic resolution. The protein enzyme cutinase from the thermophilic and saprophytic fungus called Humicola insolens (HiC) is a promising candidate for use in detergents thanks to its hydrolase activity targeting mostly biopolyesters (e.g., cutin). HiC is, however, inhibited by low concentrations of sodium dodecyl sulfate (SDS), an ubiquitous surfactant. In this work, we investigate the interaction between HiC and SDS using molecular dynamics simulations. Simulations of HiC dissolved in different aqueous concentrations of SDS show the interaction between HiC and SDS monomers, as well as the formation and dynamics of SDS micelles on the surface of the enzyme. These results suggest a mechanism of cutinase inhibition by SDS, which involves the nucleation of aggregates of SDS molecules on hydrophobic patches on the cutinase surface. Notably, a primary binding site for monomeric SDS is identified near the active site of HiC constituting a possible nucleation point for micelles and leading to the blockage of the entrance to the enzymatic site. Detailed analysis of the simulations allow us to suggest a set of residues from the SDS binding site on HiC to probe as engineered mutations aimed at reducing SDS binding to HiC, thereby decreasing SDS inhibition of HiC.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Lepidópteros/enzimología , Modelos Moleculares , Dodecil Sulfato de Sodio/metabolismo , Animales , Sitios de Unión , Hidrolasas de Éster Carboxílico/química , Activación Enzimática , Unión Proteica , Conformación Proteica , Tensoactivos/metabolismo
12.
Appl Microbiol Biotechnol ; 103(15): 6061-6069, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31161390

RESUMEN

Pneumocandin B0 is a hydrophobic secondary metabolite that accumulates in the mycelia of Glarea lozoyensis and inhibits fungal 1,3-ß-glucan synthase. Extractive batch fermentation can promote the release of intracellular secondary metabolites into the fermentation broth and is often used in industry. The addition of extractants has been proven as an effective method to attain higher accumulation of hydrophobic secondary metabolites and circumvent troublesome solvent extraction. Various extractants exerted significant but different influences on the biomass and pneumocandin B0 yields. The maximum pneumocandin B0 yield (2528.67 mg/L) and highest extracellular pneumocandin B0 yield (580.33 mg/L) were achieved when 1.0 g/L SDS was added on the 13th day of extractive batch fermentation, corresponding to significant increases of 37.63 and 154% compared with the conventional batch fermentation, respectively. The mechanism behind this phenomenon is partly attributed to the release of intracellular pneumocandin B0 into the fermentation broth and the enhanced biosynthesis of pneumocandin B0 in the mycelia.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/metabolismo , Equinocandinas/aislamiento & purificación , Equinocandinas/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Tensoactivos/metabolismo , Medios de Cultivo/química , Fermentación
13.
Proteomics ; 18(9): e1700025, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29575800

RESUMEN

SDS interferes with both bottom-up and top-down MS analysis, requiring removal prior to detection. Filter-aided sample preparation (FASP) is favored for bottom-up proteomics (BUP) while acetone precipitation is popular for top-down proteomics (TDP). We recently demonstrated acetone precipitation in a membrane filter cartridge. Alternatively, our automated electrophoretic device, termed transmembrane electrophoresis (TME), depletes SDS for both TDP and BUP studies. Here TME is compared to these two alternative methods of SDS depletion in both BUP and TDP workflows. To do so, a modified FASP method is described applicable to the SDS purification and recovery of intact proteins, suitable for LC/MS. All three methods reliably deplete >99.8% SDS. TME provide higher sample yields (average 90%) than FASP (55%) or acetone precipitation (57%), translating into higher total protein identifications (973 vs 877 FASP or 890 acetone) and higher spectral matches (2.5 times) per protein. In a top down workflow, each SDS-depletion method yields high-quality MS spectra for intact proteins. These results show each of these membrane-based strategies is capable of depleting SDS with high sample recovery and high spectra quality for both BUP and TDP studies.


Asunto(s)
Proteínas Algáceas/análisis , Chlamydomonas reinhardtii/metabolismo , Espectrometría de Masas/métodos , Proteoma/análisis , Dodecil Sulfato de Sodio/metabolismo , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/citología , Chlamydomonas reinhardtii/crecimiento & desarrollo , Fragmentos de Péptidos/análisis , Tensoactivos/metabolismo
14.
J Struct Biol ; 204(3): 435-448, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30336202

RESUMEN

Structural characterization of BMAP-28(1-18), a potent bovine myeloid antimicrobial peptide can aid in understanding its mechanism of action at molecular level. We report NMR structure of the BMAP-28(1-18) and its mutated analogue mutBMAP18 in SDS micelles. Structural comparison of the peptides bound to SDS micelles and POPE-POPG vesicles using circular dichroism, suggest that structures in the two lipid preparations are similar. Antimicrobial assays show that even though both these peptides adopt helical conformation, BMAP-28(1-18) is more potent than mutBMAP18 in killing bacterial cells. Our EM images clearly indicate that the peptides target the bacterial cell membrane resulting in leakage of its contents. The structural basis for difference in activity between these peptides was investigated by molecular dynamics simulations. Inability of the mutBMAP18 to retain its helical structure in presence of POPE:POPG membrane as opposed to the BMAP-28(1-18) at identical peptide/lipid ratios could be responsible for its decreased activity. Residues Ser5, Arg8 and Arg12 of the BMAP-28(1-18) are crucial for its initial anchoring to the bilayer. We conclude that along with amphipathicity, a stable secondary structure that can promote/initiate membrane anchoring is key in determining membrane destabilization potential of these AMPs. Our findings are a step towards understanding the role of specific residues in antimicrobial activity of BMAP-28(1-18), which will facilitate design of smaller, cost-effective therapeutics and would also help prediction algorithms to expedite screening out variants of the parent peptide with greater accuracy.


Asunto(s)
Antiinfecciosos/química , Bacterias/metabolismo , Membrana Celular/metabolismo , Proteínas/química , Secuencia de Aminoácidos , Animales , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Bovinos , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Dicroismo Circular , Micelas , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Proteínas/metabolismo , Proteínas/farmacología , Homología de Secuencia de Aminoácido , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/metabolismo
15.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678916

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa strain PAO1 is able to use a variety of organic pollutants as growth substrates, including the anionic detergent sodium dodecyl sulfate (SDS) and long-chain alkanes. While the enzymes initiating SDS and alkane degradation are well known, the subsequent enzymatic steps for degradation of the derived primary long-chain alcohols have not yet been identified. By evaluating genes specifically induced during growth with SDS, a gene cluster encoding a putative alcohol dehydrogenase (PA0364/LaoA), a probable inner membrane protein (PA0365/LaoB), and a presumable aldehyde dehydrogenase (PA0366/LaoC) was identified and designated the Lao (long-chain-alcohol/aldehyde-oxidation) system. Growth experiments with deletion mutants with SDS, 1-dodecanol, and alkanes revealed that LaoA and LaoB are involved in the degradation of primary long-chain alcohols. Moreover, detection of 1-dodecanol oxidation in cell extracts by activity staining revealed an interdependency of LaoA and LaoB for efficient 1-dodecanol oxidation. An in silico analysis yielded no well-characterized homologue proteins for LaoA and LaoB. Furthermore, a gene adjacent to the lao gene cluster encodes a putative transcriptional regulator (PA0367/LaoR). A laoR deletion mutant exhibited constitutive expression of LaoA and LaoB, indicating that LaoR is a repressor for the expression of laoABC Taken together, these results showed that the proteins LaoA and LaoB constitute a novel oxidation system for long-chain alcohols derived from pollutants.IMPORTANCE The versatile and highly adaptive bacterium Pseudomonas aeruginosa is able to colonize a variety of habitats, including anthropogenic environments, where it is often challenged with toxic compounds. Its ability to degrade such compounds and to use them as growth substrates can significantly enhance spreading of this opportunistic pathogen in hygienic settings, such as clinics or water distribution systems. Thus, knowledge about the metabolism of P. aeruginosa can contribute to novel approaches for preventing its growth and reducing nosocomial infections. As the Lao system is important for the degradation of two different classes of pollutants, the identification of these novel enzymes can be a useful contribution for developing effective antibacterial strategies.


Asunto(s)
Alcoholes/metabolismo , Alcanos/metabolismo , Proteínas Bacterianas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Aldehídos/metabolismo , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental , Eliminación de Gen , Oxidación-Reducción
16.
Blood ; 128(8): 1144-51, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27389717

RESUMEN

The majority of patients with Alzheimer disease (AD) suffer from impaired cerebral circulation. Accumulating evidence suggests that fibrinogen, the main protein component of blood clots, plays an important role in this circulatory dysfunction in AD. Fibrinogen interacts with ß-amyloid (Aß), forming plasmin-resistant abnormal blood clots, and increased fibrin deposition is found in the brains of AD patients and mouse models. In this study, we investigated the biochemical and structural details of the Aß-fibrinogen interaction. We identified the central region of Aß42 as the most critical region for the interaction, which can be inhibited by specific antibodies against the central region of Aß and by naturally occurring p3 peptides, Aß17-40 and Aß17-42. X-ray crystallographic analysis revealed that Aß42 binding to fragment D of fibrinogen induced a structural change in the C-terminal region of the fibrinogen ß-chain (ß384-393). Furthermore, we identified an additional Aß-binding site within the αC region of fibrinogen. Aß binding to this αC region blocked plasmin-mediated fibrin cleavage at this site, resulting in the generation of increased levels of a plasmin-resistant fibrin degradation fragment. Overall, our study elucidates the Aß-fibrinogen interaction and clarifies the mechanism by which Aß-fibrinogen binding delays fibrinolysis by plasmin. These results may facilitate the development of effective therapeutics against the Aß-fibrinogen interaction to treat cerebrovascular abnormalities in AD.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/química , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis , Humanos , Ratones , Unión Proteica , Dodecil Sulfato de Sodio/metabolismo
17.
J Biochem Mol Toxicol ; 32(2)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29283197

RESUMEN

As a classic type of anionic surfactants, sodium lauryl sulfonate (SLS) might change the structure and function of antioxidant enzyme catalase (CAT) through their direct interactions. However, the underlying molecular mechanism is still unknown. This study investigated the direct interaction of SLS with CAT molecule and the underlying mechanisms using multi-spectroscopic methods, isothermal titration calorimetry, and molecular docking studies. No obvious effects were observed on CAT structure and activity under low SLS concentration exposure. The particle size of CAT molecule decreased and CAT activity was slightly inhibited under high SLS concentration exposure. SLS prefers to bind to the interface of CAT mainly via van der Waals' forces and hydrogen bonds. Subsequently, SLS interacts with the amino acid residues around the heme groups of CAT via hydrophobic interactions and might inhibit CAT activity.


Asunto(s)
Catalasa/metabolismo , Modelos Moleculares , Dodecil Sulfato de Sodio/metabolismo , Tensoactivos/metabolismo , Animales , Sitios de Unión , Calorimetría , Catalasa/antagonistas & inhibidores , Catalasa/química , Bovinos , Dicroismo Circular , Bases de Datos de Proteínas , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Simulación del Acoplamiento Molecular , Tamaño de la Partícula , Unión Proteica , Conformación Proteica , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/farmacología , Espectrometría de Fluorescencia , Tensoactivos/química , Tensoactivos/farmacología
18.
AAPS PharmSciTech ; 19(4): 1789-1801, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29603084

RESUMEN

Characterization of wet-milled drug suspensions containing neutral polymer-anionic surfactant as stabilizers poses unique challenges in terms of assessing the aggregation state and examining the stabilization mechanisms. Using a multi-faceted characterization method, this study aims to assess the aggregation state of wet-milled griseofulvin (GF) nanosuspensions and elucidate the stabilization mechanisms and impact of stabilizers. Two grades, SSL and L, of hydroxypropyl cellulose (HPC) with molecular weights of 40 and 140 kg/mol, respectively, were used as a neutral stabilizer at concentrations varying from 0 to 7.5% (w/w) without and with 0.05% (w/w) sodium dodecyl sulfate (SDS). The aggregation state was examined via laser diffraction, scanning electron microscope (SEM) imaging, and rheometry. Zeta potential, stabilizer adsorption, surface tension, and drug wettability were used to elucidate the stabilization mechanisms. The results suggest that deviation from a uni-modal PSD and pronounced pseudoplasticity with power-law index lower than one signify severe aggregation. Polymer or surfactant alone was not able to prevent GF nanoparticle aggregation, whereas HPC-SDS combination led to synergistic stabilization. The effect of polymer concentration was explained mainly by the stabilizer adsorption and partly by surface tension. The synergistic stabilization afforded by HPC-SDS, traditionally explained by electrosteric mechanism, was attributed to steric stabilization provided by HPC and enhanced GF wettability/reduced surface tension provided by SDS. Zeta potential results could not explain the mitigation of aggregation by HPC-SDS. Overall, this study has demonstrated that the elucidation of the complex effects of HPC-SDS on GF nanosuspension stability entails a multi-faceted and comprehensive characterization approach.


Asunto(s)
Química Farmacéutica/métodos , Griseofulvina/química , Griseofulvina/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Humectabilidad , Adsorción , Antifúngicos/química , Antifúngicos/metabolismo , Celulosa/análogos & derivados , Estabilidad de Medicamentos , Tamaño de la Partícula , Dodecil Sulfato de Sodio/química , Dodecil Sulfato de Sodio/metabolismo , Solubilidad , Tensoactivos , Suspensiones
19.
Biophys J ; 113(12): 2621-2633, 2017 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-29262357

RESUMEN

Biosurfactants (BSs) attract increasing attention as sustainable alternatives to petroleum-derived surfactants. This necessitates structural insight into how BSs interact with proteins encountered by current chemical surfactants. Thus, small-angle x-ray scattering (SAXS) has been used for studying the structures of complexes made of the proteins α-Lactalbumin (αLA) and myoglobin (Mb) with the biosurfactant rhamnolipid (RL). For comparison, complexes between αLA and the chemical surfactant sodium dodecyl sulfate (SDS) were also investigated. The SAXS data for pure RL micelles can be described by prolate core-shell structures with a core radius of 7.7 Å and a shell thickness of 12 Å, giving an aggregation number of 11. The small core radius is attributed to RL's complex hydrophobic tail. Data for the αLA-RL complex agree with a 12-molecule micelle with a single protein molecule in the shell. For Mb-RL, the analysis gives complexes of two connected micelles, each containing 10 RL and one protein in the shells. αLA-RL and Mb-RL form surfactant-saturated complexes above 5.6 and 4.7 mM RL, respectively, leaving the remaining RL in free micelles. The SAXS data for SDS agree with oblate-shaped micelles with a core of 20 Å, core eccentricity 0.7, and shell thickness of 5.45 Å, with an aggregation number of 74. The αLA-SDS complexes contain a prolate micelle with a core radius of 11-14 Å and a shell of 8-12 Å with up to 3 αLA per particle and up to 43 SDS per αLA, both considerably larger than for RL. Unlike the RL-protein complexes, the number of surfactant molecules in αLA-SDS complexes increases with surfactant concentration, and saturate at higher surfactant concentrations than αLA-RL complexes. The results highlight how RL and SDS follow similar overall rules of self-assembly and interactions with proteins, but that differences in the strength of protein-surfactant interactions affect the formed structures.


Asunto(s)
Glucolípidos/metabolismo , Lactalbúmina/metabolismo , Mioglobina/metabolismo , Dodecil Sulfato de Sodio/metabolismo , Tensoactivos/metabolismo , Lactalbúmina/química , Micelas , Mioglobina/química , Unión Proteica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
20.
Med Mycol ; 55(2): 185-192, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27281814

RESUMEN

In cases of fungal infection of the bloodstream, rapid species identification is crucial to provide adapted therapy and thereby ameliorate patient outcome. Currently, the commercial Sepsityper kit and the sodium-dodecyl sulfate (SDS) method coupled with MALDI-TOF mass spectrometry are the most commonly reported lysis protocols for direct identification of fungi from positive blood culture vials. However, the performance of these two protocols has never been compared on clinical samples. Accordingly, we performed a two-step survey on two distinct panels of clinical positive blood culture vials to identify the most efficient protocol, establish an appropriate log score (LS) cut-off, and validate the best method. We first compared the performance of the Sepsityper and the SDS protocols on 71 clinical samples. For 69 monomicrobial samples, mass spectrometry LS values were significantly higher with the SDS protocol than with the Sepsityper method (P < .0001), especially when the best score of four deposited spots was considered. Next, we established the LS cut-off for accurate identification at 1.7, based on specimen DNA sequence data. Using this LS cut-off, 66 (95.6%) and 46 (66.6%) isolates were correctly identified at the species level with the SDS and the Sepsityper protocols, respectively. In the second arm of the survey, we validated the SDS protocol on an additional panel of 94 clinical samples. Ninety-two (98.9%) of 93 monomicrobial samples were correctly identified at the species level (median LS = 2.061). Overall, our data suggest that the SDS method yields more accurate species identification of yeasts, than the Sepsityper protocol.


Asunto(s)
Cultivo de Sangre , Mezclas Complejas/química , Fungemia/diagnóstico , Manejo de Especímenes/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Levaduras/clasificación , Levaduras/aislamiento & purificación , Mezclas Complejas/aislamiento & purificación , Detergentes/metabolismo , Fungemia/microbiología , Humanos , Dodecil Sulfato de Sodio/metabolismo , Encuestas y Cuestionarios , Levaduras/química , Levaduras/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA