RESUMEN
MOTIVATION: Many diseases, particularly cardiometabolic disorders, exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with intermediate endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. RESULTS: Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between diseases and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and heart failure. Triglycerides, another blood lipid with known genetic causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. This work demonstrates how association with clinical biomarkers can better explain the shared genetics between cardiometabolic disorders. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities. AVAILABILITY AND IMPLEMENTATION: The generated ssDDN+ can be explored at https://hdpm.biomedinfolab.com/ddn/biomarkerDDN.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Endofenotipos , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades Cardiovasculares/genética , Biomarcadores , Polimorfismo de Nucleótido Simple , Predisposición Genética a la EnfermedadRESUMEN
A primary goal of psychiatry is to better understand the pathways that link genetic risk to psychiatric symptoms. Here, we tested association of diagnosis and endophenotypes with overall and neurotransmitter pathway-specific polygenic risk in patients with early-stage psychosis. Subjects included 205 demographically diverse cases with a psychotic disorder who underwent comprehensive psychiatric and neurological phenotyping and 115 matched controls. Following genotyping, we calculated polygenic scores (PGSs) for schizophrenia (SZ) and bipolar disorder (BP) using Psychiatric Genomics Consortium GWAS summary statistics. To test if overall genetic risk can be partitioned into affected neurotransmitter pathways, we calculated pathway PGSs (pPGSs) for SZ risk affecting each of four major neurotransmitter systems: glutamate, GABA, dopamine, and serotonin. Psychosis subjects had elevated SZ PGS versus controls; cases with SZ or BP diagnoses had stronger SZ or BP risk, respectively. There was no significant association within psychosis cases between individual symptom measures and overall PGS. However, neurotransmitter-specific pPGSs were moderately associated with specific endophenotypes; notably, glutamate was associated with SZ diagnosis and with deficits in cognitive control during task-based fMRI, while dopamine was associated with global functioning. Finally, unbiased endophenotype-driven clustering identified three diagnostically mixed case groups that separated on primary deficits of positive symptoms, negative symptoms, global functioning, and cognitive control. All clusters showed strong genome-wide risk. Cluster 2, characterized by deficits in cognitive control and negative symptoms, additionally showed specific risk concentrated in glutamatergic and GABAergic pathways. Due to the intensive characterization of our subjects, the present study was limited to a relatively small cohort. As such, results should be followed up with additional research at the population and mechanism level. Our study suggests pathway-based PGS analysis may be a powerful path forward to study genetic mechanisms driving psychiatric endophenotypes.
Asunto(s)
Trastorno Bipolar , Endofenotipos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Neurotransmisores , Trastornos Psicóticos , Esquizofrenia , Humanos , Femenino , Masculino , Herencia Multifactorial/genética , Trastornos Psicóticos/genética , Trastornos Psicóticos/fisiopatología , Adulto , Trastorno Bipolar/genética , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Neurotransmisores/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad/genética , Ácido Glutámico/metabolismo , Dopamina/metabolismo , Estudios de Casos y Controles , Adulto Joven , Genotipo , Imagen por Resonancia Magnética/métodos , Factores de RiesgoRESUMEN
Glaucoma and Alzheimer's disease are critical degenerative neuropathies with global impact. Previous studies have indicated that glaucomatous damage could extend beyond ocular structures, leading to brain alterations potentially associated with Alzheimer's disease risk. This study aimed to explore the causal associations among glaucoma, brain alterations, and Alzheimer's disease. We conducted a comprehensive investigation into the genetic correlation and causality between glaucoma, glaucoma endophenotypes, cerebral cortical surficial area and thickness, and Alzheimer's disease (including late-onset Alzheimer's disease, cognitive performance, and reaction time) using linkage disequilibrium score regression and Mendelian randomization. This study showed suggestive genetic correlations between glaucoma, cortical structures, and Alzheimer's disease. The genetically predicted all-caused glaucoma was nominally associated with a decreased risk of Alzheimer's disease (OR = 0.96, 95% CI: 0.93-0.99, P = 0.013). We found evidence for suggestive causality between glaucoma (endophenotypes) and 20 cortical regions and between 29 cortical regions and Alzheimer's disease (endophenotypes). Four cortical regions were causally associated with cognitive performance or reaction time at a significant threshold (P < 6.2E-04). Thirteen shared cortical regions between glaucoma (endophenotypes) and Alzheimer's disease (endophenotypes) were identified. Our findings complex causal relationships among glaucoma, cerebral cortical structures, and Alzheimer's disease. More studies are required to clarify the mediation effect of cortical alterations in the relationship between glaucoma and Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Glaucoma , Análisis de la Aleatorización Mendeliana , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Glaucoma/genética , Corteza Cerebral/patología , Femenino , Masculino , Anciano , Predisposición Genética a la Enfermedad/genética , Endofenotipos , Polimorfismo de Nucleótido SimpleRESUMEN
microRNAs (miRNAs) have a broad influence on gene expression; however, we have limited insights into their contribution to rate of cognitive decline over time or Alzheimer's disease (AD). Given this, we tested associations of 528 miRNAs with cognitive trajectory, AD hallmark pathologies, and AD clinical diagnosis using small RNA sequencing from the dorsolateral prefrontal cortex of 641 community-based donors. We found 311 miRNAs differentially expressed in AD or its endophenotypes after adjusting for technical and sociodemographic variables. Among these, 137 miRNAs remained differentially expressed after additionally adjusting for several co-occurring age-related cerebral pathologies, suggesting that some miRNAs are associated with the traits through co-occurring pathologies while others through mechanisms independent from pathologies. Pathway enrichment analysis of downstream targets of these differentially expressed miRNAs found enrichment in transcription, postsynaptic signalling, cellular senescence, and lipoproteins. In sex-stratified analyses, five miRNAs showed sex-biased differential expression for one or more AD endophenotypes, highlighting the role that sex has in AD. Lastly, we used Mendelian randomization to test whether the identified differentially expressed miRNAs contribute to the cause or are the consequence of the traits. Remarkably, 15 differentially expressed miRNAs had evidence consistent with a causal role, laying the groundwork for future mechanistic studies of miRNAs in AD and its endophenotypes.
Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Femenino , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cognición/fisiología , Persona de Mediana Edad , Análisis de la Aleatorización Mendeliana , Corteza Prefontal Dorsolateral/metabolismo , EndofenotiposRESUMEN
Primary open-angle glaucoma (POAG) is a widespread condition responsible for irreversible blindness, and its prevalence is expected to increase substantially in the coming decades. Despite its significance, the exact cause of POAG remains elusive, necessitating a comprehensive exploration of its pathogenesis. Emerging research suggests a potential link between alterations in gut microbiota composition and POAG. However, establishing causality in these associations remains a challenge. In this study, we employed Mendelian randomization (MR) analysis to investigate the potential causal relationships between gut microbiota (GM) and POAG. Significant bacteria taxa were further analyzed with POAG endophenotypes. We utilized data from genome-wide association studies (GWAS) for GM and POAG, as well as for glaucoma endophenotypes, including intraocular pressure (IOP), retinal nerve fiber layer (RNFL) thickness, vertical cup-to-disc ratio (VCDR), and central corneal thickness (CCT). Univariable, multivariable MR and mediation effect analysis were conducted. Our analysis revealed that certain taxa, including phylum Euryarchaeota, genus Odoribacter, Rumnicoccaceae UCG009, Ruminiclostridium9, unknown genus id.2071, and Eubacterium rectale group, were associated with an increased risk of POAG. On the other hand, family Victivallaceae, Lacchnospiraceae, genus Lachnoclostridium, Oscillospira, Ruminococcaceae UCG011, Alloprevotella, and Faecalibacterium were found to be associated with a decreased risk of POAG. Furthermore, some of these taxa were found to be connected to glaucoma endophenotypes. Through further multivariable MR analysis, it was determined that IOP, VCDR, and CCT might played mediating roles between GM and POAG. In conclusion, this study utilizes MR analysis to elucidate potential causal associations between GM and POAG, providing insights into specific GM taxa that influence POAG risk and related endophenotypes. These findings emphasize the potential role of the gut microbiota in the pathogenesis of POAG and pave the way for future research and therapeutic interventions.
Asunto(s)
Microbioma Gastrointestinal , Glaucoma de Ángulo Abierto , Humanos , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Endofenotipos , Estudio de Asociación del Genoma Completo , Análisis de Mediación , Análisis de la Aleatorización MendelianaRESUMEN
Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.
Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo/métodos , Esquizofrenia/genética , Función Ejecutiva , Herencia Multifactorial/genética , Endofenotipos , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genéticaRESUMEN
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Asunto(s)
Enfermedad de Alzheimer , Endofenotipos , Proteómica , Enfermedad de Alzheimer/metabolismo , Humanos , Proteómica/métodos , Animales , Ratones , Ratones Transgénicos , Biomarcadores/metabolismo , Proteoma/metabolismo , Enfermedades Vasculares/metabolismoRESUMEN
BACKGROUND: Neurological soft signs (NSSs), minor physical anomalies (MPAs), and oculomotor abnormalities were plausible biomarkers in bipolar disorder (BD). However, specific impairments in these markers in patients after the first episode mania (FEM), in comparison with first-degree relatives (high risk [HR]) of BD and healthy subjects (health control [HC]) are sparse. AIM OF THE STUDY: This study aimed at examining NSSs, MPAs, and oculomotor abnormalities in remitted adult subjects following FEM and HR subjects in comparison with matched healthy controls. Investigated when taken together, could serve as composite endophenotype for BD. METHODS: NSSs, MPAs, and oculomotor abnormalities were evaluated in FEM (n = 31), HR (n = 31), and HC (n = 30) subjects, matched for age (years) (p = 0.44) and sex (p = 0.70) using neurological evaluation scale, Waldrop's physical anomaly scale and eye tracking (SPEM) and antisaccades (AS) paradigms, respectively. RESULTS: Significant differences were found between groups on NSSs, MPAs, and oculomotor parameters. Abnormalities are higher in FEM subjects compared to HR and HC subjects. Using linear discriminant analysis, all 3 markers combined accurately classified 72% of the original 82 subjects (79·2% BD, 56·70% HR, and 82·1% HC subjects). CONCLUSIONS: AS and SPEM could enhance the utility of NSSs, and MPAs as markers for BD. The presence of these abnormalities in FEM suggests their role in understanding the etiopathogenesis of BD in patients who are in the early course of illness. These have the potential to be composite endophenotypes and have further utility in early identification in BD.
Eye movement abnormalities and Atypical Neurodevelopmental markers as Composite Measurable components in the pathway between disease manifestation and genetics in Bipolar I Disorder.
Asunto(s)
Trastorno Bipolar , Endofenotipos , Humanos , Masculino , Femenino , Trastorno Bipolar/fisiopatología , Adulto , Trastornos de la Motilidad Ocular/fisiopatología , Adulto Joven , Persona de Mediana Edad , Tecnología de Seguimiento OcularRESUMEN
Autism spectrum disorders (ASDs) are characterized by a deficit in social communication, pathologic repetitive behaviors, restricted interests, and electroencephalogram (EEG) aberrations. While exhaustive analysis of nuclear DNA (nDNA) variation has revealed hundreds of copy number variants (CNVs) and loss-of-function (LOF) mutations, no unifying hypothesis as to the pathophysiology of ASD has yet emerged. Based on biochemical and physiological analyses, it has been hypothesized that ASD may be the result of a systemic mitochondrial deficiency with brain-specific manifestations. This proposal has been supported by recent mitochondrial DNA (mtDNA) analyses identifying both germline and somatic mtDNA variants in ASD. If mitochondrial defects do predispose to ASD, then mice with certain mtDNA mutations should present with autism endophenotypes. To test this prediction, we examined a mouse strain harboring an mtDNA ND6 gene missense mutation (P25L). This mouse manifests impaired social interactions, increased repetitive behaviors and anxiety, EEG alterations, and a decreased seizure threshold, in the absence of reduced hippocampal interneuron numbers. EEG aberrations were most pronounced in the cortex followed by the hippocampus. Aberrations in mitochondrial respiratory function and reactive oxygen species (ROS) levels were also most pronounced in the cortex followed by the hippocampus, but absent in the olfactory bulb. These data demonstrate that mild systemic mitochondrial defects can result in ASD without apparent neuroanatomical defects and that systemic mitochondrial mutations can cause tissue-specific brain defects accompanied by regional neurophysiological alterations.
Asunto(s)
Trastorno Autístico/genética , Encéfalo/metabolismo , ADN Mitocondrial/genética , Mitocondrias/genética , Animales , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Variaciones en el Número de Copia de ADN/genética , Modelos Animales de Enfermedad , Electroencefalografía , Endofenotipos , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Mitocondrias/patología , Mutación/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
AIM: Despite the emphasis on sensory dysfunction phenotypes in the revised diagnostic criteria for autism spectrum disorder (ASD), there has been limited research, particularly in the field of neurobiology, investigating the concordance in sensory features between individuals with ASD and their genetic relatives. Therefore, our objective was to examine whether neurobehavioral sensory patterns could serve as endophenotypic markers for ASD. METHODS: We combined questionnaire- and lab-based sensory evaluations with sensory fMRI measures to examine the patterns of sensory responsivity in 30 clinically diagnosed with ASD, 26 matched controls (CON), and 48 biological parents for both groups (27 parents of individuals with ASD [P-ASD] and 21 for individuals with CON [P-CON]). RESULTS: The ASD and P-ASD groups had higher sensory responsivity and rated sensory stimuli as more unpleasant than the CON and P-CON groups, respectively. They also exhibited greater hemodynamic responses within the sensory cortices. Overlapping activations were observed within these sensory cortices in the ASD and P-ASD groups. Using a machine learning approach with robust prediction models across cohorts, we demonstrated that the sensory profile of biological parents accurately predicted the likelihood of their offspring having ASD, achieving a prediction accuracy of 71.4%. CONCLUSIONS: These findings provide support for the hereditary basis of sensory alterations in ASD and suggest a potential avenue to improve ASD diagnosis by utilizing the sensory signature of biological parents, especially in families with a high risk of ASD. This approach holds promising prospects for early detection, even before the birth of the offspring.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Padres , Encuestas y Cuestionarios , EndofenotiposRESUMEN
AIM: Blunted niacin response (BNR) was an endophenotype of schizophrenia, but the underlying mechanism remains unclarified. The objective of this study was to verify whether genes associated with BNR pathway constitute the genetic basis and the pathological mechanism of BNR phenotypic psychiatric patients. METHODS: Two independent sample sets consisting of 971 subjects were enrolled in this study. A total of 62 variants were genotyped in the discovery set, then the related variants were verified in the verification set. The published PGC GWAS data were used to validate the associations between the variants and psychiatry disorders. RT-PCR analysis, eQTL data, and Dual-Luciferase Reporter experiment were used to investigate the potential molecular mechanisms of the variants underlying BNR. RESULTS: The results showed that two SNPs, rs56959712 in HCAR2 and rs2454721 in HCAR3 were significantly associated with niacin response. The risk allele T of rs2454721 could affect the niacin responses of psychiatric patients through elevated HCAR3 gene expression. These two genes, especially HCAR3, were significantly associated with the risk of schizophrenia, as identified in this study and verified using the published GWAS data. CONCLUSION: HCAR3 is a novel schizophrenia susceptibility gene which is significantly associated with blunted niacin response in schizophrenia. In-depth investigation of HCAR3 is of great significance for uncovering the pathogenesis and propose new therapeutic targets for psychiatric disorders, especially for the BNR subgroup patients.
Asunto(s)
Niacina , Receptores Nicotínicos , Esquizofrenia , Humanos , Niacina/farmacología , Niacina/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Endofenotipos , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Receptores Nicotínicos/genética , Receptores Nicotínicos/uso terapéutico , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/uso terapéuticoRESUMEN
INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Endofenotipos , Predisposición Genética a la Enfermedad/genética , Cognición , Trastornos de la Memoria/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
INTRODUCTION: The molecular mechanisms that contribute to sex differences, in particular female predominance, in Alzheimer's disease (AD) prevalence, symptomology, and pathology, are incompletely understood. METHODS: To address this problem, we investigated cellular metabolism and immune responses ("immunometabolism endophenotype") across AD individuals as a function of sex with diverse clinical diagnosis of cognitive status at death (cogdx), Braak staging, and Consortium to Establish a Registry for AD (CERAD) scores using human cortex metabolomics and transcriptomics data from the Religious Orders Study / Memory and Aging Project (ROSMAP) cohort. RESULTS: We identified sex-specific metabolites, immune and metabolic genes, and pathways associated with the AD diagnosis and progression. We identified female-specific elevation in glycerophosphorylcholine and N-acetylglutamate, which are AD inflammatory metabolites involved in interleukin (IL)-17 signaling, C-type lectin receptor, interferon signaling, and Toll-like receptor pathways. We pinpointed distinct microglia-specific immunometabolism endophenotypes (i.e., lipid- and amino acid-specific IL-10 and IL-17 signaling pathways) between female and male AD subjects. In addition, female AD subjects showed evidence of diminished excitatory neuron and microglia communications via glutamate-mediated immunometabolism. DISCUSSION: Our results point to new understanding of the molecular basis for female predominance in AD, and warrant future independent validations with ethnically diverse patient cohorts to establish a likely causal relationship of microglial immunometabolism in the sex differences in AD. HIGHLIGHTS: Sex-specific immune metabolites, gene networks and pathways, are associated with Alzheimer's disease pathogenesis and disease progression. Female AD subjects exhibit microglial immunometabolism endophenotypes characterized by decreased glutamate metabolism and elevated interleukin-10 pathway activity. Female AD subjects showed a shift in glutamate-mediated cell-cell communications between excitatory neurons to microglia and astrocyte.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Femenino , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Endofenotipos , Caracteres Sexuales , Glutamatos/genética , Glutamatos/metabolismoRESUMEN
INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Endofenotipos , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Femenino , Masculino , Proteínas tau/líquido cefalorraquídeo , Anciano , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Predisposición Genética a la Enfermedad , Persona de Mediana Edad , Imagen por Resonancia Magnética , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagenRESUMEN
Maternal infections are among the main risk factors for cognitive impairments in the offspring. Zika virus (ZIKV) can be transmitted vertically, causing a set of heterogeneous birth defects, such as microcephaly, ventriculomegaly and corpus callosum dysgenesis. Nuclear distribution element like-1 (Ndel1) oligopeptidase controls crucial aspects of cerebral cortex development underlying cortical malformations. Here, we examine Ndel1 activity in an animal model for ZIKV infection, which was associated with deregulated corticogenesis. We observed here a reduction in Ndel1 activity in the forebrain associated with the congenital syndrome induced by ZIKV isolates, in an in utero and postnatal injections of different inoculum doses in mice models. In addition, we observed a strong correlation between Ndel1 activity and brain size of animals infected by ZIKV, suggesting the potential of this measure as a biomarker for microcephaly. More importantly, the increase of interferon (IFN)-beta signaling, which was used to rescue the ZIKV infection outcomes, also recovered Ndel1 activity to levels similar to those of uninfected healthy control mice, but with no influence on Ndel1 activity in uninfected healthy control animals. Taken together, we demonstrate for the first time here an association of corticogenesis impairments determined by ZIKV infection and the modulation of Ndel1 activity. Although further studies are still necessary to clarify the possible role(s) of Ndel1 activity in the molecular mechanism(s) underlying the congenital syndrome induced by ZIKV, we suggest here the potential of monitoring the Ndel1 activity to predict this pathological condition at early stages of embryos or offspring development, during while the currently employed methods are unable to detect impaired corticogenesis leading to microcephaly. Ndel1 activity may also be possibly used to follow up the positive response to the treatment, such as that employing the IFN-beta that is able to rescue the ZIKV-induced brain injury.
Asunto(s)
Microcefalia , Infección por el Virus Zika , Virus Zika , Animales , Ratones , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/congénito , Infección por el Virus Zika/patología , Endofenotipos , Proteínas PortadorasRESUMEN
The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.
Asunto(s)
Distonía , Trastornos Distónicos , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Endofenotipos , Chaperonas Moleculares/genética , Traumatismos de los Nervios Periféricos/metabolismo , Sustancia Negra/metabolismoRESUMEN
Affective disorders, such as major depression, are frequently associated with metabolic disturbances involving mitochondria. Although dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is known to alter energy metabolism, the precise mechanisms linking stress and metabolic disturbances are not sufficiently understood. We used a mouse model of affective disorders to investigate the impact of a genetic predisposition for extremes in stress reactivity on behavioural and metabolic phenotypes as well as energy metabolism. Adult males of three independent mouse lines selectively bred for high, intermediate or low HPA axis reactivity were tested for exploratory and locomotor activity as well as stress-coping behaviour. Additionally, basal and stress-induced plasma corticosterone levels, body weight, food intake and body composition were measured. At the molecular level, the hippocampal transcriptome was analysed using microarray, serial analysis of gene expression and qRT-PCR. Finally, mitochondrial DNA copy number, damages and mitochondrial respiration were assessed. We found clear effects of the differential stress reactivity on the behavioural, morphometric and metabolic measures. Remarkably, the hyperactive behavioural and neuroendocrine stress-coping style of high-reactivity mice was associated with significant changes in the expression of an extended list of genes involved in energy metabolism and several mitochondrial functions. Yet, only minor changes were found in mitochondrial DNA copy number, damages and respiration. Thus, our findings support a prominent role of glucocorticoids in shaping the major endophenotypes of the stress reactivity mouse model and contribute towards understanding the important role of HPA axis dysregulation and changes in energy metabolism in the pathophysiology of affective disorders.
Asunto(s)
Sistema Hipotálamo-Hipofisario , Estrés Psicológico , Masculino , Ratones , Animales , Sistema Hipotálamo-Hipofisario/metabolismo , Estrés Psicológico/genética , Estrés Psicológico/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Corticosterona , Hipocampo/metabolismo , Endofenotipos , Metabolismo EnergéticoRESUMEN
OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.
Asunto(s)
Contusión Encefálica , Edema Encefálico , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Masculino , Ratones , Teorema de Bayes , Contusión Encefálica/complicaciones , Contusión Encefálica/tratamiento farmacológico , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Endofenotipos , Gliburida/farmacología , Gliburida/uso terapéutico , Imagen por Resonancia Magnética , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Schizophrenia is a heterogeneous disorder with substantial heritability. The use of endophenotypes may help clarify its aetiology. Measures from the smooth pursuit and antisaccade eye movement tasks have been identified as endophenotypes for schizophrenia in twin and family studies. However, the genetic basis of the overlap between schizophrenia and these oculomotor markers is largely unknown. Here, we tested whether schizophrenia polygenic risk scores (PRS) were associated with oculomotor performance in the general population. METHODS: Analyses were based on the data of 2956 participants (aged 30-95) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Genotyping was performed on Omni-2.5 exome arrays. Using summary statistics from a recent meta-analysis based on the two largest schizophrenia genome-wide association studies to date, we quantified genetic risk for schizophrenia by creating PRS at different p value thresholds for genetic markers. We examined associations between PRS and oculomotor performance using multivariable regression models. RESULTS: Higher PRS were associated with higher antisaccade error rate and latency, and lower antisaccade amplitude gain. PRS showed inconsistent patterns of association with smooth pursuit velocity gain and were not associated with saccade rate during smooth pursuit or performance on a prosaccade control task. CONCLUSIONS: There is an overlap between genetic determinants of schizophrenia and oculomotor endophenotypes. Our findings suggest that the mechanisms that underlie schizophrenia also affect oculomotor function in the general population.
Asunto(s)
Movimientos Oculares , Esquizofrenia , Humanos , Esquizofrenia/genética , Endofenotipos , Estudio de Asociación del Genoma Completo , Estudios de Cohortes , Factores de RiesgoRESUMEN
Endophenotypes are heritable and quantifiable traits indexing genetic liability for a disorder. Here, we examined three potential endophenotypes, working memory function, response inhibition, and reaction time variability, for attention-deficit hyperactivity disorder (ADHD) measured as a dimensional latent trait in a large general population sample derived from the Adolescent Brain Cognitive DevelopmentSM Study. The genetic risk for ADHD was estimated using polygenic risk scores (PRS) whereas ADHD traits were quantified as a dimensional continuum using Bartlett factor score estimates, derived from Attention Problems items from the Child Behaviour Checklist and Effortful Control items from the Early Adolescent Temperament Questionnaire-Revised. The three candidate cognitive endophenotypes were quantified using task-based performance measures. Higher ADHD PRSs were associated with higher ADHD traits, as well as poorer working memory performance and increased reaction time variability. Lower working memory performance, poorer response inhibition, and increased reaction time variability were associated with more pronounced ADHD traits. Working memory and reaction time variability partially statistically mediated the relationship between ADHD PRS and ADHD traits, explaining 14% and 16% of the association, respectively. The mediation effect was specific to the genetic risk for ADHD and did not generalise to genetic risk for four other major psychiatric disorders. Together, these findings provide robust evidence from a large general population sample that working memory and reaction time variability can be considered endophenotypes for ADHD that mediate the relationship between ADHD PRS and ADHD traits.