Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.337
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(11): e23731, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38855909

RESUMEN

Ca2+ permeation through TRPV4 in fibroblasts is associated with pathological matrix degradation. In human gingival fibroblasts, IL-1ß binding to its signaling receptor (IL-1R1) induces activation of extracellular regulated kinase (ERK) and MMP1 expression, processes that require Ca2+ flux across the plasma membrane. It is not known how IL-1R1, which does not conduct Ca2+, generates Ca2+ signals in response to IL-1. We examined whether TRPV4 mediates the Ca2+ fluxes required for ERK signaling in IL-1 stimulated gingival fibroblasts. TRPV4 was immunostained in fibroblasts of human gingival connective tissue and in focal adhesions of cultured mouse gingival fibroblasts. Human gingival fibroblasts treated with IL-1ß showed no change of TRPV4 expression but there was increased MMP1 expression. In mouse, gingival fibroblasts expressing TRPV4, IL-1 strongly increased [Ca2+]i. Pre-incubation of cells with IL-1 Receptor Antagonist blocked Ca2+ entry induced by IL-1 or the TRPV4 agonist GSK101. Knockout of TRPV4 or expression of a non-Ca2+-conducting TRPV4 pore-mutant or pre-incubation with the TRPV4 inhibitor RN1734, blocked IL-1-induced Ca2+ transients and expression of the mouse interstitial collagenase, MMP13. Treatment of mouse gingival fibroblasts with GSK101 phenocopied Ca2+ and ERK responses induced by IL-1; these responses were absent in TRPV4-null cells or cells expressing a non-conducting TRPV4 pore-mutant. Immunostained IL-1R1 localized with TRPV4 in adhesions within cell extensions. While TRPV4 immunoprecipitates analyzed by mass spectrometry showed no association with IL-1R1, TRPV4 associated with Src-related proteins and Src co-immunoprecipitated with TRPV4. Src inhibition reduced IL-1-induced Ca2+ responses. The functional linkage of TRPV4 with IL-1R1 expands its repertoire of innate immune signaling processes by mediating IL-1-driven Ca2+ responses that drive matrix remodeling in fibroblasts. Thus, inhibiting TRPV4 activity may provide a new pharmacological approach for blunting matrix degradation in inflammatory diseases.


Asunto(s)
Señalización del Calcio , Fibroblastos , Encía , Canales Catiónicos TRPV , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Animales , Humanos , Ratones , Fibroblastos/metabolismo , Encía/metabolismo , Encía/citología , Calcio/metabolismo , Sistema de Señalización de MAP Quinasas , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Interleucina-1/metabolismo , Interleucina-1/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacología
2.
J Cell Biochem ; 125(7): e30576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38726711

RESUMEN

Gingival epithelial cells (GECs) are physical and immunological barriers against outward pathogens while coping with a plethora of non-pathogenic commensal bacteria. GECs express several members of Toll-like receptors (TLRs) and control subsequent innate immune responses. TLR4 senses lipopolysaccharide (LPS) while TLR7/8 recognizes single-strand RNA (ssRNA) playing important roles against viral infection. However, their distinct roles in GECs have not been fully demonstrated. Here, we analyzed biological responses of GECs to  LPS and CL075, a TLR7/8 agonist. GE1, a mouse gingival epithelial cell line, constitutively express TLR4 and TLR7, but not TLR8, like primary skin keratinocytes. Stimulation of GE1 cells with CL075 induced cytokine, chemokine, and antimicrobial peptide  expressions, the pattern of which is rather different from that with LPS: higher mRNA levels of interferon (IFN) ß, CXCL10, and ß-defensin (BD) 14 (mouse homolog of human BD3); lower levels of tumor necrosis factor (TNF), CCL5, CCL11, CCL20, CXCL2, and CX3CL1. As for the intracellular signal transduction of GE1 cells, CL075 rapidly induced significant AKT phosphorylation but failed to activate IKKα/ß-NFκB pathway, whereas LPS induced marked IKKα/ß-NFκB activation without significant AKT phosphorylation. In contrast, both CL075 and LPS induced rapid IKKα/ß-NFκB activation and AKT phosphorylation in a macrophage cell line. Furthermore, specific inhibition of AKT activity abrogated CL075-induced IFNß, CXCL10, and BD14 mRNA expression in GE1 cells. Thus, TLR4/7 ligands appear to induce rather different host-defense responses of GECs through distinct intracellular signaling mechanisms.


Asunto(s)
Células Epiteliales , Encía , Lipopolisacáridos , Receptor Toll-Like 4 , Receptor Toll-Like 7 , Ratones , Animales , Encía/citología , Encía/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 7/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Línea Celular , Inmunidad Innata , Glicoproteínas de Membrana/metabolismo , Humanos , Sulfonamidas
3.
Hum Genet ; 143(7): 907-919, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38833008

RESUMEN

The long noncoding RNA CDKN2B-AS1 harbors a major coronary artery disease risk haplotype, which is also associated with progressive forms of the oral inflammatory disease periodontitis as well as myocardial infarction (MI). Despite extensive research, there is currently no broad consensus on the function of CDKN2B-AS1 that would explain a common molecular role of this lncRNA in these diseases. Our aim was to investigate the role of CDKN2B-AS1 in gingival cells to better understand the molecular mechanisms underlying the increased risk of progressive periodontitis. We downregulated CDKN2B-AS1 transcript levels in primary gingival fibroblasts with LNA GapmeRs. Following RNA-sequencing, we performed differential expression, gene set enrichment analyses and Western Blotting. Putative causal alleles were searched by analyzing associated DNA sequence variants for changes of predicted transcription factor binding sites. We functionally characterized putative functional alleles using luciferase-reporter and antibody electrophoretic mobility shift assays in gingival fibroblasts and HeLa cells. Of all gene sets analysed, collagen biosynthesis was most significantly upregulated (Padj=9.7 × 10- 5 (AUC > 0.65) with the CAD and MI risk gene COL4A1 showing strongest upregulation of the enriched gene sets (Fold change = 12.13, Padj = 4.9 × 10- 25). The inflammatory "TNFA signaling via NFKB" gene set was downregulated the most (Padj=1 × 10- 5 (AUC = 0.60). On the single gene level, CAPNS2, involved in extracellular matrix organization, was the top upregulated protein coding gene (Fold change = 48.5, P < 9 × 10- 24). The risk variant rs10757278 altered a binding site of the pathogen responsive transcription factor STAT1 (P = 5.8 × 10- 6). rs10757278-G allele reduced STAT1 binding 14.4% and rs10757278-A decreased luciferase activity in gingival fibroblasts 41.2% (P = 0.0056), corresponding with GTEx data. CDKN2B-AS1 represses collagen gene expression in gingival fibroblasts. Dysregulated collagen biosynthesis through allele-specific CDKN2B-AS1 expression in response to inflammatory factors may affect collagen synthesis, and in consequence tissue barrier and atherosclerotic plaque stability.


Asunto(s)
Colágeno , Fibroblastos , Encía , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Encía/metabolismo , Encía/patología , Fibroblastos/metabolismo , Colágeno/metabolismo , Colágeno/genética , Periodontitis/genética , Periodontitis/metabolismo , Regulación de la Expresión Génica , Células HeLa , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo
4.
J Transl Med ; 22(1): 407, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689292

RESUMEN

BACKGROUND AND OBJECTIVE: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment. METHODS: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization. RESULTS: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization. CONCLUSIONS: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.


Asunto(s)
Polaridad Celular , Macrófagos , Periodontitis , Progranulinas , Receptores Tipo II del Factor de Necrosis Tumoral , Periodontitis/metabolismo , Periodontitis/patología , Macrófagos/metabolismo , Humanos , Animales , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Progranulinas/metabolismo , Ratones , Células RAW 264.7 , Encía/metabolismo , Encía/patología , Masculino , Femenino , Adulto , Activación de Macrófagos , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL
5.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840496

RESUMEN

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Asunto(s)
Fibroblastos , Galectina 3 , Encía , Lipopolisacáridos , Periodontitis , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Encía/metabolismo , Encía/patología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
6.
J Periodontal Res ; 59(3): 611-621, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38500269

RESUMEN

BACKGROUND AND OBJECTIVE: Forkhead box-O 1 (FOXO1) is a transcription factor actively involved in oral wound healing at the epithelial barrier. However, less is known regarding the role of FOXO1 during the tissue repair response in the connective tissue compartment. This study explored the involvement of FOXO1 in the modulation of fibroblast activity related to wound healing. METHODS: Primary cultures of human gingival fibroblasts were obtained from four healthy young donors. Myofibroblastic differentiation, collagen gel contraction, cell migration, cell spreading, and integrin activation were evaluated in the presence or absence of a FOXO1 inhibitor (AS1842856). Variations in mRNA and proteins of interest were evaluated through qRT-PCR and western blot, respectively. Distribution of actin, α-smooth muscle actin, and ß1 integrin was evaluated using immunofluorescence. FOXO1 and TGF-ß1 expression in gingival wound healing was assessed by immunohistochemistry in gingival wounds performed in C57BL/6 mice. Images were analyzed using ImageJ/Fiji. ANOVA or Kruskal-Wallis test followed by Tukey's or Dunn's post-hoc test was performed. All data are expressed as mean ± SD. p < .05 was considered statistically significant. RESULTS: FOXO1 inhibition caused a decrease in the expression of the myofibroblastic marker α-SMA along with a reduction in fibronectin, type I collagen, TGF-ß1, and ß1 integrin mRNA level. The FOXO1 inhibitor also caused decreases in cell migration, cell spreading, collagen gel contraction, and ß1 integrin activation. FOXO1 and TGF-ß1 were prominently expressed in gingival wounds in fibroblastic cells located at the wound bed. CONCLUSION: The present study indicates that FOXO1 plays an important role in the modulation of several wound-healing functions in gingival fibroblast. Moreover, our findings reveal an important regulatory role for FOXO1 on the differentiation of gingival myofibroblasts, the regulation of cell migration, and collagen contraction, all these functions being critical during tissue repair and fibrosis.


Asunto(s)
Actinas , Movimiento Celular , Fibroblastos , Proteína Forkhead Box O1 , Encía , Cicatrización de Heridas , Humanos , Encía/citología , Encía/metabolismo , Cicatrización de Heridas/fisiología , Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Animales , Células Cultivadas , Diferenciación Celular , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta1/metabolismo , Ratones , Integrina beta1 , Miofibroblastos , Quinolonas
7.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226427

RESUMEN

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratas , Masculino , Animales , Oxitocina/uso terapéutico , Oxitocina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Receptores de Oxitocina/metabolismo , Modelos Animales de Enfermedad , Periodontitis/metabolismo , Encía/metabolismo , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/etiología , Proceso Alveolar/metabolismo , Mediadores de Inflamación/metabolismo
8.
J Periodontal Res ; 59(5): 1005-1016, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38807492

RESUMEN

AIMS: This study aimed to elucidate the alterations in Follistatin-like protein 1 (FSTL1) and its association with the pathological process of periodontitis. METHODS: This study included 48 patients with periodontitis and 42 healthy controls. The expression level of FSTL1 in the gingiva was determined by RT-qPCR, validated using the dataset GSE16134, and subsequently examined by western blotting. Bioinformatics analysis revealed a single-cell distribution of FSTL1, characteristic of angiogenesis and immune cell infiltration. The expression and distribution of FSTL1, vascular endothelial marker protein CD31 and myeloperoxidase (MPO), the indicator of neutrophil activity, were determined by immunohistochemistry (IHC). A series of correlation analyses was performed to determine the associations between FSTL1 and clinical parameters, including probing depth (PD) and clinical attachment loss (CAL), and their potential role in angiogenesis (CD31) and neutrophil infiltration (MPO). RESULTS: FSTL1 was significantly upregulated in the gingiva of patients with periodontitis compared to their healthy counterparts. In addition, FSTL1 was positively correlated with the clinical parameters PD (r = .5971, p = .0005) and CAL (r = .6078, p = .0004). Bioinformatic analysis and IHC indicated that high FSTL1 expression was significantly correlated with angiogenesis and neutrophil infiltration in periodontitis. Moreover, receiver operating characteristic (ROC) analysis demonstrated that FSTL1 could serve as an independent indicator for evaluating the severity of periodontitis (area under the curve [AUC] = 0.9011, p < .0001). CONCLUSION: This study demonstrated FSTL1 upregulation in periodontitis and its potential contribution to the disease via angiogenesis and neutrophil infiltration.


Asunto(s)
Proteínas Relacionadas con la Folistatina , Periodontitis , Humanos , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Masculino , Femenino , Periodontitis/patología , Periodontitis/metabolismo , Periodontitis/genética , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Neovascularización Patológica , Encía/metabolismo , Encía/patología , Infiltración Neutrófila , Peroxidasa , Inmunohistoquímica , Regulación hacia Arriba , Curva ROC
9.
J Periodontal Res ; 59(3): 599-610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482719

RESUMEN

OBJECTIVE: This study investigates the effects of ZNF862 on the proliferation and apoptosis of human gingival fibroblasts and their related mechanisms. BACKGROUND: As a major transcription factor family, zinc finger proteins (ZFPs) regulate cell differentiation, growth, and apoptosis through their conserved zinc finger motifs, which allow high flexibility and specificity in gene regulation. In our previous study, ZNF862 mutation was associated with hereditary gingival fibromatosis. Nevertheless, little is known about the biological function of ZNF862. Therefore, this study was aimed to reveal intracellular localization of ZNF862, the influence of ZNF862 on the growth and apoptosis of human gingival fibroblasts (HGFs) and its potential related mechanisms. METHODS: Immunohistochemistry, immunofluorescence staining, and western blotting were performed to determine the intracellular localization of ZNF862 in HGFs. HGFs were divided into three groups: ZNF862 overexpression group, ZNF862 interference group, and the empty vector control group. Then, the effects of ZNF862 on cell proliferation, migration, cell cycle, and apoptosis were evaluated. qRT-PCR and western blotting were performed to further explore the mechanism related to the proliferation and apoptosis of HGFs. RESULTS: ZNF862 was found to be localized in the cytoplasm of HGFs. In vitro experiments revealed that ZNF862 overexpression inhibited HGFs proliferation and migration, induced cell cycle arrest at the G0/G1-phase and apoptosis. Whereas, ZNF862 knockdown promoted HGFs proliferation and migration, accelerated the transition from the G0/G1 phase into the S and G2/M phase and inhibited cell apoptosis. Mechanistically, the effects of ZNF862 on HGFs proliferation and apoptosis were noted to be dependent on inhibiting the cyclin-dependent kinase inhibitor 1A (p21)-retinoblastoma 1 (RB1) signaling pathway and enhancing the B-cell lymphoma-extra-large (Bcl-xL)-Caspase 3 signaling pathway. CONCLUSION: Our results for the first time reveal that ZNF862 is localized in the cytoplasm of HGFs. ZNF862 can inhibit the proliferation of HGFs by inhibiting the p21-RB1 signaling pathway, and it also promotes the apoptosis of HGFs by enhancing the Bcl-xL-Caspase 3 signaling pathway.


Asunto(s)
Apoptosis , Caspasa 3 , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Fibroblastos , Encía , Transducción de Señal , Proteína bcl-X , Humanos , Apoptosis/genética , Proteína bcl-X/metabolismo , Caspasa 3/metabolismo , Ciclo Celular , Movimiento Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Fibroblastos/metabolismo , Encía/citología , Encía/metabolismo , Factores de Transcripción/metabolismo
10.
J Periodontal Res ; 59(4): 712-727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38501307

RESUMEN

OBJECTIVE: This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND: Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS: Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS: Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS: Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Periodontitis , Ratas Zucker , Cicatrización de Heridas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Animales , Ratas , Periodontitis/terapia , Periodontitis/genética , Cicatrización de Heridas/genética , Masculino , Humanos , Encía/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Pérdida de Hueso Alveolar/terapia , Modelos Animales de Enfermedad , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/terapia , Persona de Mediana Edad
11.
J Periodontal Res ; 59(3): 542-551, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38146226

RESUMEN

BACKGROUND AND OBJECTIVE: Efferocytosis is a process whereby macrophages remove apoptotic cells, such as neutrophils, that have accumulated in tissues, which is required for resolution of inflammation. Efferocytosis is impaired in individuals with increasing age and in those with various systemic diseases. Recently, efferocytosis has been reported to be related to the pathogenesis and progression of periodontitis, and enhancement of efferocytosis, especially in the subjects with impaired efferocytosis, was suggested to lead to periodontitis prevention and care. Various anti-inflammatory ingredients are used in oral care products, but their effect on efferocytosis is unclear. Here, we aimed to identify ingredients contained in oral care products that are effective for efferocytosis regulation. METHODS: The ability of dead cells to induce inflammation in human gingival fibroblast (HGF) cells were evaluated by measuring IL-6 secretion. Six ingredients in oral care products used as anti-inflammatory agents were evaluated for their effect on efferocytosis using flow cytometry. The expression of various efferocytosis-related molecules, such as MERTK and LRP1 involved in recognition, and LXRα and ABCA1 that function in metabolism, were measured in RAW264.7 cells with or without ingredient treatment. Rac1 activity, which is related to the uptake of dead cells, was measured using the G-LISA kit. RESULTS: Dead cells elicited IL-6 secretion in HGF cells. Among the six ingredients, GK2 and hinokitiol enhanced efferocytosis activity. GK2 and hinokitiol significantly increased the expression of MERTK and LRP1, and also enhanced LXRα and ABCA1 expression after efferocytosis. Furthermore, they increased Rac1 activity in the presence of dead cells. CONCLUSION: Among the six ingredients tested, GK2 and hinokitiol promoted efferocytosis by regulating apoptotic cell recognition, uptake, and metabolism-related molecules. Efferocytosis upregulation may be one of the mechanisms of GK2 and hinokitiol in the treatment of inflammatory diseases, such as periodontitis.


Asunto(s)
Apoptosis , Encía , Ácido Glicirrínico , Macrófagos , Monoterpenos , Fagocitosis , Tropolona , Apoptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Tropolona/análogos & derivados , Tropolona/farmacología , Fagocitosis/efectos de los fármacos , Encía/citología , Encía/metabolismo , Encía/efectos de los fármacos , Ácido Glicirrínico/farmacología , Monoterpenos/farmacología , Ratones , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células RAW 264.7 , Antiinflamatorios/farmacología , Interleucina-6/metabolismo , Células Cultivadas , Eferocitosis
12.
Mol Biol Rep ; 51(1): 976, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259343

RESUMEN

OBJECTIVE: Bidirectional influences between senescence and inflammation are newly discovered. This study aimed to clarify the roles and mechanism of Porphyromonas gingivalis (P. gingivalis) in exacerbating senescence in human gingival fibroblasts (HGFs). DESIGN: Subgingival plaque and gingivae were collected from twenty-four periodontitis patients and eighteen periodontally healthy subjects. Quantities of P. gingivalis in subgingival plaque were explored using real-time PCR and the expressions of p53, p21 and SIRT6 in gingivae were detected by IHC. Moreover, senescence in HGFs was induced by P. gingivalis lipopolysaccharide (LPS) and the expressions of senescence-related ß-galactosidase (SA-ß-gal), p53, p21 and senescence-associated secretory phenotype (IL-6 and IL-8) with or without treatment by SIRT6 activator UBCS039 were explored by IHC, western blot and ELISA, respectively. In addition, the levels of SIRT6, Nrf2, HO-1 and reactive oxygen species (ROS) were examined by western blot and flow cytometry. RESULTS: Quantities of P. gingivalis in subgingival plaque and semi-quantitative scores of p53 and p21 in gingivae of periodontitis patients were increased compared with healthy controls (p < 0.05), while SIRT6 score in periodontitis patients was decreased (p < 0.001). Quantities of P. gingivalis were positively correlated with p53 and p21 scores (0.6 < r < 0.9, p < 0.01), and negatively correlated with SIRT6 score (-0.9 < r<-0.6, p < 0.01). Moreover, P. gingivalis LPS increased the levels of SA-ß-gal, p53, p21, IL-6, IL-8 and ROS and decreased the levels of SIRT6, Nrf2 and HO-1 in HGFs, which was rescued by UBCS039 (p < 0.05). CONCLUSIONS: P. gingivalis LPS could induce senescence of HGFs, which could be reversed by SIRT6 via Nrf2-HO-1 signaling pathway.


Asunto(s)
Senescencia Celular , Fibroblastos , Encía , Factor 2 Relacionado con NF-E2 , Porphyromonas gingivalis , Especies Reactivas de Oxígeno , Sirtuinas , Humanos , Porphyromonas gingivalis/patogenicidad , Encía/microbiología , Encía/metabolismo , Fibroblastos/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Masculino , Femenino , Adulto , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Periodontitis/microbiología , Periodontitis/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Persona de Mediana Edad , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética
13.
Biomed Eng Online ; 23(1): 68, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020369

RESUMEN

BACKGROUND: A strong seal of soft-tissue around dental implants is essential to block pathogens from entering the peri-implant interface and prevent infections. Therefore, the integration of soft-tissue poses a challenge in implant-prosthetic procedures, prompting a focus on the interface between peri-implant soft-tissues and the transmucosal component. The aim of this study was to analyse the effects of sandblasted roughness levels on in vitro soft-tissue healing around dental implant abutments. In parallel, proteomic techniques were applied to study the interaction of these surfaces with human serum proteins to evaluate their potential to promote soft-tissue regeneration. RESULTS: Grade-5 machined titanium discs (MC) underwent sandblasting with alumina particles of two sizes (4 and 8 µm), resulting in two different surface types: MC04 and MC08. Surface morphology and roughness were characterised employing scanning electron microscopy and optical profilometry. Cell adhesion and collagen synthesis, as well as immune responses, were assessed using human gingival fibroblasts (hGF) and macrophages (THP-1), respectively. The profiles of protein adsorption to the surfaces were characterised using proteomics; samples were incubated with human serum, and the adsorbed proteins analysed employing nLC-MS/MS. hGFs exposed to MC04 showed decreased cell area compared to MC, while no differences were found for MC08. hGF collagen synthesis increased after 7 days for MC08. THP-1 macrophages cultured on MC04 and MC08 showed a reduced TNF-α and increased IL-4 secretion. Thus, the sandblasted topography led a reduction in the immune/inflammatory response. One hundred seventy-six distinct proteins adsorbed on the surfaces were identified. Differentially adsorbed proteins were associated with immune response, blood coagulation, angiogenesis, fibrinolysis and tissue regeneration. CONCLUSIONS: Increased roughness through MC08 treatment resulted in increased collagen synthesis in hGF and resulted in a reduction in the surface immune response in human macrophages. These results correlate with the changes in protein adsorption on the surfaces observed through proteomics.


Asunto(s)
Fibroblastos , Macrófagos , Propiedades de Superficie , Humanos , Fibroblastos/metabolismo , Fibroblastos/citología , Macrófagos/metabolismo , Macrófagos/citología , Pilares Dentales , Titanio/química , Encía/citología , Encía/metabolismo , Proteómica , Adhesión Celular , Colágeno/metabolismo , Colágeno/química , Adsorción
14.
J Clin Periodontol ; 51(7): 852-862, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38390754

RESUMEN

AIM: To evaluate the protein profiles in gingival crevicular fluid (GCF) in relation to clinical outcomes after periodontal surgery and examine if any selected proteins affect the mRNA expression of pro-inflammatory cytokines in human gingival fibroblasts. MATERIALS AND METHODS: This exploratory study included 21 consecutive patients with periodontitis. GCF was collected, and the protein pattern (n = 92) and clinical parameters were evaluated prior to surgery and 3, 6 and 12 months after surgery. Fibroblastic gene expression was analysed by real-time quantitative polymerase chain reaction. RESULTS: Surgical treatment reduced periodontal pocket depth (PPD) and changed the GCF protein pattern. Twelve months after surgery, 17% of the pockets showed an increase in PPD. Levels of a number of proteins in the GCF decreased after surgical treatment but increased with early signs of tissue destruction, with LIGHT being one of the proteins that showed the strongest association. Furthermore, LIGHT up-regulated the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6, IL-8 and MMP9 in human gingival fibroblasts. CONCLUSIONS: LIGHT can potentially detect subjects at high risk of periodontitis recurrence after surgical treatment. Moreover, LIGHT induces the expression of inflammatory cytokines and tissue-degrading enzymes in gingival fibroblasts.


Asunto(s)
Biomarcadores , Fibroblastos , Líquido del Surco Gingival , Bolsa Periodontal , Humanos , Líquido del Surco Gingival/química , Masculino , Femenino , Biomarcadores/análisis , Persona de Mediana Edad , Fibroblastos/metabolismo , Bolsa Periodontal/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/análisis , Adulto , Encía/metabolismo , Interleucina-8/análisis , Interleucina-6/análisis , Citocinas/análisis , Citocinas/metabolismo , Periodontitis/metabolismo , Anciano
15.
J Clin Periodontol ; 51(9): 1210-1221, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38839576

RESUMEN

AIM: To explore the levels of neutrophil extracellular traps (NETs) in patients with periodontitis and examine their effects on keratinization, barrier function of human gingival keratinocytes (HGKs) and the associated mechanisms. MATERIALS AND METHODS: Saliva, gingival crevicular fluid (GCF), clinical periodontal parameters and gingival specimens were collected from 10 healthy control subjects and 10 patients with stage II-IV periodontitis to measure the NET levels. Subsequently, mRNA and protein levels of keratinization and barrier indicators, as well as intracellular calcium and epithelial barrier permeability, were analysed in HGKs after NET stimulation. RESULTS: The study showed that NET levels significantly elevated in patients with periodontitis, across multiple specimens including saliva, GCF and gingival tissues. Stimulation of HGKs with NETs resulted in a decrease in the expressions of involucrin, cytokeratin 10, zonula occludens 1 and E-cadherin, along with decreased intracellular calcium levels and increased epithelial barrier permeability. Furthermore, the inhibition of keratinization by NETs is ERK-KLF4-dependent. CONCLUSIONS: This study indicates that NETs impair the barrier function of HGKs and suppress keratinization through ERK/KLF4 axis. These findings provide potential targets for therapeutic approaches in periodontitis to address impaired gingival keratinization.


Asunto(s)
Trampas Extracelulares , Encía , Líquido del Surco Gingival , Queratinocitos , Periodontitis , Humanos , Trampas Extracelulares/metabolismo , Encía/metabolismo , Líquido del Surco Gingival/química , Queratinocitos/metabolismo , Periodontitis/metabolismo , Periodontitis/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Factor 4 Similar a Kruppel , Saliva/metabolismo , Saliva/química , Calcio/metabolismo , Calcio/análisis , Estudios de Casos y Controles , Epitelio , Queratinas/metabolismo , Cadherinas/metabolismo , Cadherinas/análisis
16.
Oral Dis ; 30(7): 4767-4781, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38409736

RESUMEN

OBJECTIVE: This study aimed to clarify the difference in Fusobacterium nucleatum (F. nucleatum) induced inflammatory cytokines and nod-like receptor protein 3 (NLRP3) inflammasomes dysregulation among three periodontal cells. METHODS: Oral epithelial cells (HIOECs), THP-1 macrophages, and human gingival fibroblasts (HGFs) were exposed to F. nucleatum with/without adenosine triphosphate (ATP) and nigericin (Nig). Cell morphology was assessed by scanning electron microscopy. qRT-PCR, protein microarrays, and bioinformatic methods were used to evaluate the cytokines and their complex interplay. NLRP3 inflammasomes activation was detected by western blotting and ELISA. RESULTS: F. nucleatum adhered to and invaded cells. In HIOECs, F. nucleatum enhanced interleukin (IL)-1α/1ß/6/10/13, TNF-α, and interferon (IFN)-γ expression. In THP-1 macrophages, F. nucleatum up-regulated IL-1α/1ß/6/10 and TNF-α levels. In HGFs, F. nucleatum increased IL-6 levels. F. nucleatum and ATP synergistically boosted IFN-γ level in THP-1 macrophages and IL-13 level in HGFs. IL-1α/1ß/6, and TNF-α served as epicenters of the inflammatory response. Additionally, F. nucleatum activated NLRP3 inflammasomes in HIOECs, and ATP/Nig boosted the activation. F. nucleatum also triggered NLRP3 inflammasomes in THP-1 macrophages, but in HGFs, only NLRP3 and caspase-1 levels were elevated. CONCLUSION: F. nucleatum infiltrated periodontal supporting cells and dysregulated inflammatory cytokines and NLRP3 inflammasomes.


Asunto(s)
Citocinas , Fibroblastos , Fusobacterium nucleatum , Encía , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Citocinas/metabolismo , Inflamasomas/metabolismo , Encía/microbiología , Encía/citología , Encía/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Adenosina Trifosfato/metabolismo , Células THP-1 , Células Cultivadas
17.
Oral Dis ; 30(6): 3982-3992, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38098283

RESUMEN

OBJECTIVE: The present study was performed to identify key biomarkers associated with immune cell infiltration in peri-implantitis through bioinformatic analyses. METHODS: Six peri-implantitis soft tissue samples and six healthy gingiva samples were obtained from GSE106090, and were used to identify immune-associated differentially expressed genes (DEGs) in peri-implantitis. The candidate biomarkers associated with immune cell infiltration were examined by immunohistochemical staining. RESULTS: We identified 2089 upregulated and 2173 downregulated genes. Upregulated DEGs were significantly associated with immune response. Ten key candidate biomarkers were identified in the PPI network, including IL1B, TLR2, TLR4, CCL4, CXCL8, IL10, IL6, CD4, CCL3, and PTPRC. The expression level of the 10 genes increased in peri-implantitis soft tissue samples compared with healthy gingiva samples. The proportion of CD4+ T cells, iTreg, and Tfh in infiltration immune cells increased in peri-implantitis soft tissue samples and were positively correlated with the expression level of candidate biomarkers TLR4, CCL3, CXCL8, and IL1B. Immunohistochemistry showed that there were more lymphocytes in peri-implantitis soft tissue samples, with an increased expression level of TLR4, CCL3, CXCL8, and IL1B. CONCLUSION: Identification of four novel diagnostic biomarkers was helpful for revealing the molecular mechanisms and could serve as a risk predictor for the immune microenvironment in peri-implantitis.


Asunto(s)
Biomarcadores , Encía , Periimplantitis , Humanos , Periimplantitis/inmunología , Periimplantitis/metabolismo , Periimplantitis/genética , Biomarcadores/análisis , Encía/inmunología , Encía/metabolismo , Encía/patología , Receptor Toll-Like 4 , Quimiocina CCL3/genética , Quimiocina CCL3/análisis , Interleucina-8 , Interleucina-1beta , Receptor Toll-Like 2/genética , Linfocitos T CD4-Positivos/inmunología , Quimiocina CCL4 , Interleucina-6/genética , Biología Computacional , Interleucina-10
18.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34921113

RESUMEN

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.


Asunto(s)
Encía/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferones/metabolismo , Interleucinas/metabolismo , Microbiota , Porphyromonas gingivalis/fisiología , Animales , Línea Celular , Encía/metabolismo , Humanos , Ratones , Cultivo Primario de Células
19.
Odontology ; 112(4): 1266-1273, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38393516

RESUMEN

Nuclear factor kappa-B (NF-κB) signaling-mediated inflammation contributes greatly to the pathogenesis of periodontitis. Neddylation, a ubiquitin-like posttranslational modification, is known to regulate NF-κB signaling. DCUN1D1 (defective in cullin neddylation 1 domain containing 1) is a critical factor in neddylation and has been shown to regulate NF-κB activation. However, the previse roles of DCUN1D1 in periodontitis are not fully elucidated. To explore the roles of DCUN1D1 in periodontitis, the expression of DCUN1D1 was measured in gingival tissues of patients with periodontitis. We inhibited DCUN1D1 by siRNA knocking down or using inhibitor in gingival fibroblasts and the lipopolysaccharides (LPS)-induced expression of IL-6 and TNF-α, and activation of NF-κB were measured. The expression of DCUN1D1 was increased in gingival tissues of patients with periodontitis. Knocking down or inhibiting DCUN1D1 suppressed LPS-induced production of IL-6 and TNF-α, decreased NF-κB activity, and inhibited LPS-induced activation of NF-κB. Inhibiting DCUN1D1 ameliorates periodontitis by suppressing NF-κB signaling.


Asunto(s)
Interleucina-6 , Lipopolisacáridos , FN-kappa B , Periodontitis , Transducción de Señal , Factor de Necrosis Tumoral alfa , FN-kappa B/metabolismo , Periodontitis/metabolismo , Humanos , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , ARN Interferente Pequeño , Fibroblastos/metabolismo , Encía/metabolismo , Western Blotting , Células Cultivadas , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Ensayo de Inmunoadsorción Enzimática
20.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891804

RESUMEN

The periodontium comprising periodontal ligament (PDL), gingiva, and epithelium play crucial roles in maintaining tooth integrity and function. Understanding tissue cellular composition and gene expression is crucial for illuminating periodontal pathophysiology. This study aimed to identify tissue-specific markers via scRNA-Seq. Primary human PDL, gingiva, and epithelium tissues (n = 7) were subjected to cell hashing and sorting. scRNA-Seq library preparation using 10× Genomics protocol and Illumina sequencing was conducted. The analysis was performed using Cellranger (v3.1.0), with downstream analysis via R packages Seurat (v5.0.1) and SCORPIUS (v1.0.9). Investigations identified eight distinct cellular clusters, revealing the ubiquitous presence of epithelial and gingival cells. PDL cells evolved in two clusters with numerical superiority. The other clusters showed varied predominance regarding gingival and epithelial cells or an equitable distribution of both. The cluster harboring most cells mainly consisted of PDL cells and was present in all donors. Some of the other clusters were also tissue-inherent, while the presence of others was environmentally influenced, revealing variability across donors. Two clusters exhibited genetic profiles associated with tissue development and cellular integrity, respectively, while all other clusters were distinguished by genes characteristic of immune responses. Developmental trajectory analysis uncovered that PDL cells may develop after epithelial and gingival cells, suggesting the inherent PDL cell-dominated cluster as a final developmental stage. This single-cell RNA sequencing study delineates the hierarchical organization of periodontal tissue development, identifies tissue-specific markers, and reveals the influence of environmental factors on cellular composition, advancing our understanding of periodontal biology and offering potential insights for therapeutic interventions.


Asunto(s)
Encía , Ligamento Periodontal , Análisis de la Célula Individual , Transcriptoma , Humanos , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Encía/metabolismo , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Perfilación de la Expresión Génica , Epitelio/metabolismo , Células Epiteliales/metabolismo , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA