Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 179(4): 923-936.e11, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31675499

RESUMEN

Tight junctions are cell-adhesion complexes that seal tissues and are involved in cell polarity and signaling. Supra-molecular assembly and positioning of tight junctions as continuous networks of adhesion strands are dependent on the membrane-associated scaffolding proteins ZO1 and ZO2. To understand how zona occludens (ZO) proteins organize junction assembly, we performed quantitative cell biology and in vitro reconstitution experiments. We discovered that ZO proteins self-organize membrane-attached compartments via phase separation. We identified the multivalent interactions of the conserved PDZ-SH3-GuK supra-domain as the driver of phase separation. These interactions are regulated by phosphorylation and intra-molecular binding. Formation of condensed ZO protein compartments is sufficient to specifically enrich and localize tight-junction proteins, including adhesion receptors, cytoskeletal adapters, and transcription factors. Our results suggest that an active-phase transition of ZO proteins into a condensed membrane-bound compartment drives claudin polymerization and coalescence of a continuous tight-junction belt.


Asunto(s)
Uniones Estrechas/genética , Proteínas de la Zonula Occludens/genética , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-2/genética , Animales , Sitios de Unión/genética , Adhesión Celular/genética , Polaridad Celular/genética , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/genética , Dominios PDZ/genética , Fosfoproteínas/genética , Fosforilación/genética , Unión Proteica/genética , Transducción de Señal/genética , Uniones Estrechas/metabolismo , Proteínas de la Zonula Occludens/química , Proteínas de la Zonula Occludens/ultraestructura , Proteína de la Zonula Occludens-1/química , Proteína de la Zonula Occludens-1/ultraestructura , Proteína de la Zonula Occludens-2/química , Proteína de la Zonula Occludens-2/ultraestructura , Dominios Homologos src/genética
2.
Cell ; 155(3): 647-58, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243021

RESUMEN

Spore formation in Bacillus subtilis relies on a regulated intramembrane proteolysis (RIP) pathway that synchronizes mother-cell and forespore development. To address the molecular basis of this SpoIV transmembrane signaling, we carried out a structure-function analysis of the activating protease CtpB. Crystal structures reflecting distinct functional states show that CtpB constitutes a ring-like protein scaffold penetrated by two narrow tunnels. Access to the proteolytic sites sequestered within these tunnels is controlled by PDZ domains that rearrange upon substrate binding. Accordingly, CtpB resembles a minimal version of a self-compartmentalizing protease regulated by a unique allosteric mechanism. Moreover, biochemical analysis of the PDZ-gated channel combined with sporulation assays reveal that activation of the SpoIV RIP pathway is induced by the concerted activity of CtpB and a second signaling protease, SpoIVB. This proteolytic mechanism is of broad relevance for cell-cell communication, illustrating how distinct signaling pathways can be integrated into a single RIP module.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Esporas Bacterianas , Sitio Alostérico , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios PDZ , Alineación de Secuencia , Transducción de Señal
3.
Nature ; 604(7904): 175-183, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388192

RESUMEN

Allosteric communication between distant sites in proteins is central to biological regulation but still poorly characterized, limiting understanding, engineering and drug development1-6. An important reason for this is the lack of methods to comprehensively quantify allostery in diverse proteins. Here we address this shortcoming and present a method that uses deep mutational scanning to globally map allostery. The approach uses an efficient experimental design to infer en masse the causal biophysical effects of mutations by quantifying multiple molecular phenotypes-here we examine binding and protein abundance-in multiple genetic backgrounds and fitting thermodynamic models using neural networks. We apply the approach to two of the most common protein interaction domains found in humans, an SH3 domain and a PDZ domain, to produce comprehensive atlases of allosteric communication. Allosteric mutations are abundant, with a large mutational target space of network-altering 'edgetic' variants. Mutations are more likely to be allosteric closer to binding interfaces, at glycine residues and at specific residues connecting to an opposite surface within the PDZ domain. This general approach of quantifying mutational effects for multiple molecular phenotypes and in multiple genetic backgrounds should enable the energetic and allosteric landscapes of many proteins to be rapidly and comprehensively mapped.


