Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2314698120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064509

RESUMEN

Mutations in many visual cycle enzymes in photoreceptors and retinal pigment epithelium (RPE) cells can lead to the chronic accumulation of toxic retinoid byproducts, which poison photoreceptors and the underlying RPE if left unchecked. Without a functional ATP-binding cassette, sub-family A, member 4 (ABCA4), there is an elevation of all-trans-retinal and prolonged buildup of all-trans-retinal adducts, resulting in a retinal degenerative disease known as Stargardt-1 disease. Even in this monogenic disorder, there is significant heterogeneity in the time to onset of symptoms among patients. Using a combination of molecular techniques, we studied Abca4 knockout (simulating human noncoding disease variants) and Abca4 knock-in mice (simulating human misfolded, catalytically inactive protein variants), which serve as models for Stargardt-1 disease. We compared the two strains to ascertain whether they exhibit differential responses to agents that affect cytokine signaling and/or ceramide metabolism, as alterations in either of these pathways can exacerbate retinal degenerative phenotypes. We found different degrees of responsiveness to maraviroc, a known immunomodulatory CCR5 antagonist, and to the ceramide-lowering agent AdipoRon, an agonist of the ADIPOR1 and ADIPOR2 receptors. The two strains also display different degrees of transcriptional deviation from matched WT controls. Our phenotypic comparison of the two distinct Abca4 mutant-mouse models sheds light on potential therapeutic avenues previously unexplored in the treatment of Stargardt disease and provides a surrogate assay for assessing the effectiveness for genome editing.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Ratones , Animales , Enfermedad de Stargardt/metabolismo , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/genética , Degeneración Macular/metabolismo , Retinaldehído/metabolismo , Retina/metabolismo , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Modelos Animales de Enfermedad , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
2.
Hum Mol Genet ; 32(21): 3078-3089, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37555651

RESUMEN

Missense variants in ABCA4 constitute ~50% of causal variants in Stargardt disease (STGD1). Their pathogenicity is attributed to their direct effect on protein function, whilst their potential impact on pre-mRNA splicing disruption remains poorly understood. Interestingly, synonymous ABCA4 variants have previously been classified as 'severe' variants based on in silico analyses. Here, we systemically investigated the role of synonymous and missense variants in ABCA4 splicing by combining computational predictions and experimental assays. To identify variants of interest, we used SpliceAI to ascribe defective splice predictions on a dataset of 5579 biallelic STGD1 probands. We selected those variants with predicted delta scores for acceptor/donor gain > 0.20, and no previous reports on their effect on splicing. Fifteen ABCA4 variants were selected, 4 of which were predicted to create a new splice acceptor site and 11 to create a new splice donor site. In addition, three variants of interest with delta scores < 0.20 were included. The variants were introduced in wild-type midigenes that contained 4-12 kb of ABCA4 genomic sequence, which were subsequently expressed in HEK293T cells. By using RT-PCR and Sanger sequencing, we identified splice aberrations for 16 of 18 analyzed variants. SpliceAI correctly predicted the outcomes for 15 out of 18 variants, illustrating its reliability in predicting the impact of coding ABCA4 variants on splicing. Our findings highlight a causal role for coding ABCA4 variants in splicing aberrations, improving the severity assessment of missense and synonymous ABCA4 variants, and guiding to new treatment strategies for STGD1.


Asunto(s)
Degeneración Macular , Humanos , Enfermedad de Stargardt/genética , Degeneración Macular/genética , Degeneración Macular/metabolismo , Células HEK293 , Reproducibilidad de los Resultados , Mutación , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Empalme de ARN
3.
Am J Hum Genet ; 109(3): 498-507, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120629

RESUMEN

Recurrence risk calculations in autosomal recessive diseases are complicated when the effect of genetic variants and their population frequencies and penetrances are unknown. An example of this is Stargardt disease (STGD1), a frequent recessive retinal disease caused by bi-allelic pathogenic variants in ABCA4. In this cross-sectional study, 1,619 ABCA4 variants from 5,579 individuals with STGD1 were collected and categorized by (1) severity based on statistical comparisons of their frequencies in STGD1-affected individuals versus the general population, (2) their observed versus expected homozygous occurrence in STGD1-affected individuals, (3) their occurrence in combination with established mild alleles in STGD1-affected individuals, and (4) previous functional and clinical studies. We used the sum allele frequencies of these severity categories to estimate recurrence risks for offspring of STGD1-affected individuals and carriers of pathogenic ABCA4 variants. The risk for offspring of an STGD1-affected individual with the "severe|severe" genotype or a "severe|mild with complete penetrance" genotype to develop STGD1 at some moment in life was estimated at 2.8%-3.1% (1 in 36-32 individuals) and 1.6%-1.8% (1 in 62-57 individuals), respectively. The risk to develop STGD1 in childhood was estimated to be 2- to 4-fold lower: 0.68%-0.79% (1 in 148-126) and 0.34%-0.39% (1 in 296-252), respectively. In conclusion, we established personalized recurrence risk calculations for STGD1-affected individuals with different combinations of variants. We thus propose an expanded genotype-based personalized counseling to appreciate the variable recurrence risks for STGD1-affected individuals. This represents a conceptual breakthrough because risk calculations for STGD1 may be exemplary for many other inherited diseases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Asesoramiento Genético , Transportadoras de Casetes de Unión a ATP/genética , Estudios Transversales , Humanos , Mutación , Enfermedad de Stargardt/genética
4.
FASEB J ; 38(11): e23720, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38837708

RESUMEN

Recessive Stargardt disease (STGD1) is an inherited juvenile maculopathy caused by mutations in the ABCA4 gene, for which there is no suitable treatment. Loss of functional ABCA4 in the retinal pigment epithelium (RPE) alone, without contribution from photoreceptor cells, was shown to induce STGD1 pathology. Here, we identified cathepsin D (CatD), the primary RPE lysosomal protease, as a key molecular player contributing to endo-lysosomal dysfunction in STGD1 using a newly developed "disease-in-a-dish" RPE model from confirmed STGD1 patients. Induced pluripotent stem cell (iPSC)-derived RPE originating from three STGD1 patients exhibited elevated lysosomal pH, as previously reported in Abca4-/- mice. CatD protein maturation and activity were impaired in RPE from STGD1 patients and Abca4-/- mice. Consequently, STGD1 RPE cells have reduced photoreceptor outer segment degradation and abnormal accumulation of α-synuclein, the natural substrate of CatD. Furthermore, dysfunctional ABCA4 in STGD1 RPE cells results in intracellular accumulation of autofluorescent material and phosphatidylethanolamine (PE). The altered distribution of PE associated with the internal membranes of STGD1 RPE cells presumably compromises LC3-associated phagocytosis, contributing to delayed endo-lysosomal degradation activity. Drug-mediated re-acidification of lysosomes in the RPE of STGD1 restores CatD functional activity and reduces the accumulation of immature CatD protein loads. This preclinical study validates the contribution of CatD deficiencies to STGD1 pathology and provides evidence for an efficacious therapeutic approach targeting RPE cells. Our findings support a cell-autonomous RPE-driven pathology, informing future research aimed at targeting RPE cells to treat ABCA4-mediated retinopathies.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Catepsina D , Lisosomas , Epitelio Pigmentado de la Retina , Enfermedad de Stargardt , Catepsina D/metabolismo , Catepsina D/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/patología , Enfermedad de Stargardt/genética , Animales , Humanos , Ratones , Lisosomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Noqueados , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética
5.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38243599

RESUMEN

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Empalme del ARN , Humanos , Transportadoras de Casetes de Unión a ATP/genética , Enfermedad de Stargardt/genética , Mutación , Células Fotorreceptoras
6.
PLoS Genet ; 18(3): e1010129, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353811

RESUMEN

Over 1,500 variants in the ABCA4 locus cause phenotypes ranging from severe, early-onset retinal degeneration to very late-onset maculopathies. The resulting ABCA4/Stargardt disease is the most prevalent Mendelian eye disorder, although its underlying clinical heterogeneity, including penetrance of many alleles, are not well-understood. We hypothesized that a share of this complexity is explained by trans-modifiers, i.e., variants in unlinked loci, which are currently unknown. We sought to identify these by performing exome sequencing in a large cohort for a rare disease of 622 cases and compared variation in seven genes known to clinically phenocopy ABCA4 disease to cohorts of ethnically matched controls. We identified a significant enrichment of variants in 2 out of the 7 genes. Moderately rare, likely functional, variants, at the minor allele frequency (MAF) <0.005 and CADD>25, were enriched in ROM1, where 1.3% of 622 patients harbored a ROM1 variant compared to 0.3% of 10,865 controls (p = 2.41E04; OR 3.81 95% CI [1.77; 8.22]). More importantly, analysis of common variants (MAF>0.1) identified a frequent haplotype in PRPH2, tagged by the p.Asp338 variant with MAF = 0.21 in the matched general population that was significantly increased in the patient cohort, MAF 0.25, p = 0.0014. Significant differences were also observed between ABCA4 disease subgroups. In the late-onset subgroup, defined by the hypomorphic p.Asn1868Ile variant and including c.4253+43G>A, the allele frequency for the PRPH2 p.Asp338 variant was 0.15 vs 0.27 in the remaining cohort, p = 0.00057. Known functional data allowed suggesting a mechanism by which the PRPH2 haplotype influences the ABCA4 disease penetrance. These associations were replicated in an independent cohort of 408 patients. The association was highly statistically significant in the combined cohorts of 1,030 cases, p = 4.00E-05 for all patients and p = 0.00014 for the hypomorph subgroup, suggesting a substantial trans-modifying role in ABCA4 disease for both rare and common variants in two unlinked loci.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Degeneración Macular , Transportadoras de Casetes de Unión a ATP/genética , Proteínas del Ojo/genética , Frecuencia de los Genes , Humanos , Degeneración Macular/genética , Mutación , Linaje , Fenotipo , Enfermedad de Stargardt/genética , Tetraspaninas/genética
7.
J Biol Chem ; 299(5): 104614, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931393

RESUMEN

N-retinylidene-phosphatidylethanolamine (N-Ret-PE), the Schiff-base conjugate formed through the reversible reaction of retinal (Vitamin A-aldehyde) and phosphatidylethanolamine, plays a crucial role in the visual cycle and visual pigment photoregeneration. However, N-Ret-PE can react with another molecule of retinal to form toxic di-retinoids if not removed from photoreceptors through its transport across photoreceptor membranes by the ATP-binding-cassette transporter ABCA4. Loss-of-function mutations in ABCA4 are known to cause Stargardt disease (STGD1), an inherited retinal degenerative disease associated with the accumulation of fluorescent di-retinoids and severe loss in vision. A larger assessment of retinal-phospholipid Schiff-base conjugates in photoreceptors is needed, along with further investigation of ABCA4 residues important for N-Ret-PE binding. In this study we show that N-Ret-PE formation is dependent on pH and phospholipid content. When retinal is added to liposomes or photoreceptor membranes, 40 to 60% is converted to N-Ret-PE at physiological pH. Phosphatidylserine and taurine also react with retinal to form N-retinylidene-phosphatidylserine and N-retinylidene-taurine, respectively, but at significantly lower levels. N-retinylidene-phosphatidylserine is not a substrate for ABCA4 and reacts poorly with retinal to form di-retinoids. Additionally, amino acid residues within the binding pocket of ABCA4 that contribute to its interaction with N-Ret-PE were identified and characterized using site-directed mutagenesis together with functional and binding assays. Substitution of arginine residues and hydrophobic residues with alanine or residues implicated in STGD1 significantly reduced or eliminated substrate-activated ATPase activity and substrate binding. Collectively, this study provides important insight into conditions which affect retinal-phospholipid Schiff-base formation and mechanisms underlying the pathogenesis of STGD1.


Asunto(s)
Fosfolípidos , Enfermedad de Stargardt , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Fosfatidilserinas , Retinoides/metabolismo , Enfermedad de Stargardt/metabolismo
8.
J Biol Chem ; 299(5): 104686, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031820

RESUMEN

Dry age-related macular degeneration (AMD) and recessive Stargardt's disease (STGD1) lead to irreversible blindness in humans. The accumulation of all-trans-retinal (atRAL) induced by chaos in visual cycle is closely associated with retinal atrophy in dry AMD and STGD1 but its critical downstream signaling molecules remain ambiguous. Here, we reported that activation of eukaryotic translation initiation factor 2α (eIF2α) by atRAL promoted retinal degeneration and photoreceptor loss through activating c-Jun N-terminal kinase (JNK) signaling-dependent apoptosis and gasdermin E (GSDME)-mediated pyroptosis. We determined that eIF2α activation by atRAL in photoreceptor cells resulted from endoplasmic reticulum homeostasis disruption caused at least in part by reactive oxygen species production, and it activated JNK signaling independent of and dependent on activating transcription factor 4 and the activating transcription factor 4/transcription factor C/EBP homologous protein (CHOP) axis. CHOP overexpression induced apoptosis of atRAL-loaded photoreceptor cells through activating JNK signaling rather than inhibiting the expression of antiapoptotic gene Bcl2. JNK activation by eIF2α facilitated photoreceptor cell apoptosis caused by atRAL via caspase-3 activation and DNA damage. Additionally, we demonstrated that eIF2α was activated in neural retina of light-exposed Abca4-/-Rdh8-/- mice, a model that shows severe defects in atRAL clearance and displays primary features of human dry AMD and STGD1. Of note, inhibition of eIF2α activation by salubrinal effectively ameliorated retinal degeneration and photoreceptor apoptosis in Abca4-/-Rdh8-/- mice upon light exposure. The results of this study suggest that eIF2α is an important target to develop drug therapies for the treatment of dry AMD and STGD1.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Degeneración Retiniana , Retinaldehído , Enfermedad de Stargardt , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/metabolismo , Apoptosis , Transportadoras de Casetes de Unión a ATP/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Retinaldehído/metabolismo , Enfermedad de Stargardt/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo
9.
Gene Ther ; 31(7-8): 413-421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755404

RESUMEN

Degeneration of the macula is associated with several overlapping diseases including age-related macular degeneration (AMD) and Stargardt Disease (STGD). Mutations in ATP Binding Cassette Subfamily A Member 4 (ABCA4) are associated with late-onset dry AMD and early-onset STGD. Additionally, both forms of macular degeneration exhibit deposition of subretinal material and photoreceptor degeneration. Retinoic acid related orphan receptor α (RORA) regulates the AMD inflammation pathway that includes ABCA4, CD59, C3 and C5. In this translational study, we examined the efficacy of RORA at attenuating retinal degeneration and improving the inflammatory response in Abca4 knockout (Abca4-/-) mice. AAV5-hRORA-treated mice showed reduced deposits, restored CD59 expression and attenuated amyloid precursor protein (APP) expression compared with untreated eyes. This molecular rescue correlated with statistically significant improvement in photoreceptor function. This is the first study evaluating the impact of RORA modifier gene therapy on rescuing retinal degeneration. Our studies demonstrate efficacy of RORA in improving STGD and dry AMD-like disease.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Ratones Noqueados , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Degeneración Retiniana , Enfermedad de Stargardt , Animales , Humanos , Ratones , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Atrofia Geográfica/genética , Atrofia Geográfica/metabolismo , Atrofia Geográfica/terapia , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/terapia , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Enfermedad de Stargardt/genética
10.
Ophthalmology ; 131(1): 87-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37598860

RESUMEN

PURPOSE: Late-onset Stargardt disease is a subtype of Stargardt disease type 1 (STGD1), defined by an age of onset of 45 years or older. We describe the disease characteristics, underlying genetics, and disease progression of late-onset STGD1 and highlight the differences from geographic atrophy. DESIGN: Retrospective cohort study. PARTICIPANTS: Seventy-one patients with late-onset STGD1. METHODS: Medical files were reviewed for clinical data including age at onset, initial symptoms, and best-corrected visual acuity. A quantitative and qualitative assessment of retinal pigment epithelium (RPE) atrophy was performed on fundus autofluorescence images and OCT scans. MAIN OUTCOME MEASURES: Age at onset, genotype, visual acuity, atrophy growth rates, and loss of external limiting membrane, ellipsoid zone, and RPE. RESULTS: Median age at onset was 55.0 years (range, 45-82 years). A combination of a mild and severe variant in ATP-binding cassette subfamily A member 4 (ABCA4) was the most common genotype (n = 49 [69.0%]). The most frequent allele, c.5603A→T (p.Asn1868Ile), was present in 43 of 71 patients (60.6%). No combination of 2 severe variants was found. At first presentation, all patients have flecks. Foveal-sparing atrophy was present in 33.3% of eyes, whereas 21.1% had atrophy with foveal involvement. Extrafoveal atrophy was present in 38.9% of eyes, and no atrophy was evident in 6.7% of eyes. Time-to-event curves showed a median duration of 15.4 years (95% confidence interval, 11.1-19.6 years) from onset to foveal involvement. The median visual acuity decline was -0.03 Snellen decimal per year (interquartile range [IQR], -0.07 to 0.00 Snellen decimal; 0.03 logarithm of the minimum angle of resolution). Median atrophy growth was 0.590 mm2/year (IQR, 0.046-1.641 mm2/year) for definitely decreased autofluorescence and 0.650 mm2/year (IQR, 0.299-1.729 mm2/year) for total decreased autofluorescence. CONCLUSIONS: Late-onset STGD1 is a subtype of STGD1 with most commonly 1 severe and 1 mild ABCA4 variant. The general patient presents with typical fundus flecks and retinal atrophy in a foveal-sparing pattern with preserved central vision. Misdiagnosis as age-related macular degeneration should be avoided to prevent futile invasive treatments with potential complications. In addition, correct diagnosis lends patients with late-onset STGD1 the opportunity to participate in potentially beneficial therapeutic trials for STGD1. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Degeneración Retiniana , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Stargardt , Estudios Retrospectivos , Transportadoras de Casetes de Unión a ATP/genética , Electrorretinografía , Tomografía de Coherencia Óptica , Atrofia , Progresión de la Enfermedad , Angiografía con Fluoresceína
11.
Pharm Res ; 41(4): 807-817, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443629

RESUMEN

OBJECTIVE: Current gene therapy of inherited retinal diseases is achieved mainly by subretinal injection, which is invasive with severe adverse effects. Intravitreal injection is a minimally invasive alternative for gene therapy of inherited retinal diseases. This work explores the efficacy of intravitreal delivery of PEGylated ECO (a multifunctional pH-sensitive amphiphilic amino lipid) plasmid DNA (pGRK1-ABCA4-S/MAR) nanoparticles (PEG-ELNP) for gene therapy of Stargardt disease. METHODS: Pigmented Abca4-/- knockout mice received 1 µL of PEG-ELNP solution (200 ng/uL, pDNA concentration) by intravitreal injections at an interval of 1.5 months. The expression of ABCA4 in the retina was determined by RT-PCR and immunohistochemistry at 6 months after the second injection. A2E levels in the treated eyes and untreated controls were determined by HPLC. The safety of treatment was monitored by scanning laser ophthalmoscopy and electroretinogram (ERG). RESULTS: PEG-ELNP resulted in significant ABCA4 expression at both mRNA level and protein level at]6 months after 2 intravitreal injections, and a 40% A2E accumulation reduction compared with non-treated controls. The PEG-ELNP also demonstrated excellent safety as shown by scanning laser ophthalmoscopy, and the eye function evaluation from electroretinogram. CONCLUSIONS: Intravitreal delivery of the PEG-ELNP of pGRK1-ABCA4-S/MAR is a promising approach for gene therapy of Stargardt Disease, which can also be a delivery platform for gene therapy of other inherited retinal diseases.


Asunto(s)
Nanopartículas , Retina , Ratones , Animales , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/terapia , Retina/metabolismo , Terapia Genética/métodos , Plásmidos/genética , ADN/metabolismo , Ratones Noqueados , Polietilenglicoles/metabolismo , Inyecciones Intravítreas , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
12.
Retina ; 44(8): 1403-1412, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484106

RESUMEN

PURPOSE: To investigate the temporal sequence of changes in the photoreceptor cell mosaic in patients with Stargardt disease type 1, using adaptive optics scanning laser ophthalmoscopy. METHODS: Two brothers with genetically confirmed Stargardt disease type 1 underwent comprehensive eye exams, spectral-domain optical coherence tomography, fundus autofluorescence, and adaptive optics scanning laser ophthalmoscopy imaging 3 times over the course of 28 months. Confocal images of the cones and rods were obtained from the central fovea to 10° inferiorly. Photoreceptors were counted in sampling windows at 100- µ m intervals of 200 µ m × 200 µ m for cones and 50 µ m × 50 µ m for rods, using custom cell marking software with manual correction. Photoreceptor density and spacing were measured and compared across imaging sessions using one-way analysis of variance. RESULTS: Adaptive optics scanning laser ophthalmoscopy revealed the younger brother had a 30% decline in foveal cone density after 8 months, followed by complete loss of foveal cones at 28 months; the older brother had no detectable foveal cones at baseline. In the peripheral macula, cone and rod spacings were greater than normal in both patients. The ratio of the cone spacing to rod spacing was greater than normal across all eccentricities, with a greater divergence closer to the foveal center. CONCLUSION: Cone cell loss may be an early pathogenetic step in Stargardt disease. Adaptive optics scanning laser ophthalmoscopy provides the capability to track individual photoreceptor changes longitudinally in Stargardt disease.


Asunto(s)
Degeneración Macular , Oftalmoscopía , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Enfermedad de Stargardt , Tomografía de Coherencia Óptica , Humanos , Oftalmoscopía/métodos , Células Fotorreceptoras Retinianas Conos/patología , Masculino , Tomografía de Coherencia Óptica/métodos , Células Fotorreceptoras Retinianas Bastones/patología , Degeneración Macular/congénito , Degeneración Macular/diagnóstico , Degeneración Macular/genética , Agudeza Visual , Adulto , Angiografía con Fluoresceína/métodos , Recuento de Células , Adolescente
13.
Ophthalmic Res ; 67(1): 435-447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39004077

RESUMEN

INTRODUCTION: The aim of this study was to evaluate the progression of atrophy as determined by spectral-domain optical coherence tomography (SD-OCT) in patients with molecularly confirmed ABCA4-associated Stargardt disease type 1 (STGD1) over a 24-month period in a multicenter prospective cohort study. METHODS: SD-OCT images from 428 eyes of 236 patients were analyzed. Change of mean thickness (MT) and intact area were estimated after semiautomated segmentation for the following individual layers in the central subfield (CS), inner ring (IR), and outer ring (OR) of the ETDRS grid: retinal pigment epithelium (RPE), outer segments (OSs), inner segments (IS), outer nuclear layer (ONL) inner retina (IR), and total retina. RESULTS: Statistically significant decreases of all outer retinal layers (RPE, OS, IS, and ONL) could be observed over a 24-month period both in decline of mean retinal thickness and intact area (p < 0.0001, respectively), whereas the IR showed an increase of retinal thickness in the CS and IR and remained unchanged in the OR. CONCLUSIONS: Significant loss could be detected in outer retinal layers by SD-OCT over a 24-month period in patients with STGD1. Loss of thickness and/or intact area of such layers may serve as potential endpoints for clinical trials that aim to slow down the disease progression of STGD1.


Asunto(s)
Progresión de la Enfermedad , Degeneración Macular , Epitelio Pigmentado de la Retina , Enfermedad de Stargardt , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Tomografía de Coherencia Óptica/métodos , Enfermedad de Stargardt/diagnóstico , Masculino , Estudios Prospectivos , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Degeneración Macular/diagnóstico , Degeneración Macular/congénito , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Adolescente , Estudios de Seguimiento , Retina/diagnóstico por imagen , Retina/patología , Niño
14.
J Biol Chem ; 298(2): 101553, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34973334

RESUMEN

The breakdown of all-trans-retinal (atRAL) clearance is closely associated with photoreceptor cell death in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its mechanisms remain elusive. Here, we demonstrate that activation of gasdermin E (GSDME) but not gasdermin D promotes atRAL-induced photoreceptor damage by activating pyroptosis and aggravating apoptosis through a mitochondria-mediated caspase-3-dependent signaling pathway. Activation of c-Jun N-terminal kinase was identified as one of the major causes of mitochondrial membrane rupture in atRAL-loaded photoreceptor cells, resulting in the release of cytochrome c from mitochondria to the cytosol, where it stimulated caspase-3 activation required for cleavage of GSDME. Aggregation of the N-terminal fragment of GSDME in the mitochondria revealed that GSDME was likely to penetrate mitochondrial membranes in photoreceptor cells after atRAL exposure. ABC (subfamily A, member 4) and all-trans-retinol dehydrogenase 8 are two key proteins responsible for clearing atRAL in the retina. Abca4-/-Rdh8-/- mice exhibit serious defects in atRAL clearance upon light exposure and serve as an acute model for dry AMD and STGD1. We found that N-terminal fragment of GSDME was distinctly localized in the photoreceptor outer nuclear layer of light-exposed Abca4-/-Rdh8-/- mice. Of note, degeneration and caspase-3 activation in photoreceptors were significantly alleviated in Abca4-/-Rdh8-/-Gsdme-/- mice after exposure to light. The results of this study indicate that GSDME is a common causative factor of photoreceptor pyroptosis and apoptosis arising from atRAL overload, suggesting that repressing GSDME may represent a potential treatment of photoreceptor atrophy in dry AMD and STGD1.


Asunto(s)
Células Fotorreceptoras , Proteínas Citotóxicas Formadoras de Poros , Retina , Retinaldehído , Enfermedad de Stargardt , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Caspasa 3/metabolismo , Ratones , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retina/metabolismo , Retina/patología , Retinaldehído/metabolismo , Enfermedad de Stargardt/metabolismo , Enfermedad de Stargardt/patología
15.
Hum Mol Genet ; 30(14): 1293-1304, 2021 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-33909047

RESUMEN

Over 1200 variants in the ABCA4 gene cause a wide variety of retinal disease phenotypes, the best known of which is autosomal recessive Stargardt disease (STGD1). Disease-causing variation encompasses all mutation categories, from large copy number variants to very mild, hypomorphic missense variants. The most prevalent disease-causing ABCA4 variant, present in ~ 20% of cases of European descent, c.5882G > A p.(Gly1961Glu), has been a subject of controversy since its minor allele frequency (MAF) is as high as ~ 0.1 in certain populations, questioning its pathogenicity, especially in homozygous individuals. We sequenced the entire ~140Kb ABCA4 genomic locus in an extensive cohort of 644 bi-allelic, i.e. genetically confirmed, patients with ABCA4 disease and analyzed all variants in 140 compound heterozygous and 10 homozygous cases for the p.(Gly1961Glu) variant. A total of 23 patients in this cohort additionally harbored the deep intronic c.769-784C > T variant on the p.(Gly1961Glu) allele, which appears on a specific haplotype in ~ 15% of p.(Gly1961Glu) alleles. This haplotype was present in 5/7 of homozygous cases, where the p.(Gly1961Glu) was the only known pathogenic variant. Three cases had an exonic variant on the same allele with the p.(Gly1961Glu). Patients with the c.[769-784C > T;5882G > A] complex allele exhibit a more severe clinical phenotype, as seen in compound heterozygotes with some more frequent ABCA4 mutations, e.g. p.(Pro1380Leu). Our findings indicate that the c.769-784C > T variant is major cis-acting modifier of the p.(Gly1961Glu) allele. The absence of such additional allelic variation on most p.(Gly1961Glu) alleles largely explains the observed paucity of affected homozygotes in the population.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Alelos , Frecuencia de los Genes , Humanos , Mutación , Penetrancia , Fenotipo , Enfermedad de Stargardt/genética
16.
J Transl Med ; 21(1): 546, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587475

RESUMEN

BACKGROUND: ABCA4, the gene implicated in Stargardt disease (STGD1), contains 50 exons, of which 17 contain multiples of three nucleotides. The impact of in-frame exon skipping is yet to be determined. Antisense oligonucleotides (AONs) have been investigated in Usher syndrome-associated genes to induce skipping of in-frame exons carrying severe variants and mitigate their disease-linked effect. Upon the identification of a STGD1 proband carrying a novel exon 17 canonical splice site variant, the activity of ABCA4 lacking 22 amino acids encoded by exon 17 was examined, followed by design of AONs able to induce exon 17 skipping. METHODS: A STGD1 proband was compound heterozygous for the splice variant c.2653+1G>A, that was predicted to result in in-frame skipping of exon 17, and a null variant [c.735T>G, p.(Tyr245*)]. Clinical characteristics of this proband were studied using multi-modal imaging and complete ophthalmological examination. The aberrant splicing of c.2653+1G>A was investigated in vitro in HEK293T cells with wild-type and mutant midigenes. The residual activity of the mutant ABCA4 protein lacking Asp864-Gly885 encoded by exon 17 was analyzed with all-trans-retinal-activated ATPase activity assay, along with its subcellular localization. To induce exon 17 skipping, the effect of 40 AONs was examined in vitro in WT WERI-Rb-1 cells and 3D human retinal organoids. RESULTS: Late onset STGD1 in the proband suggests that c.2653+1G>A does not have a fully deleterious effect. The in vitro splice assay confirmed that this variant leads to ABCA4 transcripts without exon 17. ABCA4 Asp864_Gly863del was stable and retained 58% all-trans-retinal-activated ATPase activity compared to WT ABCA4. This sequence is located in an unstructured linker region between transmembrane domain 6 and nucleotide-binding domain-1 of ABCA4. AONs were designed to possibly reduce pathogenicity of severe variants harbored in exon 17. The best AON achieved 59% of exon 17 skipping in retinal organoids. CONCLUSIONS: Exon 17 deletion in ABCA4 does not result in the absence of protein activity and does not cause a severe STGD1 phenotype when in trans with a null allele. By applying AONs, the effect of severe variants in exon 17 can potentially be ameliorated by exon skipping, thus generating partial ABCA4 activity in STGD1 patients.


Asunto(s)
Adenosina Trifosfatasas , Retinaldehído , Humanos , Enfermedad de Stargardt/genética , Células HEK293 , Exones/genética , Proteínas Mutantes , Transportadoras de Casetes de Unión a ATP/genética
17.
Mol Vis ; 29: 217-233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222458

RESUMEN

Purpose: The retina-specific ABCA transporter, ABCA4, plays an essential role in translocating retinoids required by the visual cycle. ABCA4 genetic variants are known to cause a wide range of inherited retinal disorders, including Stargardt disease and cone-rod dystrophy. More than 1,400 ABCA4 missense variants have been identified; however, more than half of these remain variants of uncertain significance (VUS). The purpose of this study was to employ a predictive strategy to assess the pathogenicity of ABCA4 variants in inherited retinal diseases using protein modeling and computational approaches. Methods: We studied 13 clinically well-defined patients with ABCA4 retinopathies and identified the presence of 10 missense variants, including one novel variant in the ABCA4 gene, by next-generation sequencing (NGS). All variants were structurally analyzed using AlphaFold2 models and existing experimental structures of human ABCA4 protein. The results of these analyses were compared with patient clinical presentations to test the effectiveness of the methods employed in predicting variant pathogenicity. Results: We conducted a phenotype-genotype comparison of 13 genetically and phenotypically well-defined retinal disease patients. The in silico protein structure analyses we employed successfully detected the deleterious effect of missense variants found in this affected patient cohort. Our study provides American College of Medical Genetics and Genomics (ACMG)-defined supporting evidence of the pathogenicity of nine missense ABCA4 variants, aligning with the observed clinical phenotypes in this cohort. Conclusions: In this report, we describe a systematic approach to predicting the pathogenicity of ABCA4 variants by means of three-dimensional (3D) protein modeling and in silico structure analysis. Our results demonstrate concordance between disease severity and structural changes in protein models induced by genetic variations. Furthermore, the present study suggests that in silico protein structure analysis can be used as a predictor of pathogenicity and may facilitate the assessment of genetic VUS.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Retina , Humanos , Mutación/genética , Virulencia , Linaje , Retina/metabolismo , Enfermedad de Stargardt/genética , Fenotipo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
18.
Curr Opin Ophthalmol ; 34(3): 203-210, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36943473

RESUMEN

PURPOSE OF REVIEW: Intravitreal and periocular injections for retinal disease provide a targeted delivery of medication to the eye. However, given risks of injections, including endophthalmitis, pain and treatment burden for both patients and retina specialists, there has been significant interest and effort in developing oral medications for the management of retinal disease. This article provides clinical and preclinical details of new oral medications in the pipeline for management of retinal disease. RECENT FINDINGS: Several new oral medications show clinical and preclinical promise for the management of retinal disease, including macular degeneration, diabetic retinopathy and Stargardt disease. SUMMARY: Oral medications provide promise for treating retinal disease, possibly increasing compliance, and reducing side effects of intravitreal or periocular injections. However, difficulties in this approach include systemic side effects and efficacy targeting the eye. There are multiple medications that are currently under investigation with the potential to act as stand-alone treatment or as an adjunct treatment for management of retinal diseases such as diabetic retinopathy, macular degeneration and Stargardt disease.


Asunto(s)
Retinopatía Diabética , Degeneración Macular , Enfermedades de la Retina , Humanos , Retinopatía Diabética/tratamiento farmacológico , Enfermedad de Stargardt , Enfermedades de la Retina/tratamiento farmacológico , Degeneración Macular/tratamiento farmacológico , Inyecciones , Preparaciones Farmacéuticas , Inyecciones Intravítreas , Inhibidores de la Angiogénesis/uso terapéutico
19.
Retina ; 43(2): 263-274, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223778

RESUMEN

PURPOSE: To assess the safety of injecting human embryonic stem cell retinal pigment epithelial cell dose to treat Stargardt disease. METHODS: In this prospective, Phase I clinical trial, human embryonic stem cell retinal pigment epithelial cells in suspension were injected into the subretinal space in eyes with the worse best-corrected visual acuity (BCVA). After vitrectomy/posterior hyaloid removal, a partial retinal detachment was created and the human embryonic stem cell retinal pigment epithelial cells were administered. Phacoemulsification with intraocular lens implantation was performed in eyes with lens opacity. All procedures were optical coherence tomography-guided. The 12-month follow-up included retinal imaging, optical coherence tomography, visual field/electrophysiologic testing, and systemic evaluation. The main outcome was the absence of ocular/systemic inflammation or rejection, tumor formation, or toxicity during follow-up. RESULTS: The mean baseline BCVAs in the phacoemulsification and no phacoemulsification groups were similar (1.950 ± 0.446 and 1.575 ± 0.303, respectively). One year postoperatively, treated eyes showed a nonsignificant increase in BCVA. No adverse effects occurred during follow-up. Intraoperative optical coherence tomography was important for guiding all procedures. CONCLUSION: This surgical procedure was feasible and safe without cellular migration, rejection, inflammation, or development of ocular or systemic tumors during follow-up.


Asunto(s)
Desprendimiento de Retina , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/patología , Enfermedad de Stargardt , Estudios Prospectivos , Desprendimiento de Retina/patología , Células Madre , Inflamación , Pigmentos Retinianos , Tomografía de Coherencia Óptica
20.
BMC Ophthalmol ; 23(1): 422, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864132

RESUMEN

BACKGROUND: Inherited retinal diseases form a rare, highly heterogeneous group of genetic disorders characterized by retinal degeneration. It is considered one of the leading causes of debilitating visual loss and blindness in children and young adults. Despite this few population-based data studies on prevalence of inherited retinal diseases exist. Moreover, prevalence can vary widely depending on geographical area, population ethnicity and cultural habits. PURPOSE: To report the prevalence of different subtypes of Inherited retinal diseases in a large Egyptian cohort in a retrospective, hospital-based, cross-sectional study. METHODS: We conducted an extensive electronic medical record search for all the patients attending the outpatient clinic and investigation unit of Ain Shams University Hospital and the two branches of Watany Eye Hospital in the period between January 2015 and October 2022 aiming to identify the prevalence rate of different types of IRDs, patient demographics and stratify them according to their phenotype. RESULTS: We examined the electronic medical records of 478 222 patients, 971 patients were diagnosed with IRD by clinical examination with or without any of the following investigations: color fundus photography, fundus autofluorescence, fundus fluorescein angiography, optical coherence tomography and/or electrophysiological studies as electroretinogram, visual evoked potential and electrooculogram. The overall prevalence was 0.2%. The most common IRD encountered was isolated retinitis pigmentosa with a percentage of 78.9% followed by Stargardt disease at 6.3%, cone-rod dystrophy at 2.0%, autosomal recessive bestrophinopathy at 1.9% and unspecified IRD at 1.5%. CONCLUSION: Retinitis pigmentosa was the most common IRD encountered followed by Stargardt disease. Many of the dystrophies are the subject of clinical intervention trials, and population-based epidemiological data can guide phenotype-based genetic testing and help assess the future need for treatment.


Asunto(s)
Potenciales Evocados Visuales , Retinitis Pigmentosa , Niño , Adulto Joven , Humanos , Enfermedad de Stargardt , Estudios Retrospectivos , Estudios Transversales , Egipto/epidemiología , Prevalencia , Retinitis Pigmentosa/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA