RESUMEN
Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, our data suggest that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.
Asunto(s)
Péptidos Antimicrobianos , Enterobacter cloacae , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Enterobacter cloacae/efectos de los fármacos , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Infecciones por Enterobacteriaceae/microbiologíaRESUMEN
Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of ß-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the ß-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed.
Asunto(s)
Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Tolerancia a Medicamentos , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Lipopolisacáridos/metabolismo , Antibacterianos/farmacología , Péptidos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colistina/farmacología , Enterobacter cloacae/genética , Regulación de la Expresión Génica , Histidina Quinasa/antagonistas & inhibidores , Humanos , Lípido A/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad MicrobianaRESUMEN
Plastic pollution poses a significant environmental challenge. In this study, the strain Enterobacter cloacae O5-E, a bacterium displaying polyethylene-degrading capabilities was isolated. Over a span of 30 days, analytical techniques including x-ray diffractometry, scanning electron microscopy, optical profilometry, hardness testing and mass spectrometric analysis were employed to examine alterations in the polymer. Results revealed an 11.48% reduction in crystallinity, a 50% decrease in hardness, and a substantial 25-fold increase in surface roughness resulting from the pits and cracks introduced in the polymer by the isolate. Additionally, the presence of degradational by-products revealed via gas chromatography ascertains the steady progression of degradation. Further, recognizing the pivotal role of alkane monooxygenase in plastic degradation, the study expanded to detect this enzyme in the isolate molecularly. Molecular docking studies were conducted to assess the enzyme's affinity with various polymers, demonstrating notable binding capability with most polymers, especially with polyurethane (- 5.47 kcal/mol). These findings highlight the biodegradation potential of Enterobacter cloacae O5-E and the crucial involvement of alkane monooxygenase in the initial steps of the degradation process, offering a promising avenue to address the global plastic pollution crisis.
Asunto(s)
Biodegradación Ambiental , Enterobacter cloacae , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Simulación por Computador , Citocromo P-450 CYP4A/metabolismo , Enterobacter cloacae/enzimología , Enterobacter cloacae/metabolismo , Simulación del Acoplamiento Molecular , Polímeros/metabolismoRESUMEN
The Enterobacter cloacae complex (ECC) has become a major opportunistic pathogen with antimicrobial resistance issues. Temocillin, an "old" carboxypenicillin that is remarkably stable toward ß-lactamases, has been used as an alternative for the treatment of multidrug-resistant ECC infections. Here, we aimed at deciphering the never-investigated mechanisms of temocillin resistance acquisition in Enterobacterales. By comparative genomic analysis of two clonally related ECC clinical isolates, one susceptible (Temo_S [MIC of 4 mg/L]) and the other resistant (Temo_R [MIC of 32 mg/L]), we found that they differed by only 14 single-nucleotide polymorphisms, including one nonsynonymous mutation (Thr175Pro) in the two-component system (TCS) sensor histidine kinase BaeS. By site-directed mutagenesis in Escherichia coli CFT073, we demonstrated that this unique change in BaeS was responsible for a significant (16-fold) increase in temocillin MIC. Since the BaeSR TCS regulates the expression of two resistance-nodulation-cell division (RND)-type efflux pumps (namely, AcrD and MdtABCD) in E. coli and Salmonella, we demonstrated by quantitative reverse transcription-PCR that mdtB, baeS, and acrD genes were significantly overexpressed (15-, 11-, and 3-fold, respectively) in Temo_R. To confirm the role of each efflux pump in this mechanism, multicopy plasmids harboring mdtABCD or acrD were introduced into either Temo_S or the reference strain E. cloacae subsp. cloacae ATCC 13047. Interestingly, only the overexpression of acrD conferred a significant increase (from 8- to 16-fold) of the temocillin MIC. Altogether, we have shown that temocillin resistance in the ECC can result from a single BaeS alteration, likely resulting in the permanent phosphorylation of BaeR and leading to AcrD overexpression and temocillin resistance through enhanced active efflux.
Asunto(s)
Antibacterianos , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Escherichia coli/genética , Mutación Puntual , Pruebas de Sensibilidad MicrobianaRESUMEN
d-Allose is an aldohexose of the C3-epimer of d-glucose, existing in very small amounts in nature, called a rare sugar. The operon responsible for d-allose metabolism, the allose operon, was found in several bacteria, which consists of seven genes: alsR, alsB, alsA, alsC, alsE, alsK, and rpiB. To understand the biological implication of the allose operon utilizing a rare sugar of d-allose as a carbon source, it is important to clarify whether the allose operon functions specifically for d-allose or also functions for other ligands. It was proposed that the allose operon can function for d-ribose, which is essential as a component of nucleotides and abundant in nature. Allose-binding protein, AlsB, coded in the allose operon, is thought to capture a ligand outside the cell, and is expected to show high affinity for the specific ligand. X-ray structure determinations of Enterobacter cloacae AlsB (EtcAlsB) in ligand-free form, and in complexes with d-allose, d-ribose, and d-allulose, and measurements of the thermal parameters of the complex formation using an isothermal titration calorimeter were performed. The results demonstrated that EtcAlsB has a unique recognition mechanism for high affinity to d-allose by changing its conformation from an open to a closed form depending on d-allose-binding, and that the binding of d-ribose to EtcAlsB could not induce a completely closed form but an intermediate form, explaining the low affinity for d-ribose.
Asunto(s)
Proteínas Portadoras , Monosacáridos , Proteínas Portadoras/metabolismo , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Rayos X , Ligandos , Ribosa/metabolismo , Glucosa/metabolismoRESUMEN
AIMS: In-depth studies on plant ion uptake and plant growth-promoting rhizobacteria (PGPR) at the molecular level will help to further reveal the effects of PGPR on plants and their interaction mechanisms under salt stress. METHODS: Cotton was inoculated with a PGPR-Enterobacter cloacae Rs-35, and the ion uptake capacity, membrane transporter protein activity, and expression of key genes were determined under salt stress. Changes in the endogenous hormone content of cotton were also determined. Further, the genome-wide metabolic pathway annotation of E. cloacae Rs-35 and its differential enrichment pathway analysis of multi-omics under salinity environments were performed. RESULTS: In a pot experiment of saline-alkali soil, E. cloacae Rs-35-treated cotton significantly increased its uptake of K+ and Ca2+ and decreased uptake of Na+, elevated the activity of the H+-ATPase, and increased the sensitivity of the Na+/H+ reverse transporter protein on the vesicle membrane. Meanwhile, inoculation with E. cloacae Rs-35 could promote cotton to maintain the indole-3-acetic acid (IAA) content under salt stress. Genome-wide annotation showed that E. cloacae Rs-35 was respectively annotated to 31, 38, and 130 related genes in osmotic stress, phytohormone and organic acid metabolism, and ion uptake metabolic pathway. Multi-omics differences analysis showed that E. cloacae Rs-35 were enriched to tryptophan metabolism, multiple amino acid biosynthesis, carbon and glucose synthesis, and oxidative phosphorylation metabolic pathways at the transcriptome, proteome, and metabolome. CONCLUSION: E. cloacae Rs-35 can promote cotton balance cell ion concentration, stabilize intracellular IAA changes, stimulate induction of systemic tolerance, and promote the growth of cotton plants under salt stress.
Asunto(s)
Enterobacter cloacae , Gossypium , Enterobacter cloacae/metabolismo , Gossypium/genética , Gossypium/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Desarrollo de la Planta , Estrés SalinoRESUMEN
Cadmium (Cd) can be transported into plants from polluted soils and may cause animal and human diseases through food chains, which requires the development of highly efficient methods for soil Cd remediation. Although we isolated an Enterobacter cloacae strain Cu6 with Cd resistance, this strain cannot be used for soil Cd remediation due to its lower resistance. Here, we domesticated Cu6 and obtained a highly Cd-resistant strain, LPY6, and found that this strain can attenuate the toxic effects of Cd on wheat seedling growth. We deciphered the high Cd-resistance mechanism of LPY6 by genome comparative and genetic analysis. Compared with Cu6, 75 genes were mutated in LPY6. Thirty-four of these genes were deleted, and 41 had single nucleotide polymorphisms (SNPs). Most of these mutated proteins are involved in basic metabolism, substrate transport, stress response and formate and hydrogen metabolism. RNA quantitative analysis and promoter activity assays showed that the transcription or mRNA levels of two operons (cadA and norVW) in these mutated genes were regulated by Cd, zinc (Zn) or lead (Pb) ions, suggesting that these two operons might be required for Cd, Zn or Pb resistance. Expression of cadA and norVW operons in LPY6 partially recovered Cd susceptibility, demonstrating that CadA and NorVW are involved in Cd resistance in E. cloacae. Our findings illustrate that E. cloacae acquires Cd resistance through different pathways and lay a foundation for developing highly efficient methods for soil Cd remediation.
Asunto(s)
Cadmio , Enterobacter cloacae , Humanos , Cadmio/toxicidad , Cadmio/análisis , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Plomo/análisis , Suelo , Zinc/análisisRESUMEN
Downstream processing is a significant part of a production process and accounts for 50-90% of the production cost of biotechnological products. Post-fermentation localization of a microbial metabolite contributes significantly to the recovery cost of the product. Enterobacter cloacae produced naturally, acidic lipase with a 0.023:1 extracellular localization ratio. This research aimed to re-direct the localization of lipase to the extracellular milieu to reduce recovery costs using multi-objective response surface optimization (MO-RSM). The approach resulted in a 1:0.32 extracellular: intracellular lipase ratio, with product formation kinetics of Luedeking-Piret function showing a significant switch from a completely growth-associated intracellular production to a predominantly non-growth-associated extracellular localization. The enzyme was purified by an aqueous two-phase system which extracted 95.22% lipase with 72.36 purity. Characterization of the enzyme showed a molecular weight of 55.7 kDa, kcat of 68.59 s-1, and a Km of 0.63 mmol. Lipase activity occurred optimally at pH 2.5-3.5 and 50 °C, and was stable in most organic solvents tested. The acidic lipase demonstrated pH-dependent enantioselective esterification in resolving (R, S)-ibuprofen (E = 14, pH 4.5) and (R, S)-Naproxen (E = 13, pH 2.5), with an enantioselective preference for (S)-enantiomer in both drugs thus underpinning its potential for pharmaceutical applications.
Asunto(s)
Enterobacter cloacae , Lipasa , Lipasa/química , Esterificación , Enterobacter cloacae/metabolismo , Estereoisomerismo , Solventes/química , Preparaciones Farmacéuticas , CinéticaRESUMEN
As physiological impairments that require replacement therapy continue to increase, so also does the need for improved production of acidic lipase from new microbial sources. Enterobacter cloacae strain UCCM 00116 produced a novel acidic lipase in kernel oil-processing waste-basal broth with 0.023:1 extracellular: intracellular localization ratio. This research re-directed enzyme localization to the extracellular milieu to reduce recovery cost using multi-objective response surface optimization of medium parameters. Results revealed a 1:0.32 extracellular:intracellular lipase ratio. Product formation kinetics, modeled by the Luedeking-Piret function, showed a significant switch from a completely growth-associated intracellular production to a predominantly non-growth-associated extracellular localization through medium optimization. Aqueous two-phase system purification conditions extracted 95.22% lipase with 72.36 purity, a Vmax of 370.37 µmolmin-1, and a Km of 0.63 mmol. Enzyme activity was enhanced by K+ and Ca2+ ions, stable in many organic solvents, except acetone, and had pH and temperature optima at 2.5-3.5 and 50 °C, respectively.
Asunto(s)
Enterobacter cloacae , Lipasa , Acetona , Enterobacter cloacae/metabolismo , Estabilidad de Enzimas , Espacio Extracelular , Concentración de Iones de Hidrógeno , Iones , Cinética , Lipasa/metabolismo , Solventes/farmacología , TemperaturaRESUMEN
The Enterobacter cloacae complex (ECC) consists of closely related bacteria commonly associated with the human microbiota. ECC are increasingly isolated from healthcare-associated infections, demonstrating that these Enterobacteriaceae are emerging nosocomial pathogens. ECC can rapidly acquire multidrug resistance to conventional antibiotics. Cationic antimicrobial peptides (CAMPs) have served as therapeutic alternatives because they target the highly conserved lipid A component of the Gram-negative outer membrane. Many Enterobacteriaceae fortify their outer membrane with cationic amine-containing moieties to prevent CAMP binding, which can lead to cell lysis. The PmrAB two-component system (TCS) directly activates 4-amino-4-deoxy-l-arabinose (l-Ara4N) biosynthesis to result in cationic amine moiety addition to lipid A in many Enterobacteriaceae such as E. coli and Salmonella. In contrast, PmrAB is dispensable for CAMP resistance in E. cloacae. Interestingly, some ECC clusters exhibit colistin heteroresistance, where a subpopulation of cells exhibit clinically significant resistance levels compared to the majority population. We demonstrate that E. cloacae lipid A is modified with l-Ara4N to induce CAMP heteroresistance and the regulatory mechanism is independent of the PmrABEcl TCS. Instead, PhoPEcl binds to the arnBEcl promoter to induce l-Ara4N biosynthesis and PmrAB-independent addition to the lipid A disaccharolipid. Therefore, PhoPQEcl contributes to regulation of CAMP heteroresistance in some ECC clusters.
Asunto(s)
Amino Azúcares/química , Proteínas Bacterianas/metabolismo , Colistina/farmacología , Enterobacter cloacae/genética , Lípido A/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Secuencia de Bases , Farmacorresistencia Bacteriana/genética , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras GenéticasRESUMEN
Enterobacter cloacae strain HNR was found to grow well and denitrify aerobically at high NO3--N concentrations. When the concentrations of NO3--N were 200, 300 and 500 mg/L, the removal efficiencies of NO3--N were 83%, 74.5% and 75%, respectively. More importantly, the intermediates accumulation of NO2--N and NH4+-N was not obvious during the aerobic denitrification processes, resulting in a high TN removal of 82%, 74% and 70%, respectively. Meanwhile, strain HNR also presented the ability of heterotrophic nitrification. With initial NH4+-N concentrations of 20 and 80 mg/L, the NH4+-N removal efficiency reached 78% and 76%, respectively. The key nitrate reductase enzyme gene relating to denitrification was successfully amplified by polymerase chain reaction (PCR) from strain HNR, and identified it as napA, which encodings the large catalytic subunit A of periplasmic nitrate reductase (NAPA). The sequence analysis of napA indicates that NAPA is a hydrophilic, non-transmembrane protein. The existence of napA might be crucial for strain HNR to denitrify nitrate under aerobic conditions. This study showed prospect to develop novel technology for nitrogen removal by application of E. cloacae strain HNR.
Asunto(s)
Desnitrificación/genética , Enterobacter cloacae/enzimología , Enterobacter cloacae/genética , Nitrato-Reductasa/genética , Aerobiosis , Enterobacter cloacae/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismoRESUMEN
Plastics composed of polyethylene are non-biodegradable and are mostly harmful to the environment. Literature studies documented that the extent of microbial degradation of low-density polyethylene (LDPE) seems to be insufficient and the underlying mechanisms of such degradation remain unexplored. In the present study, efforts were given to degrade LDPE by a recently isolated bacteria Enterobacter cloacae AKS7. Scanning electron microscopic (SEM) image, tensile strength, and weight loss analysis confirmed the efficient degradation of LDPE by AKS7. To investigate the mechanism, it was observed that with the progression of time, the extent of microbial colonization got increased considerably over the LDPE surface. It was also observed that the organism (AKS7) gradually increased the secretion of extracellular polymeric substances (EPS) suggesting the formation of efficient biofilm over the LDPE surface. Furthermore, to comprehend the role of cell-surface hydrophobicity towards biofilm formation, two mutants of AKS7 were screened that showed a considerable reduction in cell-surface hydrophobicity in contrast to its wild type. The result showed that the mutants revealed compromised LDPE degradation than wild-type cells of AKS7. Further investigation revealed that the mutant cells of AKS7 were incapable of adhering to LDPE in contrast to wild-type cells. Thus, the results demonstrated that the cell-surface hydrophobicity of AKS7 favors the development of microbial biofilm over LDPE that leads to the enhanced degradation of LDPE by AKS7. Therefore, the organism holds the assurance to be considered as a promising bio-remediating agent for the sustainable degradation of polythene-based hazardous waste.
Asunto(s)
Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Restauración y Remediación Ambiental , Polietileno/metabolismo , Adhesión Bacteriana/genética , Biodegradación Ambiental , Biopelículas , Genes Bacterianos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , MutaciónRESUMEN
BACKGROUND: Biological routes for ethylene glycol production have been developed in recent years by constructing the synthesis pathways in different microorganisms. However, no microorganisms have been reported yet to produce ethylene glycol naturally. RESULTS: Xylonic acid utilizing microorganisms were screened from natural environments, and an Enterobacter cloacae strain was isolated. The major metabolites of this strain were ethylene glycol and glycolic acid. However, the metabolites were switched to 2,3-butanediol, acetoin or acetic acid when this strain was cultured with other carbon sources. The metabolic pathway of ethylene glycol synthesis from xylonic acid in this bacterium was identified. Xylonic acid was converted to 2-dehydro-3-deoxy-D-pentonate catalyzed by D-xylonic acid dehydratase. 2-Dehydro-3-deoxy-D-pentonate was converted to form pyruvate and glycolaldehyde, and this reaction was catalyzed by an aldolase. D-Xylonic acid dehydratase and 2-dehydro-3-deoxy-D-pentonate aldolase were encoded by yjhG and yjhH, respectively. The two genes are part of the same operon and are located adjacent on the chromosome. Besides yjhG and yjhH, this operon contains four other genes. However, individually inactivation of these four genes had no effect on either ethylene glycol or glycolic acid production; both formed from glycolaldehyde. YqhD exhibits ethylene glycol dehydrogenase activity in vitro. However, a low level of ethylene glycol was still synthesized by E. cloacae ΔyqhD. Fermentation parameters for ethylene glycol and glycolic acid production by the E. cloacae strain were optimized, and aerobic cultivation at neutral pH were found to be optimal. In fed batch culture, 34 g/L of ethylene glycol and 13 g/L of glycolic acid were produced in 46 h, with a total conversion ratio of 0.99 mol/mol xylonic acid. CONCLUSIONS: A novel route of xylose biorefinery via xylonic acid as an intermediate has been established.
Asunto(s)
Enterobacter cloacae/metabolismo , Glicol de Etileno/metabolismo , Glicolatos/metabolismo , Xilosa/análogos & derivados , Enterobacter cloacae/química , Glicol de Etileno/química , Glicolatos/química , Xilosa/química , Xilosa/metabolismoRESUMEN
Pickle is a type of mildly lactic acid fermented vegetable and is a traditional dish favored in China, Japan, and Korea. Corruption of spoilage bacteria and accumulation of nitrite during vegetable fermentation are common problems that affect the pickle industry and consumer health. In this work, cucumber juice was used as a vegetable model to study the dominant mesophilic aerobic bacteria (MAB) producing nitrite during pickle fermentation. Virulent phages infecting the dominant MABs combined with Lactobacillus plantarum M6 were used to control these bacteria. Enterobacter cloacae and Pseudomonas fluorescens are the dominant MABs in the fermentation of cucumber juice containing 4% or 8% NaCl, with isolation percentages reaching 30.6% and 23.1%, respectively. Virulent phages PspYZU5415 and EcpYZU01 were isolated using P. fluorescens J5415 and E. cloacae J01 as the host bacteria, respectively. These two phages show a broad host range and strong lytic activity, and their genomes contain no toxins and antibiotic resistance genes. PspYZU5415 and EcpYZU01 were combined into a cocktail (designated as Phage MIX) that effectively inhibits the growth of E. cloacae and P. fluorescens in cucumber juice with different salt concentrations. PhageMIX combined with L. plantarum M6 decreased the counts of P. mendocina and E. cloacae to undetectable levels at 48â¯h during the fermentation of cucumber juice artificially contaminated with P. mendocina and E. cloacae. In addition, nitrite content increased to 11.3â¯mg/L at 20â¯h and then degraded completely at 36â¯h. By contrast, P. mendocina and E. cloacae remained in the groups without PhageMIX during fermentation (0-48â¯h). Nitrite content rapidly increased to 65.7â¯mg/L at 12â¯h and then decreased to 21.6â¯mg/L at 48â¯h in the control group. This study suggests that PhageMIX combined with lactic acid bacterial strains can be used as an ecological starter for controlling the dominant MABs P. mendocina and E. cloacae and for reducing nitrate production during the early stage of pickle fermentation.
Asunto(s)
Bacteriófagos/fisiología , Bacteriófagos/patogenicidad , Cucumis sativus/microbiología , Enterobacter cloacae/virología , Microbiología de Alimentos/métodos , Pseudomonas fluorescens/virología , Verduras/microbiología , Aerobiosis , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Cucumis sativus/metabolismo , Enterobacter cloacae/metabolismo , Fermentación , Alimentos Fermentados/microbiología , Especificidad del Huésped , Lactobacillus plantarum/metabolismo , Nitritos/metabolismo , Pseudomonas fluorescens/metabolismoRESUMEN
Degradation of the prothioconazole by three strains of microorganisms isolated from activated sludge obtained from a pesticide factory was assessed, and an ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) method for the determination of prothioconazole and its metabolites was established. The optimal conditions for the degradation of prothioconazole were determined by single factor optimization experiments. A degradation rate of 93.32% is achieved when the prothioconazole is co-cultured with the strain W313 at a cultivation time of 60 h, a cultivation temperature of 30 °C, a pH of 6.33, a prothioconazole concentration of 50 mg L-1, a microorganism volume of 10%, and a dextrose volume of 4%. The three effective microorganism strains were identified by morphological and molecular biology to be Candida tropicalis, Enterobacter cloacae, and Pseudomonas aeruginosa. UPLC-QqTOF-MS analysis allowed the identification of 62 different prothioconazole degradation products produced by the strain cultures, with prothioconazole-desthio, prothioconazole-dechloropropyl, and oxidizing prothioconazole being the main products. In addition, degradation products from different strains and conditions were compared. The results of scatter plot (S-Plot) analysis indicated that C9H7NO, C10H17N7, and C12H13ClN2O were only detected in the products incubated with Enterobacter cloacae. Thus, this study demonstrates that Enterobacter cloacae and Pseudomonas aeruginosa possesses high potential for bioremediation of prothioconazole-contaminated environments.
Asunto(s)
Plaguicidas/análisis , Pseudomonas aeruginosa/metabolismo , Aguas del Alcantarillado/microbiología , Triazoles/análisis , Biodegradación Ambiental , Candida tropicalis/aislamiento & purificación , Candida tropicalis/metabolismo , Cromatografía Líquida de Alta Presión , Enterobacter cloacae/aislamiento & purificación , Enterobacter cloacae/metabolismo , Espectrometría de Masas , Modelos Teóricos , Plaguicidas/metabolismo , Pseudomonas aeruginosa/aislamiento & purificación , Aguas del Alcantarillado/química , Triazoles/metabolismoRESUMEN
Nacubactam is a novel, broad-spectrum, ß-lactamase inhibitor that is currently under development as combination therapy with meropenem. This study evaluated the efficacy of human-simulated epithelial lining fluid (ELF) exposures of meropenem, nacubactam, and the combination of meropenem and nacubactam against class A serine carbapenemase-producing Enterobacteriaceae isolates in the neutropenic murine lung infection model. Twelve clinical meropenem-resistant Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae isolates, all harboring KPC or IMI-type ß-lactamases, were utilized in the study. Meropenem, nacubactam, and meropenem-nacubactam (1:1) combination MICs were determined in triplicate via broth microdilution. At 2 h after intranasal inoculation, neutropenic mice were dosed with regimens that provided ELF profiles mimicking those observed in humans given meropenem at 2 g every 8 h and/or nacubactam at 2 g every 8 h (1.5-h infusions), alone or in combination. Efficacy was assessed as the change in bacterial growth at 24 h, compared with 0-h controls. Meropenem, nacubactam, and meropenem-nacubactam MICs were 8 to >64 µg/ml, 2 to >256 µg/ml, and 0.5 to 4 µg/ml, respectively. The average bacterial density at 0 h across all isolates was 6.31 ± 0.26 log10 CFU/lung. Relative to the 0-h control, the mean values of bacterial growth at 24 h in the untreated control, meropenem human-simulated regimen treatment, and nacubactam human-simulated regimen treatment groups were 2.91 ± 0.27, 2.68 ± 0.42, and 1.73 ± 0.75 log10 CFU/lung, respectively. The meropenem-nacubactam combination human-simulated regimen resulted in reductions of -1.50 ± 0.59 log10 CFU/lung. Meropenem-nacubactam human-simulated ELF exposure produced enhanced efficacy against all class A serine carbapenemase-producing Enterobacteriaceae isolates tested in the neutropenic murine lung infection model.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Epitelio/efectos de los fármacos , Meropenem/farmacología , Serina/metabolismo , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Animales , Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Epitelio/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad MicrobianaRESUMEN
AIM: Escherichia coli is the conventional choice as the host strain for whole-cell bioreporter construction due to its well-understood genetics and well-established cloning protocols. However, for real-world environmental biosensing applications, it is often beneficial to use a bacterial strain derived directly from the environment under study to better ensure chemical target specificity and optimal response time. The aim of this study was to develop a whole-cell bioreporter for detection of bioavailable mercury by replacing E. coli with a wild-type bacterial host derived from a soil environment. MATERIALS AND RESULTS: In this study, an Enterobacter cloacae strain isolated from soil derived from a municipal and electronic waste dumping site was engineered to serve as a bioluminescent bioreporter for mercury toxicity by linking its merR-like gene and promoter sequence to a reorganized luxABCDE gene cassette from Photorhabdus luminescens. This bioreporter, designated as E. cloacae DWH4lux , detected mercury (HgCl2 ) at a minimum concentration of 0·2 µg l-1 with a linear response profile being maintained between a range of 0·4-1600 µg l-1 (R2 = 0·9604) with a peak bioluminescent response occurring within 1 h after exposure. No significant synergistic or antagonistic influences were observed on the bioluminescent response by other contaminating metal elements. Enterobacter cloacae DWH4lux was also demonstrated to detect mercury effectively in artificially contaminated water sample with linear correlation (R2 = 0·9623). CONCLUSIONS: The results indicated that E. cloacae DWH4lux could detect mercury in quantities below the US Environmental Protection Agency's permitted limit values (2 µg l-1 ). Hence, it is concluded that E. cloacae DWH4lux has the potential to serve as an effective whole-cell bioreporter for the environmental monitoring of mercury contamination. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides new insight into the recruitment of mercury-tolerant bacterial hosts derived from environmental samples over the conventional lab-based E. coli host for the construction of mercury bioreporters. With improved response time and selectivity, the environmentally sourced bacteria can serve as an alternative host choice to improve biosensing technology in the near future.
Asunto(s)
Bioingeniería/métodos , Enterobacter cloacae , Monitoreo del Ambiente/métodos , Mercurio/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enterobacter cloacae/genética , Enterobacter cloacae/metabolismo , Mediciones Luminiscentes , Photorhabdus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Microbiología del SueloRESUMEN
This study aimed to investigate the effect of some plant growth promoting rhizobacteria with potassium dissolution ability on different forms of potassium in soil under the cultivation of wheat. The factorial experiment was conducted as a randomized complete design with three replications in greenhouse conditions. The treatments consisted of bacterium inoculation (without inoculation, Enterobacter cloacae Rhizo_33, Pseudomonas sp. Rhizo_9, consortium of Enterobacter cloacae Rhizo_33 and Pseudomonas sp. Rhizo_9), potassium application (2·87 mg K kg-1 of soil and without potassium application).The results indicated that soils treated with Enterobacter cloacae Rhizo_33, either receiving potassium or not, maintain a higher amount of exchangeable K (337 mg kg-1 ) and water-soluble K (1·25 and 1·31 meq L-1 with and without K application respectively). The nonexchangeable K and nitric acid-extractable K values were decreased by inoculating bacterial strains. The grain yield was significantly enhanced by the inoculation of bacterial strains irrespective of rates of potassium application. About 19·16% increase of grain yield was recorded by inoculation of Enterobacter cloacae Rhizo_33 and without potassium application. A significantly greater amount of K uptake in grain was obtained in soils treated with Enterobacter cloacae Rhizo_33, with and without the application of potassium (28·7 and 30·7 mg per pot respectively). There was a significant (P < 0·01) and positive correlation between grain yield and grain, shoot and root K uptake. Potassium uptake had a positive significant correlation with water-soluble K and exchangeable K; it was negatively correlated with K (HNO3 ). The data suggested that inoculation of soil with mentioned bacteria can improve plant growth and potassium uptake. SIGNIFICANCE AND IMPACT OF THE STUDY: As one of the macronutrients, Potassium is the most abundant absorbed cation in most plants and exists in soil in different forms. Soluble and exchangeable forms of potassium (K) are important with regard to plant uptake. K-solubilizing bacteria can convert insoluble potassium to soluble forms; therefore using K-solubilizing bacteria as biofertilizers is a sustainable solution for the improvement of plant growth, nutrition, root growth, plant competitiveness and reducing the use of potassium chemical fertilizer.
Asunto(s)
Enterobacter cloacae/metabolismo , Potasio/análisis , Pseudomonas/metabolismo , Suelo/química , Triticum/microbiología , Enterobacter cloacae/crecimiento & desarrollo , Fertilizantes/análisis , Fertilizantes/microbiología , Desarrollo de la Planta , Raíces de Plantas/microbiología , Pseudomonas/crecimiento & desarrollo , Microbiología del Suelo , Triticum/crecimiento & desarrolloRESUMEN
Carbapenem-resistant Enterobacteriaceae (CRE) infection is highly endemic in China, but estimates of the infection burden are lacking. We established the incidence of CRE infection from a multicenter study that covered 25 tertiary hospitals in 14 provinces. CRE cases defined as carbapenem-nonsusceptible Citrobacter freundii, Escherichia coli, Enterobacter cloacae, or Klebsiella pneumoniae infections during January to December 2015 were collected and reviewed from medical records. Antimicrobial susceptibility testing and carbapenemase gene identification were performed. Among 664 CRE cases, most were caused by K. pneumoniae (73.9%), followed by E. coli (16.6%) and E. cloacae (7.1%). The overall CRE infection incidence per 10,000 discharges was 4.0 and differed significantly by region, with the highest in Jiangsu (14.97) and the lowest in Qinghai (0.34). Underlying comorbidities were found in 83.8% of patients; the median patient age was 62 years (range, 45 to 74 years), and 450 (67.8%) patients were male. Lower respiratory tract infections (65.4%) were the most common, followed by urinary tract infection (16.6%), intra-abdominal infection (7.7%), and bacteremia (7.7%). The overall hospital mortality rate was 33.5%. All isolates showed nonsusceptibility to carbapenems and cephalosporins. The susceptibility rate of polymyxin B was >90%. Tigecycline demonstrated a higher susceptibility rate against E. coli than against K. pneumoniae (90.9% versus 40.2%). Of 155 clinical isolates analyzed, 89% produced carbapenemases, with a majority of isolates producing KPC (50%) or NDM (33.5%)-type beta-lactamases among K. pneumoniae and E. coli The incidence of CRE infection in China was 4.0 per 10,000 discharges. The patient-based disease burden in tertiary hospitals in China is severe, suggesting an urgent need to enhance infection control.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Carbapenémicos/farmacología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Anciano , Antibacterianos/farmacología , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Proteínas Bacterianas/metabolismo , Enterobacteriaceae Resistentes a los Carbapenémicos/metabolismo , China , Citrobacter freundii/efectos de los fármacos , Citrobacter freundii/metabolismo , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Femenino , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Masculino , Pruebas de Sensibilidad Microbiana/métodos , Persona de Mediana Edad , Polimixina B/farmacología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , beta-Lactamasas/metabolismoRESUMEN
Jatropha curcas seed cake is a by-product generated after oil extraction from J. curcas seeds. Although the protein content is high, the cake contains phorbol esters and antinutritional factors such as phytates, trypsin inhibitors, lectins and tannins. Therefore, it cannot be directly used in food or feed. In this study, the toxic compounds and antinutrients present in J. curcas seed cake were detoxified by fermentation with Enterobacter Z11, a soil-borne isolate. Solid-state fermentation was undertaken under optimized conditions: deoiled cake, 5·0 g; initial moisture content, 50%; temperature, 30°C; and inoculum, 2 × 106 cells per gram of cake. Postfermentation, bacterial growth, pH and the amount of antinutrients were studied. Fermentation reduced the content of phorbol esters, phytates, lectins, tannins and trypsin inhibitors by 51·6, 82·6, 88·9, 37·8 and 90·5%, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The strain of Enterobacter cloacae Z11 was originally isolated from the soil. To the best of our knowledge, E. cloacae has never been used to remove toxins and antinutritional factors in Jatropha curcas seed cake (JSC). Under the optimized condition, fermentation with the Enterobacter strain decreased the phorbol esters content in JSC by 51·6%, and phytates, tannins, lectins and trypsin inhibitors contents by 83, 38, 89 and 90%, respectively. This study provided a new method with potential to render the seed cake suitable for use in feed. Further study is needed to focus on remaining toxicity and nutritional value post-treatment.