Asunto(s)
Sitio Alostérico , Dominios PDZ , Proteínas , Regulación Alostérica/genética , Dominios PDZ/genética , Unión Proteica/genética , Proteínas/química , Termodinámica
4.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692208

RESUMEN

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Claudina-2/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Proteínas de Microfilamentos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Claudina-2/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Proteínas de Microfilamentos/genética , Metástasis de la Neoplasia , Dominios PDZ , Pronóstico , Análisis de Supervivencia , Células Tumorales Cultivadas
5.
Cell ; 145(7): 1088-101, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703451

RESUMEN

INAD is a scaffolding protein that regulates signaling in Drosophila photoreceptors. One of its PDZ domains, PDZ5, cycles between reduced and oxidized forms in response to light, but it is unclear how light affects its redox potential. Through biochemical and structural studies, we show that the redox potential of PDZ5 is allosterically regulated by its interaction with another INAD domain, PDZ4. Whereas isolated PDZ5 is stable in the oxidized state, formation of a PDZ45 "supramodule" locks PDZ5 in the reduced state by raising the redox potential of its Cys606/Cys645 disulfide bond by ∼330 mV. Acidification, potentially mediated via light and PLCß-mediated hydrolysis of PIP(2), disrupts the interaction between PDZ4 and PDZ5, leading to PDZ5 oxidation and dissociation from the TRP Ca(2+) channel, a key component of fly visual signaling. These results show that scaffolding proteins can actively modulate the intrinsic redox potentials of their disulfide bonds to exert regulatory roles in signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Ojo/metabolismo , Proteínas del Ojo/química , Modelos Moleculares , Oxidación-Reducción , Dominios PDZ , Células Fotorreceptoras de Invertebrados/metabolismo , Transducción de Señal
6.
Cell ; 147(7): 1564-75, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22196731

RESUMEN

Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved "wiring" mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.


Asunto(s)
Regulación Alostérica , Escherichia coli/enzimología , Modelos Moleculares , Proteínas/química , Escherichia coli/metabolismo , Evolución Molecular , Dominios PDZ , Proteínas/genética , Proteínas/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(9): e2216697120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802421

RESUMEN

Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence-structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of-the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Péptidos , Unión Proteica , Péptidos/química , Antígenos de Histocompatibilidad Clase II/metabolismo , Genes MHC Clase II , Dominios PDZ
8.
J Biol Chem ; 300(1): 105575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110034

RESUMEN

The carboxy-terminal tail of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope protein (E) contains a PDZ-binding motif (PBM) which is crucial for coronavirus pathogenicity. During SARS-CoV-2 infection, the viral E protein is expressed within the Golgi apparatus membrane of host cells with its PBM facing the cytoplasm. In this work, we study the molecular mechanisms controlling the presentation of the PBM to host PDZ (PSD-95/Dlg/ZO-1) domain-containing proteins. We show that at the level of the Golgi apparatus, the PDZ-binding motif of the E protein is not detected by E C-terminal specific antibodies nor by the PDZ domain-containing protein-binding partner. Four alanine substitutions upstream of the PBM in the central region of the E protein tail is sufficient to generate immunodetection by anti-E antibodies and trigger robust recruitment of the PDZ domain-containing protein into the Golgi organelle. Overall, this work suggests that the presentation of the PBM to the cytoplasm is under conformational regulation mediated by the central region of the E protein tail and that PBM presentation probably does not occur at the surface of Golgi cisternae but likely at post-Golgi stages of the viral cycle.


Asunto(s)
Proteínas de la Envoltura de Coronavirus , Citoplasma , SARS-CoV-2 , Humanos , Secuencias de Aminoácidos , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , COVID-19/patología , COVID-19/virología , Citoplasma/metabolismo , Citoplasma/virología , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Guanilato-Quinasas/metabolismo , Dominios PDZ , Unión Proteica , Conformación Proteica , Transporte de Proteínas , SARS-CoV-2/química , SARS-CoV-2/metabolismo
9.
J Cell Sci ; 136(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37096733

RESUMEN

GIPC3 has been implicated in auditory function. Here, we establish that GIPC3 is initially localized to the cytoplasm of inner and outer hair cells of the cochlea and then is increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at 1 month of age. Cuticular plates of Gipc3KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks and the cuticular plate. Several of immunoprecipitated proteins contained GIPC family consensus PDZ-binding motifs (PBMs), including MYO18A, which bound directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell junction proteins to shape the cuticular plate.


Asunto(s)
Mecanotransducción Celular , Dominios PDZ , Ratones , Animales , Células Ciliadas Auditivas Internas/metabolismo , Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Miosinas/genética , Miosinas/metabolismo
10.
J Am Chem Soc ; 146(26): 17974-17985, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957136

RESUMEN

The binding affinity determination of protein-ligand complexes is a cornerstone of drug design. State-of-the-art techniques are limited by lengthy and expensive processes. Building upon our recently introduced novel screening method utilizing photochemically induced dynamic nuclear polarization (photo-CIDNP) NMR, we provide the methodological framework to determine binding affinities within 5-15 min using 0.1 mg of protein. The accuracy of our method is demonstrated for the affinity constants of peptides binding to a PDZ domain and fragment ligands binding to the protein PIN1. The method can also be extended to measure the affinity of nonphoto-CIDNP-polarizable ligands in competition binding experiments. Finally, we demonstrate a strong correlation between the ligand-reduced signals in photo-CIDNP-based NMR fragment screening and the well-established saturation transfer difference (STD) NMR. Thus, our methodology measures protein-ligand affinities in the micro- to millimolar range in only a few minutes and informs on the binding epitope in a single-scan experiment, opening new avenues for early stage drug discovery approaches.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Ligandos , Unión Proteica , Procesos Fotoquímicos , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/química , Proteínas/química , Proteínas/metabolismo , Péptidos/química , Péptidos/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Dominios PDZ
11.
J Cell Sci ; 135(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35542970

RESUMEN

Dishevelled is a cytoplasmic hub that transduces Wnt signals to cytoplasmic effectors, which can be broadly characterised as canonical (ß-catenin dependent) and noncanonical, to specify cell fates and behaviours during development. To transduce canonical Wnt signals, Dishevelled binds to the intracellular face of Frizzled through its DEP domain and polymerises through its DIX domain to assemble dynamic signalosomes. Dishevelled also contains a PDZ domain, whose function remains controversial. Here, we use genome editing to delete the PDZ domain-encoding region from Drosophila dishevelled. Canonical Wingless signalling is entirely normal in these deletion mutants; however, they show defects in multiple contexts controlled by noncanonical Wnt signalling, such as planar polarity. We use nuclear magnetic resonance spectroscopy to identify bona fide PDZ-binding motifs at the C termini of different polarity proteins. Although deletions of these motifs proved aphenotypic in adults, we detected changes in the proximodistal distribution of the polarity protein Flamingo (also known as Starry night) in pupal wings that suggest a modulatory role of these motifs in polarity signalling. We also provide new genetic evidence that planar polarity relies on the DEP-dependent recruitment of Dishevelled to the plasma membrane by Frizzled.


Asunto(s)
Proteínas de Drosophila , Dominios PDZ , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal
12.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34228789

RESUMEN

Sound transduction occurs in the hair bundle, the apical compartment of sensory hair cells in the inner ear. The hair bundle is formed of actin-based stereocilia aligned in rows of graded heights. It was previously shown that the GNAI-GPSM2 complex is part of a developmental blueprint that defines the polarized organization of the apical cytoskeleton in hair cells, including stereocilia distribution and elongation. Here, we report a role for multiple PDZ domain (MPDZ) protein during apical hair cell morphogenesis in mouse. We show that MPDZ is enriched at the hair cell apical membrane along with MAGUK p55 subfamily member 5 (MPP5/PALS1) and the Crumbs protein CRB3. MPDZ is required there to maintain the proper segregation of apical blueprint proteins, including GNAI-GPSM2. Loss of the blueprint coincides with misaligned stereocilia placement in Mpdz mutant hair cells, and results in permanently misshapen hair bundles. Graded molecular and structural defects along the cochlea can explain the profile of hearing loss in Mpdz mutants, where deficits are most severe at high frequencies.


Asunto(s)
Citoesqueleto/metabolismo , Células Ciliadas Auditivas/metabolismo , Dominios PDZ , Actinas/metabolismo , Animales , Cóclea/metabolismo , Oído Interno/metabolismo , Pérdida Auditiva/metabolismo , Proteínas de la Membrana , Ratones , Estereocilios/metabolismo
13.
J Virol ; 97(10): e0124123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37772824

RESUMEN

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Asunto(s)
Antígenos CD34 , Citomegalovirus , Proteínas Dishevelled , Células Madre Hematopoyéticas , Proteínas Virales , Activación Viral , beta Catenina , Humanos , Antígenos CD34/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiología , Proteínas Dishevelled/química , Proteínas Dishevelled/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , Dominios PDZ , Proteínas Virales/química , Proteínas Virales/metabolismo , Latencia del Virus/genética
14.
Antonie Van Leeuwenhoek ; 117(1): 41, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400879

RESUMEN

In the search of new enzymatic activities with a possible industrial application, we focused on those microorganisms and their molecular mechanisms that allow them to succeed in the environment, particularly in the proteolytic activity and its central role in the microorganisms' successful permanence. The use of highly active serine proteases for industrial applications is a modern need, especially for the formulation of detergents, protein processing, and hair removal from animal skins. This report provides the isolation and identification of a highly proteolytic fragment derived from DegQ produced by a Pseudomonas fluorescens environmental strain isolated from a frog carcass. Zymograms demonstrate that a 10 kDa protein mainly generates the total proteolytic activity of this strain, which is enhanced by the detergent SDS. Mass spectroscopy analysis revealed that the protein derived a couple of peptides, the ones showing the highest coverage belonging to DegQ. Interestingly, this small protein fragment contains a PDZ domain but no obvious residues indicating that it is a protease. Protein model analysis shows that this fragment corresponds to the main PDZ domain from DegQ, and its unique sequence and structure render a proteolytic peptide. The results presented here indicate that a novel DegQ fragment is sufficient for obtaining high protease activity highlighting that the analysis of environmental microorganisms can render new strains or enzymes with helpful biotechnological characteristics.


Asunto(s)
Dominios PDZ , Pseudomonas , Animales , Pseudomonas/genética , Pseudomonas/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Péptidos , Serina Proteasas
15.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33597305

RESUMEN

Ephexin family guanine nucleotide exchange factors (GEFs) transfer signals from Eph tyrosine kinase receptors to Rho GTPases, which play critical roles in diverse cellular processes, as well as cancers and brain disorders. Here, we elucidate the molecular basis underlying inhibition and activation of Ephexin family RhoGEFs. The crystal structures of partially and fully autoinhibited Ephexin4 reveal that the complete autoinhibition requires both N- and C-terminal inhibitory modes, which can operate independently to impede Ras homolog family member G (RhoG) access. This double inhibition mechanism is commonly employed by other Ephexins and SGEF, another RhoGEF for RhoG. Structural, enzymatic, and cell biological analyses show that phosphorylation of a conserved tyrosine residue in its N-terminal inhibitory domain and association of PDZ proteins with its C-terminal PDZ-binding motif may respectively relieve the two autoinhibitory modes in Ephexin4. Our study provides a mechanistic framework for understanding the fine-tuning regulation of Ephexin4 GEF activity and offers possible clues for its pathological dysfunction.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación , Dominios PDZ , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Fosforilación , Conformación Proteica
16.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34446566

RESUMEN

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Asunto(s)
Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Mitocondrias/metabolismo , Mutación , Dominios PDZ , Enfermedad de Parkinson/patología , Regiones Promotoras Genéticas , Animales , Dominio Catalítico , Serina Peptidasa A2 que Requiere Temperaturas Altas/química , Serina Peptidasa A2 que Requiere Temperaturas Altas/genética , Humanos , Ratones , Mitocondrias/genética , Modelos Moleculares , Enfermedad de Parkinson/etiología , Conformación Proteica , Proteolisis , Relación Estructura-Actividad
17.
J Neurosci ; 42(47): 8897-8911, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36202617

RESUMEN

Metabotropic glutamate receptor Type 3 (mGlu3) controls the sleep/wake architecture, which plays a role in the glutamatergic pathophysiology of schizophrenia. Interestingly, mGlu3 receptor expression is decreased in the brain of schizophrenic patients. However, little is known about the molecular mechanisms regulating mGlu3 receptors at the cell membrane. Subcellular receptor localization is strongly dependent on protein-protein interactions. Here we show that mGlu3 interacts with PICK1 and that this scaffolding protein is important for mGlu3 surface expression and function in hippocampal primary cultures. Disruption of their interaction via an mGlu3 C-terminal mimicking peptide or an inhibitor of the PDZ domain of PICK1 altered the functional expression of mGlu3 receptors in neurons. We next investigated the impact of disrupting the mGlu3-PICK1 interaction on hippocampal theta oscillations in vitro and in vivo in WT male mice. We found a decreased frequency of theta oscillations in organotypic hippocampal slices, similar to what was previously observed in mGlu3 KO mice. In addition, hippocampal theta power was reduced during rapid eye movement sleep, non-rapid eye movement (NREM) sleep, and wake states after intraventricular administration of the mGlu3 C-terminal mimicking peptide. Targeting the mGlu3-PICK1 complex could thus be relevant to the pathophysiology of schizophrenia.SIGNIFICANCE STATEMENT Dysregulation of the glutamatergic system might play a role in the pathophysiology of schizophrenia. Metabotropic glutamate receptors Type 3 (mGlu3) have been proposed as potential targets for schizophrenia. Understanding the molecular mechanisms regulating mGlu3 receptor at the cell membrane is critical toward comprehending how their dysfunction contributes to the pathogenesis of schizophrenia. Here we describe that the binding of the signaling and scaffolding protein PICK1 to mGlu3 receptors is important for their localization and physiological functions. The identification of new proteins that associate specifically to mGlu3 receptors will advance our understanding of the regulatory mechanisms associated with their targeting and function and ultimately might provide new therapeutic strategies to counter these psychiatric conditions.


Asunto(s)
Proteínas Portadoras , Hipocampo , Receptores de Glutamato Metabotrópico , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Hipocampo/metabolismo , Dominios PDZ , Receptores de Glutamato Metabotrópico/metabolismo
18.
J Biol Chem ; 298(8): 102223, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35787373

RESUMEN

The animal cell polarity regulator Par-3 recruits the Par complex (consisting of Par-6 and atypical PKC, aPKC) to specific sites on the cell membrane. Although numerous physical interactions have been reported between Par-3 and the Par complex, it is unclear how each of these interactions contributes to the overall binding. Using a purified, intact Par complex and a quantitative binding assay, here, we found that the energy required for this interaction is provided by the second and third PDZ protein interaction domains of Par-3. We show that both Par-3 PDZ domains bind to the PDZ-binding motif of aPKC in the Par complex, with additional binding energy contributed from the adjacent catalytic domain of aPKC. In addition to highlighting the role of Par-3 PDZ domain interactions with the aPKC kinase domain and PDZ-binding motif in stabilizing Par-3-Par complex assembly, our results indicate that each Par-3 molecule can potentially recruit two Par complexes to the membrane during cell polarization. These results provide new insights into the energetic determinants and structural stoichiometry of the Par-3-Par complex assembly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Polaridad Celular , Proteína Quinasa C , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Comunicación Celular , Proteínas de Ciclo Celular/metabolismo , Dominios PDZ , Proteína Quinasa C/metabolismo
19.
Proteins ; 91(1): 121-133, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36000344

RESUMEN

Mutations are the cause of several diseases as well as the underlying force of evolution. A thorough understanding of their biophysical consequences is essential. We present a computational framework for evaluating different levels of mutual information (MI) and its dependence on mutation. We used molecular dynamics trajectories of the third PDZ domain and its different mutations. Nonlinear MI between all residue pairs are calculated by tensor Hermite polynomials up to the fifth order and compared with results from multivariate Gaussian distribution of joint probabilities. We show that MI is written as the sum of a Gaussian and a nonlinear component. Results for the PDZ domain show that the Gaussian term gives a sufficiently accurate representation of MI when compared with nonlinear terms up to the fifth order. Changes in MI between residue pairs show the characteristic patterns resulting from specific mutations. Emergence of new peaks in the MI versus residue index plots of mutated PDZ shows how mutation may change allosteric pathways. Triple correlations are characterized by evaluating MI between triplets of residues. We observed that certain triplets are strongly affected by mutation. Susceptibility of residues to perturbation is obtained by MI and discussed in terms of linear response theory.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Proteínas/genética , Proteínas/química , Dominios PDZ , Mutación , Distribución Normal
20.
J Virol ; 96(22): e0136522, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36326272

RESUMEN

Cancer-causing HPV E6 oncoproteins contain a PDZ-binding motif at the extreme carboxy terminus, which plays an important role in the viral life cycle and in the development of malignancy. Through this motif, HPV E6 targets a large number of cellular substrates, many of which are involved in processes related to the regulation of cell polarity. Recent studies also demonstrated E6's PDZ binding motif (PBM)-dependent association with SNX27, with a potential role in the perturbation of endocytic transport. Here, we have performed a proteomic analysis to identify SNX27-interacting partners whose binding to SNX27 is specifically perturbed in an E6-dependent manner. Extracts of HeLa cells that express GFP-tagged SNX27, transfected with control siRNA or siRNA targeting E6AP, were subject to GFP immunoprecipitation followed by mass spectroscopy, which identified TANC2 as an interacting partner of SNX27. Furthermore, we demonstrate that HPV E6 inhibits association between SNX27 and TANC2 in a PBM-dependent manner, resulting in an increase in TANC2 protein levels. In the absence of E6, SNX27 directs TANC2 toward lysosomal degradation. TANC2, in the presence of HPV-18E6, enhances cell proliferation in a PBM-dependent manner, indicating that HPV E6 targets the SNX27-mediated transport of TANC2 to promote cellular proliferation. IMPORTANCE While a great deal is known about the role of the E6 PDZ binding motif (PBM) in modulating the cellular proteins involved in regulating cell polarity, much less is known about the consequences of E6's interactions with SNX27 and the endocytic sorting machinery. We reasoned that a potential consequence of such interactions could be to affect the fate of multiple SNX27 endosomal partners, such as transmembrane proteins or soluble accessory proteins. Using a proteomic approach in HPV-18-positive cervical tumor-derived cells, we demonstrate that TANC2 is an interacting partner of SNX27, whose interaction is blocked by E6 in a PBM-dependent manner. This study therefore begins to shed new light on how E6 can regulate the endocytic transport of multiple SNX27-binding proteins, thereby expanding our understanding of the functions of the E6 PBM.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Células HeLa , Dominios PDZ , Proteómica , ARN Interferente Pequeño/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proliferación Celular , Unión Proteica , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA