Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 586(7828): 217-227, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028996

RESUMEN

Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Mapeo Geográfico , Animales , Organismos Acuáticos , Biodiversidad , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/estadística & datos numéricos , Ecología/estadística & datos numéricos , Ecología/tendencias , Historia del Siglo XXI , Vida Silvestre
3.
PLoS Biol ; 19(8): e3001336, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383738

RESUMEN

Conserving and managing biodiversity in the face of ongoing global change requires sufficient evidence to assess status and trends of species distributions. Here, we propose novel indicators of biodiversity data coverage and sampling effectiveness and analyze national trajectories in closing spatiotemporal knowledge gaps for terrestrial vertebrates (1950 to 2019). Despite a rapid rise in data coverage, particularly in the last 2 decades, strong geographic and taxonomic biases persist. For some taxa and regions, a tremendous growth in records failed to directly translate into newfound knowledge due to a sharp decline in sampling effectiveness. However, we found that a nation's coverage was stronger for species for which it holds greater stewardship. As countries under the post-2020 Global Biodiversity Framework renew their commitments to an improved, rigorous biodiversity knowledge base, our findings highlight opportunities for international collaboration to close critical information gaps.


Asunto(s)
Distribución Animal , Biodiversidad , Ecología/normas , Ecología/tendencias , Animales , Artiodáctilos , Conservación de los Recursos Naturales , Ecología/métodos , Internacionalidad , Panthera
8.
Nature ; 547(7661): 49-54, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658207

RESUMEN

Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.


Asunto(s)
Biodiversidad , Cambio Climático/estadística & datos numéricos , Cubierta de Hielo , Animales , Regiones Antárticas , Cambio Climático/historia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XXI
9.
Nature ; 546(7656): 82-90, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569801

RESUMEN

Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.


Asunto(s)
Aclimatación , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Arrecifes de Coral , Ecología/métodos , Ecología/tendencias , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Actividades Humanas , Animales , Antozoos/fisiología , Dióxido de Carbono/análisis , Agua de Mar/análisis , Agua de Mar/química
10.
J Neurosci ; 41(5): 911-919, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33443081

RESUMEN

Animals evolved in complex environments, producing a wide range of behaviors, including navigation, foraging, prey capture, and conspecific interactions, which vary over timescales ranging from milliseconds to days. Historically, these behaviors have been the focus of study for ecology and ethology, while systems neuroscience has largely focused on short timescale behaviors that can be repeated thousands of times and occur in highly artificial environments. Thanks to recent advances in machine learning, miniaturization, and computation, it is newly possible to study freely moving animals in more natural conditions while applying systems techniques: performing temporally specific perturbations, modeling behavioral strategies, and recording from large numbers of neurons while animals are freely moving. The authors of this review are a group of scientists with deep appreciation for the common aims of systems neuroscience, ecology, and ethology. We believe it is an extremely exciting time to be a neuroscientist, as we have an opportunity to grow as a field, to embrace interdisciplinary, open, collaborative research to provide new insights and allow researchers to link knowledge across disciplines, species, and scales. Here we discuss the origins of ethology, ecology, and systems neuroscience in the context of our own work and highlight how combining approaches across these fields has provided fresh insights into our research. We hope this review facilitates some of these interactions and alliances and helps us all do even better science, together.


Asunto(s)
Conducta Animal/fisiología , Ecología/tendencias , Etología/tendencias , Navegación Espacial/fisiología , Biología de Sistemas/tendencias , Animales , Ecología/métodos , Etología/métodos , Aprendizaje Automático/tendencias , Roedores , Biología de Sistemas/métodos
11.
PLoS Comput Biol ; 16(6): e1008021, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32598364

RESUMEN

Forecasting 'Black Swan' events in ecosystems is an important but challenging task. Many ecosystems display aperiodic fluctuations in species abundance spanning orders of magnitude in scale, which have vast environmental and economic impact. Empirical evidence and theoretical analyses suggest that these dynamics are in a regime where system nonlinearities limit accurate forecasting of unprecedented events due to poor extrapolation of historical data to unsampled states. Leveraging increasingly available long-term high-frequency ecological tracking data, we analyze multiple natural and experimental ecosystems (marine plankton, intertidal mollusks, and deciduous forest), and recover hidden linearity embedded in universal 'scaling laws' of species dynamics. We then develop a method using these scaling laws to reduce data dependence in ecological forecasting and accurately predict extreme events beyond the span of historical observations in diverse ecosystems.


Asunto(s)
Ecología/tendencias , Cambio Climático , Ecosistema , Predicción , Modelos Teóricos
12.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25832402

RESUMEN

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Asunto(s)
Biodiversidad , Actividades Humanas , Animales , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Modelos Biológicos , Dinámica Poblacional , Especificidad de la Especie
16.
Proc Natl Acad Sci U S A ; 115(7): 1424-1432, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29382745

RESUMEN

Two foundational questions about sustainability are "How are ecosystems and the services they provide going to change in the future?" and "How do human decisions affect these trajectories?" Answering these questions requires an ability to forecast ecological processes. Unfortunately, most ecological forecasts focus on centennial-scale climate responses, therefore neither meeting the needs of near-term (daily to decadal) environmental decision-making nor allowing comparison of specific, quantitative predictions to new observational data, one of the strongest tests of scientific theory. Near-term forecasts provide the opportunity to iteratively cycle between performing analyses and updating predictions in light of new evidence. This iterative process of gaining feedback, building experience, and correcting models and methods is critical for improving forecasts. Iterative, near-term forecasting will accelerate ecological research, make it more relevant to society, and inform sustainable decision-making under high uncertainty and adaptive management. Here, we identify the immediate scientific and societal needs, opportunities, and challenges for iterative near-term ecological forecasting. Over the past decade, data volume, variety, and accessibility have greatly increased, but challenges remain in interoperability, latency, and uncertainty quantification. Similarly, ecologists have made considerable advances in applying computational, informatic, and statistical methods, but opportunities exist for improving forecast-specific theory, methods, and cyberinfrastructure. Effective forecasting will also require changes in scientific training, culture, and institutions. The need to start forecasting is now; the time for making ecology more predictive is here, and learning by doing is the fastest route to drive the science forward.


Asunto(s)
Ecología/educación , Ecología/métodos , Teorema de Bayes , Cambio Climático , Ecología/tendencias , Ecosistema , Predicción , Humanos , Modelos Teóricos
17.
Parasitology ; 147(11): 1159-1170, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517830

RESUMEN

Biodiversity loss may increase the risk of infectious disease in a phenomenon known as the dilution effect. Circumstances that increase the likelihood of disease dilution are: (i) when hosts vary in their competence, and (ii) when communities disassemble predictably, such that the least competent hosts are the most likely to go extinct. Despite the central role of competence in diversity-disease theory, we lack a clear understanding of the factors underlying competence, as well as the drivers and extent of its variation. Our perspective piece encourages a mechanistic understanding of competence and a deeper consideration of its role in diversity-disease relationships. We outline current evidence, emerging questions and future directions regarding the basis of competence, its definition and measurement, the roots of its variation and its role in the community ecology of infectious disease.


Asunto(s)
Biodiversidad , Enfermedades Transmisibles Emergentes , Interacciones Huésped-Parásitos , Parásitos , Animales , Enfermedades Transmisibles , Reservorios de Enfermedades , Ecología/tendencias , Humanos , Parasitología/tendencias , Especificidad de la Especie
20.
PLoS Biol ; 14(1): e1002350, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26745372

RESUMEN

Recent advancements in animal tracking technology and high-throughput sequencing are rapidly changing the questions and scope of research in the biological sciences. The integration of genomic data with high-tech animal instrumentation comes as a natural progression of traditional work in ecological genetics, and we provide a framework for linking the separate data streams from these technologies. Such a merger will elucidate the genetic basis of adaptive behaviors like migration and hibernation and advance our understanding of fundamental ecological and evolutionary processes such as pathogen transmission, population responses to environmental change, and communication in natural populations.


Asunto(s)
Ecología/tendencias , Genómica/tendencias , Secuenciación de Nucleótidos de Alto Rendimiento , Distribución Animal , Animales , Transmisión de Enfermedad Infecciosa , Predicción , Flujo Génico , Estudios de Asociación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA