Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 915
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(9): e1010974, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37773959

RESUMEN

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Asunto(s)
Adenilosuccinato Liasa , Adenilosuccinato Liasa/deficiencia , Trastorno Autístico , Proteínas de Caenorhabditis elegans , Errores Innatos del Metabolismo de la Purina-Pirimidina , Receptores de Amina Biogénica , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Proteínas de Caenorhabditis elegans/genética
2.
J Clin Immunol ; 43(8): 2062-2075, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37726596

RESUMEN

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive combined immunodeficiency. The phenotype is profound T cell deficiency with variable B and NK cell functions and results in recurrent and persistent infections that typically begin in the first year of life. Neurologic findings occur in approximately two-thirds of patients. The mechanism of neurologic abnormalities is unclear. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for PNP deficiency. METHODS: We report here six patients from five unrelated families with PNP deficiency treated in two centers in Turkey. We evaluated the neurological status of patients and compared to post-transplantation period if available. Then, we performed PubMed, Google Scholar, and Researchgate searches using the terms "PNP" and "hematopoietic stem cell transplantation" to find all reported cases of PNP transplantation and compared to our cohort. RESULTS: Six patients were treated in two centers in Turkey. One patient died from post-transplant complications. The other four patients underwent successful HSCT with good immune reconstitution after transplantation (follow-up 21-48 months) and good neurological outcomes. The other patient with a new mutation is still waiting for a matching HLA donor. DISCUSSION: In PNP deficiency, clinical manifestations are variable, and this disease should be considered in the presence of many different clinical findings. Despite the comorbidities that occurred before transplantation, HSCT currently appears to be the only treatment option for this disease. HSCT not only cures immunologic disorders, but probably also improves or at least stabilizes the neurologic status of patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Enfermedades de Inmunodeficiencia Primaria , Errores Innatos del Metabolismo de la Purina-Pirimidina , Humanos , Purina-Nucleósido Fosforilasa/genética , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/terapia , Enfermedades de Inmunodeficiencia Primaria/etiología , Errores Innatos del Metabolismo de la Purina-Pirimidina/terapia
3.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37607437

RESUMEN

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Asunto(s)
Adenilosuccinato Liasa , Trastorno Autístico , Errores Innatos del Metabolismo de la Purina-Pirimidina , Animales , Humanos , Trastorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Fenotipo , Purinas
4.
Am J Med Genet A ; 191(1): 234-237, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271826

RESUMEN

Adenylosuccinase deficiency is a rare inborn error of metabolism. We present a newborn who died at 52 days of age with clinical features suggestive of severe epileptic encephalopathy and leukodystrophy of unknown cause. Post-mortem examination showed an unusual vacuolar appearance of the brain. A molecular autopsy performed via singleton clinical exome analysis revealed a known pathogenic and a variant of uncertain significance in ADSL that encodes adenylosuccinase. Tests on previously stored plasma samples showed elevated succinyladenosine and succinylaminoimidazole carboxamide riboside levels. Adenylosuccinase activity in stored fibroblasts was only ~5% of control confirming the diagnosis of adenylosuccinase deficiency in the child. The parents opted for a chorionic villus biopsy in a subsequent pregnancy and had a child unaffected by adenylosuccinase deficiency. This report adds vacuolating leukodystrophy as a novel feature of adenylosuccinase deficiency and shows the power of biochemical investigations directed by genomic studies to achieve accurate diagnosis. Importantly, this case demonstrates the importance of anticipatory banking of biological samples for reverse biochemical phenotyping in individuals with undiagnosed disorders who may not survive.


Asunto(s)
Adenilosuccinato Liasa , Trastorno Autístico , Errores Innatos del Metabolismo de la Purina-Pirimidina , Niño , Recién Nacido , Lactante , Humanos , Autopsia , Adenilosuccinato Liasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética
5.
J Clin Rheumatol ; 29(2): 59-67, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126268

RESUMEN

OBJECTIVES: The aims of this study were to evaluate the association between hypouricemia and cardiometabolic diseases, such as hypertension, dyslipidemia, and reduced kidney function, and to explore the sex-specific optimal range for serum uric acid (sUA) associated with the lowest risk for these diseases. METHODS: In this cross-sectional study, we identified individuals with sUA data between April 2018 and March 2019 and recorded the frequency of cardiometabolic comorbidities according to sUA. Univariable and multivariable logistic regression analyses were performed for the overall population and after classifying by sex to assess the association between sUA and cardiometabolic comorbidities. RESULTS: Among 796,508 individuals, a J-shaped association was observed between the sUA level and cardiometabolic diseases in the overall population. The adjusted odds ratios (95% confidence interval) for hypertension, dyslipidemia, and reduced renal function in individuals with sUA ≤1.0 mg/dL compared with those with sUA ranging between 2.1 and 3.0 mg/dL were 1.38 (1.13-1.69), 1.52 (1.30-1.78), and 2.17 (1.47-3.20), respectively. A J-shaped association between sUA and hypertension was observed only in women. The optimal range of sUA associated with the lowest risk for hypertension was assumed to be <6 mg/dL in men and 1-4 mg/dL in women. A J-shaped association between the sUA and dyslipidemia and reduced renal function was observed in both men and women. The optimal range of sUA for dyslipidemia and reduced renal function was approximately 2-5 mg/dL in men and 1-4 mg/dL in women. CONCLUSIONS: Excess and extremely low uric acid levels may be related to an increased cardiometabolic risk.


Asunto(s)
Dislipidemias , Hipertensión , Errores Innatos del Metabolismo de la Purina-Pirimidina , Masculino , Humanos , Femenino , Ácido Úrico , Estudios Transversales , Hipertensión/epidemiología , Seguro de Salud , Factores de Riesgo
6.
Mol Genet Metab ; 136(3): 164-176, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35216884

RESUMEN

Inborn errors of purine and pyrimidine (P/P) metabolism are under-reported and rarely mentioned in the general literature or in clinical practice, as well as in reviews dedicated to other inborn errors of metabolism (IEMs). However, their diagnosis is important because genetic counseling can be provided and, in some cases, specific treatment exists that may slow or even reverse clinical signs. The purpose of this review is to provide a practical guideline on the suspicion and investigation of inborn errors of P/P metabolism. Failure of a physician to recognize the presence of these disorders may be devastating for affected infants and children because of its permanent effects in the patient, and for their parents because of implications for future offspring. Diagnosis is crucial because genetic counseling can be provided and, in some cases, specific treatment can be offered that may slow or even reverse clinical symptoms. This review highlights the risk factors in the history, the important examination findings, and the appropriate biochemical investigation of the child. Herein we describe the approach to the diagnosis of P/P disorders and emphasize clinical situations in which physicians should consider these diseases as diagnostic possibilities.


Asunto(s)
Errores Innatos del Metabolismo de la Purina-Pirimidina , Niño , Familia , Humanos , Lactante , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/metabolismo , Purinas/metabolismo , Pirimidinas/metabolismo , Factores de Riesgo
7.
Mol Genet Metab ; 136(3): 190-198, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34998670

RESUMEN

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.


Asunto(s)
Adenilosuccinato Liasa , Errores Innatos del Metabolismo de la Purina-Pirimidina , Adenilosuccinato Liasa/deficiencia , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Trastorno Autístico , Humanos , Inosina Monofosfato , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/metabolismo , Purinas
8.
Mol Genet Metab ; 137(1-2): 62-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35926322

RESUMEN

BACKGROUND: Beta-ureidopropionase deficiency, caused by variants in UPB1, has been reported in association with various neurodevelopmental phenotypes including intellectual disability, seizures and autism. AIM: We aimed to reassess the relationship between variants in UPB1 and a clinical phenotype. METHODS: Literature review, calculation of carrier frequencies from population databases, long-term follow-up of a previously published case and reporting of additional cases. RESULTS: Fifty-three published cases were identified, and two additional cases are reported here. Of these, 14 were asymptomatic and four had transient neurological features; clinical features in the remainder were variable and included non-neurological presentations. Several of the variants previously reported as pathogenic are present in population databases at frequencies higher than expected for a rare condition. In particular, the variant most frequently reported as pathogenic, p.Arg326Gln, is very common among East Asians, with a carrier frequency of 1 in 19 and 1 in 907 being homozygous for the variant in gnomAD v2.1.1. CONCLUSION: Pending the availability of further evidence, UPB1 should be considered a 'gene of uncertain clinical significance'. Caution should be used in ascribing clinical significance to biochemical features of beta-ureidopropionase deficiency and/or UPB1 variants in patients with neurodevelopmental phenotypes. UPB1 is not currently suitable for inclusion in gene panels for reproductive genetic carrier screening. SYNOPSIS: The relationship between beta-ureidopropionase deficiency due to UPB1 variants and clinical phenotypes is uncertain.


Asunto(s)
Trastornos del Movimiento , Errores Innatos del Metabolismo de la Purina-Pirimidina , Humanos , Encefalopatías/diagnóstico , Encefalopatías/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Fenotipo , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Amidohidrolasas/genética
9.
Mol Genet Metab ; 136(3): 177-185, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35151535

RESUMEN

ß-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified ß-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine. Analysis of UPB1, encoding ß-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased ß-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional ß-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.


Asunto(s)
Errores Innatos del Metabolismo de la Purina-Pirimidina , Precursores del ARN , Anomalías Múltiples , Amidohidrolasas/deficiencia , Amidohidrolasas/genética , Animales , Encefalopatías , Humanos , Mamíferos/genética , Trastornos del Movimiento , Mutación , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , beta-Alanina/genética , beta-Alanina/orina
10.
Hum Mol Genet ; 28(22): 3805-3814, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31600779

RESUMEN

We report for the first time an autosomal recessive inborn error of de novo purine synthesis (DNPS)-PAICS deficiency. We investigated two siblings from the Faroe Islands born with multiple malformations resulting in early neonatal death. Genetic analysis of affected individuals revealed a homozygous missense mutation in PAICS (c.158A>G; p.Lys53Arg) that affects the structure of the catalytic site of the bifunctional enzyme phosphoribosylaminoimidazole carboxylase (AIRC, EC 4.1.1.21)/phosphoribosylaminoimidazole succinocarboxamide synthetase (SAICARS, EC 6.3.2.6) (PAICS). The mutation reduced the catalytic activity of PAICS in heterozygous carrier and patient skin fibroblasts to approximately 50 and 10% of control levels, respectively. The catalytic activity of the corresponding recombinant enzyme protein carrying the mutation p.Lys53Arg expressed and purified from E. coli was reduced to approximately 25% of the wild-type enzyme. Similar to other two known DNPS defects-adenylosuccinate lyase deficiency and AICA-ribosiduria-the PAICS mutation prevented purinosome formation in the patient's skin fibroblasts, and this phenotype was corrected by transfection with the wild-type but not the mutated PAICS. Although aminoimidazole ribotide (AIR) and aminoimidazole riboside (AIr), the enzyme substrates that are predicted to accumulate in PAICS deficiency, were not detected in patient's fibroblasts, the cytotoxic effect of AIr on various cell lines was demonstrated. PAICS deficiency is a newly described disease that enhances our understanding of the DNPS pathway and should be considered in the diagnosis of families with recurrent spontaneous abortion or early neonatal death.


Asunto(s)
Carboxiliasas/genética , Péptido Sintasas/genética , Purinas/metabolismo , Anomalías Múltiples/genética , Adenilosuccinato Liasa/deficiencia , Trastorno Autístico , Carboxiliasas/metabolismo , Dinamarca , Resultado Fatal , Humanos , Recién Nacido , Masculino , Mutación , Péptido Sintasas/metabolismo , Muerte Perinatal , Fenotipo , Errores Innatos del Metabolismo de la Purina-Pirimidina , Purinas/biosíntesis
11.
Mod Rheumatol ; 31(6): 1171-1178, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33563058

RESUMEN

OBJECTIVES: To report the phenotypic, genetic findings and outcome of children with lupus manifestations associated with primary immunodeficiency diseases (PIDs). METHODS: Data are retrospectively collected on patients with lupus manifestations and PIDs seen between 1998 and 2019. Data comprised the clinical findings and genetic testing, the response to treatment and the accrual damage related to SLE. RESULTS: A total of 39 patients (22 female) were reviewed. Thirty-four patients had lupus manifestations and six patients with SLE-like manifestations. Genetic analysis was performed in 25 patients. Complement deficiency was the most frequent PIDs; 26 patients were C1q deficient, three patients had C3 deficiency, two patients had C4 deficiency and one patient with heterozygous C8b variant. The other seven patients had different PIDs genetic defects that include SCID caused by PNP deficiency, CGD, CVID (PIK3CD), IL-2RB mutation, DNase II deficiency, STAT1 mutation, ISG15 mutation and Griscelli syndrome type 3. Mucocutaneous lesions, arthritis and lung involvement were the main clinical features. 84.1% experienced recurrent infections. The mean accrual damage was 2.7 ± 2.2. There were five deaths because of infection. CONCLUSION: This study suggests that patients with lupus manifestations and early onset disease, family history of SLE or recurrent infections should undergo immunological work-up and genetic testing to rule out PIDs.


Asunto(s)
Lupus Eritematoso Sistémico , Enfermedades de Inmunodeficiencia Primaria , Errores Innatos del Metabolismo de la Purina-Pirimidina , Niño , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/genética , Mutación , Purina-Nucleósido Fosforilasa , Estudios Retrospectivos
12.
J Clin Immunol ; 40(6): 833-839, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514656

RESUMEN

BACKGROUND: Purine nucleoside phosphorylase (PNP) deficiency accounts for about 4% of severe combined immunodeficiency diseases. PNP deficiency is a variable disease with recurrent infections and neurodevelopmental delay. Autoimmunity and malignancy can still occur in one-third of patients. METHODS: Case report. CASE PRESENTATION: An 8-year-old Saudi female who was apparently healthy presented at the age of 7 years with confirmed systemic lupus erythematosus (SLE) and lupus nephritis that were poorly controlled with conventional therapy. She also had frequent sinopulmonary and varicella infections. Preliminary immunological workup showed severe lymphopenia and depressed lymphocyte proliferation assay. The uric acid was within normal levels at 179 µmol/L (normal range, 150 to 350 µmol/L) 6 weeks after blood transfusion. Genetic study revealed a homozygous missense mutation c.265G>A in the PNP gene, resulting in a substitution of glutamic acid to lysine at amino acid 89 of the encoded protein (E89K). The PNP serum level was 798 nmol/h/mg (normal level 1354 ± 561 nmol/h/mg) 6 weeks after blood transfusion. Hematopoietic stem cell transplantation (HSCT) was planned from a matched unrelated donor; however, she developed an EBV and varicella meningoencephalitis. Atypical malignant cells suggestive of lymphoma were discovered, likely induced by EBV, and suspicious lesions were shown on brain MRI and PET scan. Unfortunately, she passed away before HSCT due to multiorgan failure. CONCLUSION: This report emphasizes the challenges in recognizing PNP deficiency in a patient suffering from SLE.


Asunto(s)
Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/genética , Linfoma/complicaciones , Linfoma/genética , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/etiología , Purina-Nucleósido Fosforilasa/deficiencia , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/etiología , Alelos , Autoinmunidad , Biomarcadores , Niño , Susceptibilidad a Enfermedades , Femenino , Trasplante de Células Madre Hematopoyéticas , Homocigoto , Humanos , Imagen por Resonancia Magnética , Mutación , Tomografía de Emisión de Positrones , Enfermedades de Inmunodeficiencia Primaria/terapia , Purina-Nucleósido Fosforilasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/terapia
13.
J Clin Immunol ; 40(1): 123-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707514

RESUMEN

PURPOSE: Purine nucleoside phosphorylase (PNP) is a known yet rare cause of combined immunodeficiency with a heterogeneous clinical presentation. We aim to add to the expanding clinical spectrum of disease, and to summarize the available data on bone marrow transplant for this condition. METHODS: Data was collected from patient files retrospectively. A review of the literature of hematopoietic stem cell transplantation (HSCT) for PNP deficiency was conducted. RESULTS: Four patients were treated in two centers in Israel. One patient died of EBV-related lymphoma with CNS involvement prior to transplant. The other three patients underwent successful HSCT with good immune reconstitution post-transplant (follow-up 8-108 months) and excellent neurological outcomes. CONCLUSION: PNP is a variable immunodeficiency and should be considered in various clinical contexts, with or without neurological manifestations. HSCT offers a good treatment option, with excellent clinical outcomes, when preformed in a timely manner.


Asunto(s)
Enfermedades de Inmunodeficiencia Primaria/genética , Purina-Nucleósido Fosforilasa/deficiencia , Purina-Nucleósido Fosforilasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Inmunodeficiencia Combinada Grave/genética , Trasplante de Médula Ósea/métodos , Preescolar , Femenino , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Lactante , Israel , Masculino , Estudios Retrospectivos , Acondicionamiento Pretrasplante/métodos
14.
Mol Genet Metab ; 129(4): 272-277, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151545

RESUMEN

Methylmalonate semialdehyde dehydrogenase deficiency (MMSDD; MIM 614105) is a rare autosomal recessive defect of valine and pyrimidine catabolism. Four prior MMSDD cases are published. We present a fifth case, along with functional and metabolomic analysis. The patient, born to non-consanguineous parents of East African origin, was admitted at two weeks of age for failure to thrive. She was nondysmorphic, had a normal brain MRI, and showed mild hypotonia. Gastroesophageal reflux occurred with feeding. Urine organic acid assessment identified excess 3-hydroxyisobutyrate and 3-hydroxypropionate, while urine amino acid analysis identified elevated concentrations of ß-aminoisobutyrate and ß-alanine. Plasma amino acids showed an elevated concentration of ß-aminoisobutyrate with undetectable ß-alanine. ALDH6A1 gene sequencing identified a homozygous variant of uncertain significance, c.1261C > T (p.Pro421Ser). Management with valine restriction led to reduced concentration of abnormal analytes in blood and urine, improved growth, and reduced gastroesophageal reflux. Western blotting of patient fibroblast extracts demonstrated a large reduction of methylmalonate semialdehyde dehydrogenase (MMSD) protein. Patient cells displayed compromised mitochondrial function with increased superoxide production, reduced oxygen consumption, and reduced ATP production. Metabolomic profiles from patient fibroblasts demonstrated over-representation of fatty acids and fatty acylcarnitines, presumably due to methylmalonate semialdehyde shunting to ß-alanine and subsequently to malonyl-CoA with ensuing increase of fatty acid synthesis. Previously reported cases of MMSDD have shown variable clinical presentation. Our case continues the trend as clinical phenotypes diverge from prior cases. Recognition of mitochondrial dysfunction and novel metabolites in this patient provide the opportunity to assess future patients for secondary changes that may influence clinical outcome.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Metabolómica , Metilmalonato-Semialdehído Deshidrogenasa (Acetilante)/deficiencia , Mitocondrias/metabolismo , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/metabolismo , Biopsia , Línea Celular , Femenino , Fibroblastos/metabolismo , Humanos , Recién Nacido , Metilmalonato-Semialdehído Deshidrogenasa (Acetilante)/metabolismo , Fenotipo , Piel/patología , Valina/sangre , Valina/metabolismo , Valina/orina
15.
Clin Lab ; 66(10)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073950

RESUMEN

Hereditary xanthinuria was the first inherited purine metabolism disorder described. It is a rare pathology, which is most often asymptomatic and whose incidence is therefore underestimated. We report the case of a patient with an undetectable level of uric acid in the blood, discovered during a systematic biological assessment. This case report recalls the existence of this rare metabolic disorder, which is usually benign, but can lead to complications, and the importance of considering an abnormality of the purine cycle when discovering a hypo-uricemia.


Asunto(s)
Errores Innatos del Metabolismo de la Purina-Pirimidina , Humanos , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Ácido Úrico , Xantina
16.
Xenobiotica ; 50(1): 101-109, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31682552

RESUMEN

The thiopurine drugs azathioprine and mercaptopurine are effective in the treatment of disorders of immune regulation and acute lymphoblastic leukaemia. Although developed in the 1950s, thiopurines remained relevant in the anti-tumour necrosis factor biologic era, finding widespread use as a co-immunomodulator. Step changes in the management of patients treated with thiopurines have reduced the incidence of severe, sometimes life-threatening toxicity. Testing for thiopurine methyltransferase (TPMT) deficiency directs a safe initial dose for therapy. The introduction of red cell thioguanine nucleotide (TGN) monitoring provides a basis for dose adjustment and the identification of patients with high levels of red cell methylmercaptopurine (MMP) and an increase in the MMP:TGN ratio. These patients are at risk for hepatotoxicity and where TGN levels are sub-therapeutic, non-response to therapy. Switching thiopurine hypermethylators to low-dose thiopurine and allopurinol combination therapy resolves hepatoxicity and increases sub-therapeutic TGN levels to regain clinical response. NUDT15 variants are a common cause of severe myelotoxicity in Asian populations where the frequency of TPMT deficiency is low. There is increasing evidence that testing for NUDT15 and TPMT deficiency in all populations prior to the start of thiopurine therapy is clinically useful and should be the first step in personalising thiopurine therapy.


Asunto(s)
Hipersensibilidad a las Drogas/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Purinas/uso terapéutico , Azatioprina/efectos adversos , Azatioprina/uso terapéutico , Eritrocitos , Femenino , Genotipo , Humanos , Masculino , Mercaptopurina/efectos adversos , Mercaptopurina/análogos & derivados , Mercaptopurina/uso terapéutico , Metiltransferasas , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Purinas/efectos adversos
17.
Genome Res ; 26(10): 1355-1362, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27440870

RESUMEN

Essential genes refer to those whose null mutation leads to lethality or sterility. Theoretical reasoning and empirical data both suggest that the fatal effect of inactivating an essential gene can be attributed to either the loss of indispensable core cellular function (Type I), or the gain of fatal side effects after losing dispensable periphery function (Type II). In principle, inactivation of Type I essential genes can be rescued only by re-gain of the core functions, whereas inactivation of Type II essential genes could be rescued by a further loss of function of another gene to eliminate the otherwise fatal side effects. Because such loss-of-function rescuing mutations may occur spontaneously, Type II essential genes may become nonessential in a few individuals of a large population. Motivated by this reasoning, we here carried out a systematic screening for Type II essentiality in the yeast Saccharomyces cerevisiae Large-scale whole-genome sequencing of essentiality-reversing mutants reveals 14 cases whereby the inactivation of an essential gene is rescued by loss-of-function mutations on another gene. In particular, the essential gene encoding the enzyme adenylosuccinate lyase (ADSL) is shown to be Type II, suggesting a loss-of-function therapeutic strategy for the human disorder ADSL deficiency. A proof-of-principle test of this strategy in the nematode Caenorhabditis elegans shows promising results.


Asunto(s)
Adenilosuccinato Liasa/deficiencia , Trastorno Autístico/genética , Genes Esenciales , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenilosuccinato Liasa/genética , Animales , Trastorno Autístico/terapia , Caenorhabditis elegans/genética , Terapia Genética , Humanos , Mutación con Pérdida de Función , Errores Innatos del Metabolismo de la Purina-Pirimidina/terapia , Saccharomyces cerevisiae/genética
18.
Genet Med ; 21(9): 2145-2150, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30728528

RESUMEN

PURPOSE: Severe hematotoxicity in patients with thiopurine therapy has been associated with genetic polymorphisms in the thiopurine S-methyltransferase (TPMT). While TPMT genetic testing is clinically implemented for dose individualization, alterations in the nudix hydrolase 15 (NUDT15) emerged as independent determinant of thiopurine-related hematotoxicity. Because data for European patients are limited, we investigated the relevance of NUDT15 in Europeans. METHODS: Additionally to TPMT phenotyping/genotyping, we performed in-depth Sanger sequencing analyses of NUDT15 coding region in 107 European patients who developed severe thiopurine-related hematotoxicity as extreme phenotype. Moreover, genotyping for NUDT15 variants in 689 acute lymphoblastic leukemia (ALL) patients was performed. RESULTS: As expected TPMT was the main cause of severe hematotoxicity in 31% of patients, who were either TPMT deficient (10%) or heterozygous carriers of TPMT variants (21%). By comparison, NUDT15 genetic polymorphism was identified in 14 (13%) patients including one novel variant (p.Met1Ile). Six percent of patients with severe toxicity carried variants in both TPMT and NUDT15. Among patients who developed toxicity within 3 months of treatment, 13% were found to be carriers of NUDT15 variants. CONCLUSION: Taken together, NUDT15 and TPMT genetics explain ~50% of severe thiopurine-related hematotoxicity, providing a compelling rationale for additional preemptive testing of NUDT15 genetics not only in Asians, but also in Europeans.


Asunto(s)
Hipersensibilidad a las Drogas/genética , Metiltransferasas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Pirofosfatasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Hipersensibilidad a las Drogas/etiología , Hipersensibilidad a las Drogas/patología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Masculino , Persona de Mediana Edad , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicaciones , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Errores Innatos del Metabolismo de la Purina-Pirimidina/patología
19.
Immunol Invest ; 48(4): 410-430, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30885031

RESUMEN

Purine nucleoside phosphorylase (PNP) deficiency is a rare autosomal recessive primary immunodeficiency disorder characterized by decreased numbers of T-cells, variable B-cell abnormalities, decreased amount of serum uric acid and PNP enzyme activity. The affected patients usually present with recurrent infections, neurological dysfunction and autoimmune phenomena. In this study, whole-exome sequencing was used to detect mutation in the case suspected of having primary immunodeficiency. We found a homozygous mutation in PNP gene in a girl who is the third case from the national Iranian registry. She had combined immunodeficiency, autoimmune hemolytic anemia and a history of recurrent infections. She developed no neurological dysfunction. She died at the age of 11 after a severe chicken pox infection. PNP deficiency should be considered in late-onset children with recurrent infections, autoimmune disorders without typical neurologic impairment.


Asunto(s)
Síndromes de Inmunodeficiencia/diagnóstico , Purina-Nucleósido Fosforilasa/deficiencia , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Anemia Hemolítica Autoinmune , Varicela , Niño , Resultado Fatal , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Síndromes de Inmunodeficiencia/genética , Mutación Missense , Enfermedades de Inmunodeficiencia Primaria , Purina-Nucleósido Fosforilasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética
20.
Mol Genet Metab ; 124(4): 243-253, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29801986

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/terapia , Terapia Genética , Hiperamonemia/terapia , Amoníaco/metabolismo , Animales , Carbamoil-Fosfato Sintasa (Amoniaco)/uso terapéutico , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/genética , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/metabolismo , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/patología , Carbamoil Fosfato/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Glutamina/metabolismo , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperamonemia/patología , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Mutación , Orotato Fosforribosiltransferasa/deficiencia , Orotato Fosforribosiltransferasa/genética , Orotidina-5'-Fosfato Descarboxilasa/deficiencia , Orotidina-5'-Fosfato Descarboxilasa/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Errores Innatos del Metabolismo de la Purina-Pirimidina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA